Generalized positive continuous additive functionals of multidimensional Brownian motion and their associated Revuz measure

Hideaki Uemura

Department of Mathematics Education, Aichi University of Education

(1) generalized PCAF. Let $(W_0^N, \mathcal{F}_t, P)$ be the *N* dimensional standard Wiener space, i.e., $W_0^N = \{W_t = (W_t^1, W_t^2, \dots, W_t^N) : [0, \infty) \to \mathbb{R}^N | W_t$ is continuousand $W_0 = 0\}$, $\mathcal{F}_t = \sigma\{W_s; 0 \le s \le t\}$ and *P* is the standard Wiener measure. Let \mathbf{D}_2^{γ} be the Meyer-Watanabe's Sobolev space. Let \mathbb{R}_A^N be a subset of \mathbb{R}^N satisfying $|\mathbb{R}^N \setminus \mathbb{R}_A^N| = 0$. We consider $A = \{A(t, x; W_t); t \ge 0, x \in \mathbb{R}_A^N\} \subset \mathbf{D}_2^{\gamma}$.

Definition 1. (i) Let $\gamma < 0$. A is called a D_2^{γ} additive functional of the N dimensional Brownian motion if and only if (a) $A(t, x) = A(t, x; W_{\cdot})$ is \mathcal{F}_t measurable, (b) A(0, x) = 0 and

(c)
$$A(t+s, x; W_{\cdot}) - A(t, x; W_{\cdot}) = A(s, x+W_t; (\theta_t W)_{\cdot})$$

in $\boldsymbol{D}_2^{\gamma}$, where $(\theta_t W)_s = W_{t+s} - W_t$.

(ii) A(t,x) is positive if $\langle F, A(t,x) \rangle \ge 0$ for all $F(\in \mathbf{D}_2^{-\gamma}) \ge 0$.

Remark 1. $A(s, x + W_t; (\theta_t W))$ is defined by $\int A(s, x + y; (\theta_t W)) \diamond_1 \delta(W_t - y) dy$, where \diamond_1 denotes the Wiener product (see [1]). If we assume Condition 1 below, then $A(s, x + W_t; (\theta_t W)) = \sum I_n^{\theta_t W} (a_n(t, x + W_t))$, where $A(t, x; W) = \sum I_n(a_n(t, x))$.

Condition 1. $\int ||A(t,y)||_{2,\gamma}^2 e^{-\delta|y|^2} dy < \infty$ for all $\delta > 0$, where $||\cdot||_{2,\gamma}$ denotes the norm of D_2^{γ} .

Proposition 1. We assume A(t, x) is continuous w.r.t. t in D_2^{γ} . Let $\Delta = \{0 = t_0 < t_1 < \cdots < t_n < t_{n+1} = t\}$ be a partition of [0, t], and put $|\Delta| = \max |t_{i+1} - t_i|$. Then we obtain

$$\lim_{|\Delta| \to 0} \sum_{i=0}^{n} a_0(t_{i+1} - t_i, x + W_{t_i}) = A(t, x)$$

in D_2^{γ} .

(2) Revuz measure associated to generalized PCAF. Let A be a D_2^{γ} positive continuous additive functional (abbreviated D_2^{γ} PCAF). For all $f \in \mathcal{D}$

$$\int_{0}^{t} \langle f(x+W_{s}), dA_{s}(x) \rangle = \lim_{|\Delta| \to 0} \sum_{i=0}^{n} \langle f(x+W_{t_{i}}), A(t_{i+1}, x) - A(t_{i}, x) \rangle$$

is well defined. Moreover, under Condition 1,

$$f(\in \mathcal{D}) \mapsto \int_{\mathbb{R}^N} \int_0^t \langle f(x+W_s), dA_s(x) \rangle dx \in \mathcal{D}'.$$

Definition 2. Assume Condition 1. The Revuz measure ν_A associated to \mathbf{D}_2^{γ} PCAF A is the measure on \mathbb{R}^N such that

$$\int_{\mathbb{R}^N} f(x)\nu_A(dx) = \int_{\mathbb{R}^N} \int_0^1 \langle f(x+W_s), dA_s(x) \rangle dx$$

for all $f \in \mathcal{D}$.

Proposition 2. Under Condition 1

$$\int_{\mathbb{R}^N} f(x)\nu_A(dx) = \lim_{|\Delta| \to 0} \sum_{i=0}^n \int_{\mathbb{R}^N} f(x)a_0(t_{i+1} - t_i, x)dx,$$

 Δ denoting a partition of [0, 1].

(3) Local time representation of generalized PCAF.

Condition 2. For all $\eta > 0$ small enough and for all $\delta > 0$,

$$\int |y-x|^{2-N-\eta} \mathrm{e}^{-\delta|y-x|^2} \mu(dy) < \infty.$$

Theorem 1. Let $A = \{A(t, x; W_{\cdot}); t \geq 0, x \in \mathbb{R}^{N}_{A}\}$ be a \mathbf{D}_{2}^{γ} PCAF satisfying Condition 1. Assume ν_{A} satisfies Condition 2. Then it holds that $\int L(t, y - x)\nu_{A}(dy)$ exists in \mathbf{D}_{2}^{α} $(\alpha < 1 - N/2)$ and that

$$A(t,x) = \int L(t,y-x)\nu_A(dy),$$

where L(t, z) denotes the local time of W at z.

(4) generalized PCAF corresponding to Radon measure. Let $T \in \mathcal{D}'$ be a positive distribution and μ_T be the corresponding Radon measure. Let $\alpha < 1 - N/2$. Then we obtained a D_2^{α} PCAF $A_T(t, x)$ corresponding to T under Condition 2 ([2]). Applying Mehler's formula, we have the followings:

Theorem 2. Assume μ_T satisfies Condition 2. Then $A_T(t,x) \in \mathbf{D}_2^{-\beta}$ if and only if

$$\int_{0}^{\infty} \iint \int_{0}^{t} \int_{0}^{s} e^{-r} r^{\beta-1} p_{N}(s - e^{-2r}u, y - e^{-r}z - (1 - e^{-r})x) \times p_{N}(u, z - x) du ds \mu_{T}(dz) \mu_{T}(dy) dr < \infty.$$

Theorem 3. Assume μ_T satisfies Condition 2. If

$$\iint |y-z|^{2-N-\eta} |z-x|^{2-N-\eta} e^{-\delta|y-z|^2} e^{-\delta|z-x|^2} \mu_T(dy) \mu_T(dz) < \infty,$$

then $A_T(t,x) \in L^2(P).$

References

- H. Uemura, Unrenormalized intersection local time of Brownian motion and its local time representation, J. Math. Kyoto Univ., vol. 43-4, (2003), 671-687.
- [2] H. Uemura, Positive continuous additive functionals of multidimensional Brownian motion and the Brownian local time, preprint.