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Program

October 25

13:20-14:20  Ichiro Shigekawa (Kyoto University)
Uniqueness of Gibbs measures on C'(R — R)

14:30-15:30  Kazumasa Kuwada (Ochanomizu University)
Large deviation for stochastic line integrals as LP-currents
(with Shigeo Kusuoka (University of Tokyo) and

Yozo Tamura (Keio University))

15:40-16:40 Keigo Yamada (Kanagawa University)
An Ito formula for a generalized Bessel process and Skorohod type
equation for multivariate Bessel processes

16:50-17:50  Takahiro Tsuchiya (Ritsumeikan University)
Stochastic flows of SDEs with non-Lipschtzian coefficients

driven by multi-dimensional symmetric a stable processes

October 26
10:30-11:30  Yuzuru Inahama (Tokyo Institute of Technology)

Asymptotic expansions for the Laplace approximations

for Ito functionals of Brownian rough paths
(with Hiroshi Kawabi (Kyushu University))

13:00-14:00  Yasunori Okabe (Emeritus Professor, University of Tokyo)
On D-space and G-space associated with strongly continuous resolvent

on real Hilbert space



14:10-15:10  Setsuo Taniguchi (Kyushu University)
Conditioning Quadratic Wiener functionals and Pliicker coordinates

—with a new example

15:20-16:20  Hideaki Uemura (Aichi University of Education)
Generalized positive continuous additive functionals of

multidimensional Brownian motion and their associated Revuz measure

16:30-17:30  Short Communications

October 27

10:00-11:00 ~ Remi Léandre (Université de Bourgogne)
Applications of the Malliavin Calculus of Bismut type
without probability

11:10-12:10 ~ Shigeki Aida (Osaka University)
Witten Laplacians on pinned path groups



Uniqueness of Gibbs measures on C'(R — R)*

Ichiro SHIGEKAWAT  (Kyoto University)

We consider the uniqueness problem of Gibbs measures on C'(R — R). Suppose we are given
a potential function V' : R — R. We assume that V' is continuous and non-negative. In this
talk, a Gibbs measure associated with V' is formally expressed as

W(dz) = 2! exp{—% /Oo ()2 dt — /Z V() dt} T ds(t). (1)

o0 teR

Precise characterization is fomulated through Dobrushin-Lanford-Ruelle equation as follows.
For I C R, we set F; = o{x(t);t € I}. Let PJ¥ be the pinned Brownian motion with
x(s) = x and x(t) = y. Then a probability measure p is called a Gibbs measure if it satisfies

p( - | Fsge)(@(-) = Z! exp{—/ V(x(u))dU}Psti’ ® 6ac[syt]c' (2)

Here Z is a normlizing constant. In this talk, we only deal with Gibbs measures satisfying
the tightness condition: we set

G = {u satisfies DLR equation (1) and the family {y o x(t)~'} is tight}. (3)

This type of measures, or more general classes, were discussed by many orthors, e.g.,
[1, 2]. We are interested in the uniqueness of G. This measure is closely related to an
operator H = %A — V. H is a self-adjoint operator in L*(R) and we deonote the spectrum
of —H by o(—H). Now define

X = info(—H). (4)

Ao is called a principal eigen-value in general. It is not always an eigenvalue but we can always
find a positive solution ¢ such that —H¢ = A\g¢. If ¢ € L*(R), then ) is an eigenvalue. Our
main theorem is the following:

Theorem 1. If )\ is an eigenvalue then £(G) = 1, i.e., the uniqueness holds.

References
[1] K.Iwata, An infinite-dimensional stochastic differential equation with state space C'(R). Probab.
Theory Related Fields, 5 (1987), 141-159.

[2] H. Osada and H. Spohn, Gibbs measures relative to Brownian motion, Ann. Probab., 27 (1999),
1183-1207.
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Large deviation for stochastic line integrals as
LP-currents

Kazumasa Kuwada*!
Department of Mathematics, Ochanomizu university

In this talk, we consider the large deviation principle for stochastic line integrals of
Brownian paths on a compact Riemannian manifold. We regard them as a random map
on a Sobolev space of vector fields. We show that the differentiability order of the Sobolev
space can be chosen to be almost independent of the dimension of the underlying space
under stronger integrability condition than L?. The large deviation is formulated for the
joint distribution of stochastic line integrals and the empirical distribution of a Brownian
path. As the result, the rate function is given explicitly.

Let M be a d-dimensional closed Riemannian manifold with the normalized Rieman-
nian measure m. Assume d > 3. Fix a constant L > 0 satisfying that the Ricci curvature
is bounded below by —(d — 1)L. Let A be the Laplace-Beltrami operator and O the
Hodge-Kodaira Laplacian acting on differential 1-forms. For p € [1,00], let L?, /%P and
2 %P be the Lebesgue space of scalar functions, that of 1-forms and that of vector fields
respectively(with respect to m, otherwise stated). For r > 0, we define (r,p)-Sobolev
spaces by

o WP :=(1-— A)_T/2LP,
o " = (L+1-— D)_T/Q%O’p.

For fe W, | fll,, = [I(1 - A)2f||zr. In the same way, we define the Sobolev norm

[ll,, (use the same symbol) on &"P. For p € (1,00), let 2P = (,@/T’p')* be the
Sobolev space of vector fields of negative differentiability orders for 1/p + 1/p’ = 1. Let
us introduce the following condition on a pair of indices (r, p):

pe(1,2)and r>2+d—d/p.

Let ({X:}>0, {Ps }zenr) be the Brownian motion, or the Markov process generated by A/2.
For o € o/, we can define the stochastic line integral fX[O g along { X }scpo,g. We regard

the stochastic line integral as a Random map R; : & — R given by Ri(a) = [ x[0.] @
Let €7 := C(]0,00) — £ ~"P) with the compact uniform convergence topology.

Theorem 1 [1] For each pair (r,p) satisfying (I), R is realized as a € ~"P-valued random
variable by taking a suitable version.

We denote the space of the probability measures by ///j and the space of the signed
measures on M of finite total variation by .#. We consider the weak topology on ./}
and .. Let R) := \"'Ry, and L} := \ 7! 0’\t dx,ds. Then (R}, L) is an 2 ~"F X .-

valued random variable.

*joint work with S. Kusuoka(Tokyo) and Y. Tamura(Keio)
femail: kuwada@math.ocha.ac.jp



Definition 1 For ((,p) € X" x M, we say (¢, p) € 4 if and only if it satisfies the
following:
(i) pe Al p<m and h, == \/du/dm € W2,
(ii) div{ = 0 in the sense of distribution, i.e., ,—.,(C,du) .y =0 for each u e C>*(M).
(iii) Let ¢ be given by
o P G EY)
0

otherwise.
Then ¢ € 2 %%(dp).
We define a rate function I on X ~"P x .# by

1/ ¢[* 1/ 2
— =—dm + = Vh,|"dm if ((,p) €9,
I(Cp) =4 2 {h,>0} hi 2 M’ M’ ( )

o0 otherwise.
Note that ¢ is regarded as a measurable vector field.

Theorem 2 [1] For each pair (r,p) satisfying (1), {(R}, LY)}aso0 satisfies the large devi-
ation principle in X" X M7 as X — oo with the convex good rate function I. That is,

for each E € 2~ x M,

1
lim sup ;log (sup P, [(Ri‘, L}) e E}) < — inf I(C,p),

t—00 zEM (Cm)eE

o1 . :
hmlnleog (xlg]\%]P’x [(Ri\,Li‘) € E}) >— inf I(C,p),

t—o0 (Gu)eke
where E is the closure of E and E° the interior of E.

In [2], the large deviation principle in the case of p = 2 is studied in a bit different
formulation. We use this result for proving Theorem 2 via (inverse) contraction principle.
The key estimate for both of Theorem 1 and Theorem 2 is the following exponential
integrability:

Proposition 1 Let G,(¢) = supy <1 |C(@)|. Then, for r > 2, there exist constants
v >0 and C > 0 so that for each n € (0,1],

sup E, {exp (717_1/2 sup GT(Rt))} <C.

zeM 0<t<n

References
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ated by stochastic line integrals of 1-forms on compact riemannian manifolds, preprint.

[2] K. Kuwada, On large deviations for random currents induced from stochastic line
integrals, Forum Mathematicum 18 (2006), no. 4, 639-676.



An Ito formula for a generalized Bessel process and Skorohod
type equation for multivariate Bessel processes

Keigo YAMADA (Kanagawa University)

In this talk, we consider a generalized Bessel process and give an Ito for-
mula for this process, and then apply this formula to characterlize a class of
multivariate Bessel procsses as a solution of Skorohod type equation. This
work is motivated by our study on approximating queueing network by mul-
tivariate Bessel processes. Let B(t) be an adapted Brownian motion with
< B > (t) = 0%t and D(t) be an adapted 0-quadratic variation process and
we consider the following stochasic differetial equation (SDE):

2(t) = Z(0) + 025t + 2 /Ot JZ(5)dB(s)) + 2 /Ut JZ(5)dD(s)) Z(0) = =

where 4 is a positive constant. Typical example of D(t) we treat is p-variation
processes with 1 < p < 2. When the process D(t) vanishes in the above

equation, the process X (t) = \/Z(t) is nothing but a Bessel process with
dimension ¢. Then, for a function ¢ which is twice continuously differentiable
except the boudary point 0, we give an Ito formula for the processes Z(t) and

X(t) = /Z(t) . This formula gives a decomposition of the process g(Z(t))
as a Dirichlet process . As an aplication of the formula, we show that a class
of multivariate Bessel processes can be obtained as the solution of Skorohod
type equation.

References
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integrals, Prob.Math.Stat.4,2(1984) 153-166
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Stochastic flows of SDEs with non-Lipschtzian
coefficients
driven by multi-dimensional symmetric «
stable processes

Takahiro Tsuchiya

Ritsumeikan University
Graduate School of Science and Engineering

Abstract

The construction of flows in the case of Brownian motion was in-
vestigated in the begining of the 80’s (See [4] for example). In the case
of Lévy processes, stochastic flows were studied in depth by [2] and [1],
etc. They considered especially the diffeomorphism of stochastic flows
where coefficients are sufficiently smooth. In this part, we focus on the
construction of stochastic flows under non-Lipschitz conditions of
the coefficients.

This presentation is organized as follows. In the first section, we
discuss non-contact problems of solutions where the Riesz potential
operator plays an essential role. In the second section, we summarize
the results of the pathwise uniqueness property. Pathwise uniquness
guarantees the well-definedness of the mapping from initial data to the
solution, y — Yi(y). In the third section, we show the continuity of
the map with respect to initial data. Here, hypergeometric functions
and Bessel functions are the key to solving the problem. The fourth
section is devoted to the behavior of the mapping at infinity. Finally,
in the last section, combining these properties and applying Jordan’s
curve theorem, we construct stochastic flows.
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Asymptotic expansions for the Laplace approximations
for Ito functionals of Brownian rough paths

Yuzuru Inahama (Tokyo Institute of Technology) Hiroshi Kawabi (Kyushu University)

Let (X, H, ) be an abstract Wiener space, ¥ be a real separable Banach space, w = (w¢)o<i<1 be
an X-valued Brownian motion. Let also X* := (X} )o<i<1 (¢ > 0) be a solution of the following formal
(Stratonovich) SDE:

N
dX; = o(X[)oedw, + Y a;(e)b;(X7)dt  with X = 0. (1)
=1

Here, 0 € C°(Y,L(X,Y)),b; € C°(Y,Y),i=1,...,N,and a = (a1,... ,an) : [0,1] = RY is a smooth
curve. In this talk, we will discuss the Laplace type asymptotic expansion of the functional integral of the
form E[G(X®) exp(—F(X*/e?))] as e \, 0. The large deviation was done in Inahama-Kawabi [J. London
Math. Soc., 2006]. The Laplace method for the leading term (= «p) was done in Inahama [JFA, 2006]0
Inahama-Kawabi [Proceedings of the Abel Symposium 2005, to appear].

In order to give a precise definition for the Wiener functional X*, we introduce some notations. For a
real separable Banach B, we set P(B) := {z € C([0,1],B) | zo =0}, BV(B) := {y € P(B) | ||| < o0},
and GQ,(B) (2 < p < 3), (which is called the space of geometric rough paths over B). The law of ew
on P(X) is denoted by P.. # is the Cameron-Martin space for (P(X),H,P}). In this talk we assume
(| |xox, i) satisfies the exactness condition (EX) (cf. Ledoux-Lyons-Qian), which implies the existence
of Brownian rough paths w = (1,w:,w2) € GN,(X). The law of scaled Brownian rough paths w on
GQ,(X) is denotedd by P..

Set X := X ®RY and define 6 € C{°(Y, L(X,Y)) by

N
&(y)[(a:,u)]j( = a(y)x—kZbi(y)ui, yeY,ze X,u=(u,...,uy) €RV.

=1
We consider the following ODE in the rough path sense:

For an input 7 € GQ,(X), there is a unique solution Z = (Z,7) € GQ,(X ®Y) in the rough path sense.
We denote it by 7 = ®(#) and also call it a solution of ODE (2). The Ité map & : GQ,(X) — GQ,(Y) is
locally Lipschitz continuous. For A = (AW ... AM)) € BV(RN),7 € G, (X), define 1(Z, \) € GQ,(X)
by t(E,A)1(s,t) = (T1(s,t), At — As),

¢ ¢ ¢
UT, N)a(s, 1) = (@(s,t),/ T1(s,1) ® d/\u,/ (e — As) ml(s,du),/ e — As) ® d/\u).
This map ¢ : GQ,(X) x BV(RY) — G0, (X) is also locally Lipschitz continuous.
For € > 0, we set A°(t) := (a1(e)t,... ,an(e)t) and set ¥, : BV(X) — BV(Y) by
B (h) = ®(e(h, A7), (0,1), 0<t<l1.
Then, y := ¥, (h) satisfies the following Y-valued usual ODE:

N
dys = o(ys)dhy + Zai(s)bi(yt)dt with yo = 0.

=1
With these observations in mind, we define our Wiener functional X¢ as follows:

X7 = ®(u(zw, X)), (0,1), 0<t<1.



Examples of X¢ include heat processes over loop spaces and solutions usual SDEs (1) over finite dimen-
sional spaces or M-type 2 Banach spaces. (Because of Wong-Zakai’s approximation theorem.)

In this talk we assume the following: Below, the Fréchet derivative of BV (X), P(Y") is denoted by DO
and that of Y is by denoted V.
(H1): F and G are real-valued bounded continuous functions defined on P(Y").

(H2): The function Fj := F o ¥y +|| - ||3,/2 defined on H attains its minimum at a unique point v € H.
For this 7, we write ¢ := Uy(y).

(H3): The functions F' and G are n + 3 and n + 1 times Fréchet differentiable on a neighborhood B(¢)
of ¢ € P(Y), respectively. Moreover there exist positive constants My, ..., M, 13 such that

|DkF(n) [y, . ,y] |
ID*G() [y, .. ,v]|

hold for any n € B(¢) and y € P(Y).

(H4): At the point v € H, we consider the Hessian A := D?(Fo®¥g)(y)|2x#. As a bounded self-adjoint
operator on H, the operator A is strictly larger than —Idy in the form sense. (Actually, A is Hilbert-
Schmidt. By the min-max principle, it is equivalent to assume that infimum of all eigenvalues of A are
strictly larger than -1.)

Our main result is as follows (Inahama-Kawabi [JFA, to appear]). We do not give the explicit forms
of the constants au,, c¢(v) here, because they are too long.

IN

Mk“y“;g(y): k=1,...,n+ 3,
Millyllpeyy, k=1, ,n+1,

IN

Theorem 1 Under the assumptions (EX), (H1)—(H4), we have the following asymptotic expansion:

E[G(Xf) exp (- F(Xﬁ)/gZ’)]
= exp(—Fa(v)/e%) exp (—c(v)/e) - (a0 + are + -+ + aze™ + O(e™)). (3)

The key of the proof is the (stochastic) Taylor expansion with respect to the topology of the rough
path space given as below. (cf. Aidalpreprints, 2005 & 2006]0 Inahama-Kawabi [JFA, to appear])

Q(L(’Y + ew, Ag))1 = ¢ + 5¢1(m)1 + 52¢2(m)1 + -+ gnqs"(w)l + O(€n+1)‘

Since this expansion is deterministic, it is natural to guess that the same mothod applies to asymptotic
problems of other probability measures on GQ,(X).

Our method of the stochastic Taylor expansion is slightly different from Aida’s method. He uses the
derivative equation, whose coefficient is of course of linear growth. Since it is not known whether Lyons’
continuity theorem holds or not for unbounded coefficients, he extends the continuity theorem for the
case of the derivative equation in the first preprint. On the other hand, we use the method in Azencott’s
original paper [1982, LNM921] and we only need the continuity theorem for the given equation, whose
coefficient is bounded. The price we have to pay is that notations and proofs may seem slightly long.
However, the strategy of this method is quite simple and straight forward.



Yasunori Okabe
Emeritus Professor, University of Tokyo

Abstract For any strongly continuous resolvent {G,;a > 0} on a real Hilbert space
H, we shall introduce a closed symmetric form (£(V), D(£(V)) in a wide sense, to be called
G-form, associated with the potential operator V' = lim,_,q G, defined by Yosida transfor-
mation in Hunt’s potential theory, besides the usual closed symmetric form (£(A), D(E(A)),
to be called D-form in this talk, associated with the infinitesimal generator A.

First, we shall characterize the G-form as a dual form of the D-form and the D-form as
a dual form of the G-form through Legendre-Fenchel transformation in convex analysis.

Next, we shall find some relationships between the D-space D(E£(A)) and the G-space
D(E(V)), to be a domain of the D-form and the G-form, respectively. In particular, we
shall obtain a fundamental relation between the resolvent {G,;a > 0} associated with
the D-form and the resolvent {G?%;a > 0} associated with the G-form. Furthermore, we
shall show that there exists a unitary operator V* from the completed G-space onto the
completed D-space, and characterise its inverse operator and its restriction to the space
D(E(V)). Note that the restriction of the operator V* to the space D(V) is the potential
operator V. Moreover, we shall construct four kinds of resolvents by extending the resolvents
{GalpEay:a > 0}, {G?|pecay; @ > 0} on the completed D-space and {Gq|pe(vy); o >
0}, {G2|pe(vy); @ > 0} on the completed G-space, respectively and then characterize them.

Finally, we shall consider the extended D-space and the extended G-space for a gen-
eral case and investigate the problem concerning the equivalence of the non-degeneracy of
seminorms and the completeness of them.



Conditioning Quadratic Wiener functionals and Pliicker
coordinates — with a new example

Setsuo Taniguchi (Kyushu Univ.)

Let T'> 0 and (W, 1) be the d-dimensional classical Wiener space over
[0,77], i.e., W is the Banach space of all R%valued continuous functions
defined on [0,7] starting at the origin, and p is the Wiener measure on
W. Denote by H the Cameron-Martin subspace of W. Thinking of a
symmetric Hilbert Schmidt operator A : H — H as a constant Wiener
functional with values in the Hilbert space of Hilbert-Schmidt operators of
H to itself, we define the quadratic Wiener functional associated with A
by Qa = (V*)2A, where V* stands for the adjoint operator of the Malli-
avin gradient V. For linearly independent 71,...,my € H and N < M,
set nN) = (V*ny,...,V*ny). Investigated in this talk is the conditioned
stochastic oscillatory integral

In(¢) = /We%/?ao(n(m)du, cec

where 8y is the Dirac measure concentrated at 0 € R and do(nY)) denotes
the pull-back due to S. Watanabe. The exact expressions of the above
integrals Iy (¢), 1 < N < M, will be given in terms of the Pliicker coordinate
of a point in the (M, 2M)-Grassmannian. Such correspondence was firstly
pointed out and investigated by Hara-Tkeda [1] in the case of the classical
and generalized Lévy areas. In this talk, we extend their observation to
general cases with the help of the Jacobi field approach to quadratic Wiener
functional introduced by Ikeda-Manabe [2].

We shall testify our generalization in a new quadratic Wiener functional
which is obtained as the Malliavin derivative of the square norm of Brownian
sample path. The Wiener functional attracts us since it determines the
stationary point of the square norm. Some more detailed observations on
the Wiener functional will be presented in the talk.

The talk is based on two recent papers [3,4].
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(GENERALIZED POSITIVE CONTINUOUS ADDITIVE FUNCTIONALS OF
MULTIDIMENSIONAL BROWNIAN MOTION AND
THEIR ASSOCIATED REVUZ MEASURE

Hideaki Uemura

Department of Mathematics Education,
Aichi University of Education

(1) generalized PCAF. Let (W{¥,F;, P) be the N dimensional standard Wiener space,
e, WY = {W, = WEHL W2, ...,W}N) :[0,00) — RY|W, is continuousand Wy = 0},
F, = o{Ws;0 < s <t} and P is the standard Wiener measure. Let D] be the Meyer-
Watanabe’s Sobolev space. Let RY be a subset of RY satisfying |[RY \ RY| = 0. We
consider A = {A(t,x;W.);t > 0,2 € RY} C DJ.

Definition 1. (i) Let y < 0. A is called a D] additive functional of the N dimensional
Brownian motion if and only if (a) A(t,x) = A(t,z; W.) is F; measurable, (b) A(0,z) =0
and

(c)  Alt+s,a W) = At,z; W) = A(s,x + Wy; (0,).)

in D), where (§,W), = Wy, — W,.
(i)  A(t,x) is positive if (F, A(t,z)) > 0 for all F(e D,”) > 0.

Remark 1. A(s,x + Wy; (0,W).) is defined by [ A(s,z + y; (0:;W).)O16(W; — y)dy, where
&1 denotes the Wiener product (see [1]). If we assume Condition 1 below, then A(s,z +
Wi (O0W).) = ST I%W (apn(t, z + W,)), where A(t,x; W) = I,(an(t, x)).

Condition 1. [ ||A(t,y)||§ﬁe*5|y|2dy < oo for all § > 0, where || - |2, denotes the norm
of DJ.

Proposition 1. We assume A(t,z) is continuous w.r.t. t in D}. Let A = {0 = t5 <
ty < -+ <t <tpp1 =t} be a partition of [0,t], and put |A| = max |t;11 —t;|. Then we

obtain

|i1|1i10 Z (lo(ti+1 — tz', T+ th) = A(t, I)

1=0

in DJ.

(2) Revuz measure associated to generalized PCAF. Let A be a DJ positive continuous
additive functional (abbreviated D3 PCAF). For all f € D

n

t
/ (f(x + Ws),dAs(z)) = lim (f(x +W4,), A(tiyr, ) — A(ti, x))
0 =0
is well defined. Moreover, under Condition 1,

f(e D) — /sz/o (F(z + W), dA(z))dz € D.



Definition 2. Assume Condition 1. The Revuz measure v, associated to D PCAF A
is the measure on R such that

[ Faatn) - /RN/ ), dAL () dx

Proposition 2. Under Condition 1

for all f € D.

f( )VA d:l} lim 7,+1 — ti,ﬂi)d(l?,
N | =0

A denoting a partition of [0, 1].

(3) Local time representation of generalized PCAF.
Condition 2. For all n > 0 small enough and for all > 0,

/ ly — >N e (dy) < oo,

Theorem 1. Let A = {A(t,z;W.);t > 0,2 € R} be a D] PCAF satisfying Condition
1. Assume vy satisfies Condition 2. Then it holds that [ L(t,y — x)va(dy) exists in D
(a <1— N/2) and that

Alt, ) = / Lit,y — 2)valdy),

where L(t,z) denotes the local time of W at z.

(4) generalized PCAF corresponding to Radon measure. Let T' € D’ be a positive distribution
and pr be the corresponding Radon measure. Let @ < 1 — N/2. Then we obtained a D¥
PCAF Ar(t,x) corresponding to T' under Condition 2 ([2]). Applying Mehler’s formula,
we have the followings:

Theorem 2. Assume pr satisfies Condition 2. Then Ap(t,z) € D" if and only if

00 t s
/ /// / e P N (s —e Ty —e T — (1 — e "a)
0 o Jo

X pn(u, z — x)dudspr(dz)pr(dy)dr < oo.
Theorem 3. Assume ur satisfies Condition 2. If

/ / ly — 2Nz — PN e e (dy ) (d) < oo
then Ar(t,z) € L*(P).
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APPLICATIONS OF THE MALLIAVIN CALCULUS OF BISMUT TYPE WITHOUT PROBABILITY.

Rémi Léandre.

The talk is divided in 4 parts:

-)In the first part we translate in semi-group theory Bismut way of the Malliavin Calculus.

-)In the second part, we translate in semi-group theory our proof of Varadhan estimates, lower bound, got a lot
time ago by us by using the Malliavin Calculus.

-)In the third part, we translate in semi-group theory Wong-Zakai approximation of a diffusion and the proof
of the positivity result got by using Bismut’s procedure a long time ago by Ben Arous and us.

-)In the fourth part, we translate in semi-group theory the division method and the results got a long time ago
by us by using the Malliavin Calculus.



Witten Laplacians on pinned path groups

Shigeki Aida
Osaka University

Let G be a simply connected and connected compact Lie group. Let a € G. We denote
the unit element of G by e. We consider a pinned path group

Peo(G) = C([0,1] = G | 4(0) = €,7(1) = a). (1)
Let A > 0 and vy, be the pinned Brownian motion measure on P, ,(G) such that

Una ({7 € Poa(G) | v(t1) € Ar, .o y(tne1) € Anar})

n—1
=p ()\_17 €, a)il / Hp ()\_1 (ti = tic1) , i1, xz) La,(z5) - p ()\_1 (1 —=ty—1),2n_1, @)
G" =1
dxy---dx, 1,

where 0 =ty <t; < -+ <t,_1 <1,z =cand A; C G. p(t,x,y) denotes the heat kernel
of elt/24,

We are interested in the following Witten Laplacian.
Definition 1 Let d be a exterior derivative on P..(G). Let d; ~ denote the adjoint

operator of d on L*(NT*P..(G),dvy,). Set Oy, = — (dal’,jM + dz*/“d)- For an open set
Qin P..(G), set

Epir1(\ Q) = inf{(—D,\ﬁaa, O PYIONR ‘oz is a smooth 1-form and asq = 0}.

Definition 2 For v,n € P.,(G), define
d(y,1) = maxo<e<1 d(y(1),0(t)). Also let E(y) = 3 [y 17(t)dt and

o = {rer.@)| VER) <L} 2)
B.(n) = {7 € P.alG) | dlv,n) <e} (3)
Q. = {'y € P. .(G) | there exists n € Qsuch that v € Ba(n)}. (4)

Also we define for 0 < o < 1,

d(v(t),v(s
e =  sup (v(¥) i))_
o<st<i [t — s



Remark 3 Let R > 0. Set
Dor = {re Pe,a(G) | [7]la < R}.
Then for any small € > 0, there exists L > 0 such that Do g C Qp .
The following is one of our main result.

Theorem 4 Suppose that a is outside the cut-locus of e. We denote the all geodesics
connecting e and a by {¢;}52, C P..(G). Also we denote the all eigenvalues of (V2E)(¢;)
by {€;(c;) | 7=1,2,...}. Let Q be an open subset of P. ,(G). Assume that there exists a
sufficeintly small € > 0 and positive L such that 2 C Q. and 0X2 does not contain any
geodesics. Then it holds that

lim Epir1(A, )
A—00 )\

=min{0(¢;) | ¢; € Q},

where

Oh(ci) = inf | max(§;(c),0) + > L&)
{k#5,6k(ci)<0}
Further, it holds that 01(c;) > 0 for all 1 > 1.

Remark 5 When G = SU(n,C),SO(n), it holds that
01 (Cz) > l<cl)

~ 2rdim G
where l(¢c;) denotes the length of the geodesic ¢; and C' is a constant.

The main theorem can be proved by applying the following log-Sobolev inequality
(with a potential function). Below, a is not necessarily outside the cut-locus of e.

Theorem 6 There exist constants Cy,Cy > 0 such that for any sufficiently large X\ > 0
and f € FC°(P.o(G)), it holds that

2 ), 2/ G
/Pe,a(G) f (7) log (HfHQ > d /\,a(7> S /\ (1 —+ )\ ) 5)‘7V/\,a<f7 f)7 (7)

L2 (V)\,a)

where

Evaf, f) = /

(V1)) ydina + / NVa (1) () dir
P o(G)

Peo(G)

(8)

V)\,a (/7)

fisai+ Sroe 0o e o+ {1 # P+ ( | 1 rb<s>\ds)2} .

o





