INVARIANT SETS AND ERGODIC DECOMPOSITION OF LOCAL SEMI-DIRICHLET FORMS

Kazuhiro Kuwae Kumamoto University

1. Weakly invariant set and strongly invariant set

Let X be a separable metric space and m a σ -finite Borel measure on X. Let $(T_t)_{t\geq 0}$ be a C_0 -semigroup on $L^2(X;m)$ and $(\hat{T}_t)_{t>0}$ the dual C_0 -semigroup of $(T_t)_{t>0}$ on $L^{2}(X;m)$. An *m*-measurable subset B of X is said to be *weakly invariant* with respect to $(T_t)_{t>0}$ if $I_{B^c}T_tI_Bu = 0$ for any t > 0 and $u \in L^2(X; m)$, equivalently B^c is weakly invariant with respect to $(\hat{T}_t)_{t\geq 0}$. An *m*-measurable subset B of X is said to be (strongly) invariant with respect to $(T_t)_{t>0}$ if $T_t I_B u = I_B T_t u$ for any t > 0and $u \in L^2(X; m)$. Clearly, the strong invariance implies the weak one and B is strongly invariant if and only if both B and B^c are weakly invariant. So if $(T_t)_{t>0}$ is symmetric, then the weak invariance is equivalent to the strong one. Fix $\gamma \geq 0$. A bilinear form $(\mathcal{E},\mathcal{F})$ is said to be a positivity preserving form with a lower bound $-\gamma$ on $L^2(X;m)$ if $(\mathcal{E}_{\gamma},\mathcal{F})$ is a coercive closed form having the property that for $u \in \mathcal{F}, u^+, u^- \in \mathcal{F}$ and $\mathcal{E}(u^+, u^-) < 0$, equivalently $\mathcal{E}(u, u^+) > -\gamma ||u^+||_2^2$. A bilinear form $(\mathcal{E}, \mathcal{F})$ is said to be a semi-Dirichlet form with a lower bound $-\gamma$ on $L^2(X;m)$ if $(\mathcal{E}_{\gamma}, \mathcal{F})$ is a coercive closed form having the property that for $u \in \mathcal{F}, u^+ \land 1 \in \mathcal{F}$ and $\mathcal{E}(u^+ \wedge 1, u - u^+ \wedge 1) \geq 0$, equivalently, $\mathcal{E}(u + u^+ \wedge 1, u - u^+ \wedge 1) \geq -\gamma ||u - u^+ \wedge 1||_2^2$. Any semi-Dirichlet form with a lower bound $-\gamma$ on $L^2(X;m)$ is automatically a positivity preserving form with a lower bound $-\gamma$ on $L^2(X; m)$.

Let $(\mathcal{E}, \mathcal{F})$ be a semi-Dirichlet form or positivity preserving form with a lower bound $-\gamma$ on $L^2(X;m)$. Then there exists a C_0 -semigroup $(T_t)_{t\geq 0}$ on $L^2(X;m)$ such that $(e^{-\gamma t}T_t)_{t\geq 0}$ is contractive on $L^2(X;m)$ and its resolvent $(G_\alpha)_{\alpha>\gamma}$ defined by $G_\alpha f := \int_0^\infty e^{-\alpha t} T_t f dt$, $f \in L^2(X;m)$ satisfies $G_\alpha f \in \mathcal{F}$ and $\mathcal{E}_\alpha(G_\alpha f,g) = (f,g)$ for $f \in L^2(X;m), g \in \mathcal{F}, \alpha > \gamma$. If $(\mathcal{E},\mathcal{F})$ is a positivity preserving (resp. semi-Dirichlet) form with a lower bound $-\gamma$ on $L^2(X;m)$, then $(T_t)_{t\geq 0}$ satisfies that $T_t u \geq 0$ if $u \geq 0$ (resp. $0 \leq T_t u \leq 1$ if $0 \leq u \leq 1$) for any t > 0 and $u \in L^2(X;m)$. For the details, see [1],[5],[6].

For a positivity preserving (resp. semi-Dirichlet) form with a lower bound $-\gamma$ on $L^2(X;m)$ is said to be *quasi-regular* if $(\mathcal{E}_{\gamma}, \mathcal{F})$ is a quasi-regular positivity preserving (resp. semi-Dirichlet) form on $L^2(X;m)$ in the sense of Ma-Röckner [10] (resp. Ma-Overbeck-Röckner [8]). For a positivity preserving form with a lower bound $-\gamma$ on $L^2(X;m)$ is said to be *local* if $(\mathcal{E}_{\gamma}, \mathcal{F})$ is local in the sense of Chapter V. Definition 1.1 in [9].

Theorem 1.1. Suppose that $(T_t)_{t\geq 0}$ is associated with a quasi-regular local positivity preserving form $(\mathcal{E}, \mathcal{F})$ with a lower bound $-\gamma$ on $L^2(X; m)$. Then the weak invariance with respect to $(T_t)_{t\geq 0}$ is equivalent to the strong invariance.

2. Ergodic decomposition

As an application of Theorem 1.1, we give an ergodic decomposition of the right process associated with a quasi-regular semi-Dirichlet form with a lower bound $-\gamma$ on $L^2(X;m)$. Take a point $\Delta \notin X$ which is added to X as an isolated point. If X is a locally compact, then it is added to X as one point compactification. We consider a Borel right m-special standard process $\mathbf{M} = (\Omega, X_t, P_x)_{x \in X_\Delta}$. M is said to be associated with a semi-Dirichlet form $(\mathcal{E}, \mathcal{F})$ with a lower bound $-\gamma$ on $L^2(X;m)$ if $T_t u = E_x[u(X_t)]$ m-a.e. $x \in X$ for Borel function $u \in L^2(X;m)$. We say that **M** satisfies the absolute continuity condition with respect to m if $p_t(x, dy) \ll m(dy)$ for any $x \in X$ and t > 0. A set $B \subset X$ is said to be **M**-invariant if B is nearly Borel and

$$P_x(X_t \in B \text{ for } \forall t \in [0, \zeta[, X_{t-} \in B \text{ for } \forall t \in]0, \zeta[) = 1, x \in B.$$

Obviously any complement of an **M**-invariant set is weakly invariant relative to $(T_t)_{t\geq 0}$ associated with $(\mathcal{E}, \mathcal{F})$ or **M**. A set $N \subset X$ is called *(m-)properly exceptional* if N is a nearly Borel *m*-negligible set and $X \setminus N$ is **M**-invariant. If **M** has a decomposition $X = B_1 + B_2 + N$ such that each B_i is **M**-invariant and N is properly exceptional, then B_i is strongly invariant relative to $(T_t)_{t\geq 0}$.

From now on, let $(\mathcal{E}, \mathcal{F})$ be a quasi-regular local semi-Dirichlet form with a lower bound $-\gamma$ on $L^2(X; m)$ and assume that there exists a Borel right *m*-special standard process **M** associated with $(\mathcal{E}, \mathcal{F})$.

Theorem 2.1 (Ergodic decomposition I). M admits the following decomposition: there exist M-invariant sets X_c^* , X_d^* and a properly exceptional set N such that

- (1) $X = X_c^* + X_d^* + N$.
- (2) $\mathbf{M}_{X_d^*}$ is transient in the following sense: there exists a bounded Borel function $u \in L^1(X; m)$ such that u > 0 \mathcal{E} -q.e. on X_d^* , u = 0 \mathcal{E} -q.e. on X_c^* and $0 < Ru < \infty$ \mathcal{E} -q.e. on X_d^* . More strongly, we can take such u with $Ru \in L^{\infty}(X_d^*; m)$.
- (3) M_{X^{*}_c} is recurrent in the following sense: for any m-a.e. nonnegative Borel function u, Ru = 0 or ∞ ε-q.e. on X^{*}_c. If further u is m-a.e. strictly positive on X^{*}_c, then Ru = ∞ ε-q.e. on X^{*}_c.

Further assume that \mathbf{M} satisfies the absolute continuity condition with respect to m. Then X_c^* and X_d^* can be taken to be finely open and finely closed and N can be taken to be empty. In this case, $\mathbf{M}_{X_d^*}$ is transient in the sense of Getoor [4], that is, there exists a nonnegative bounded Borel function u on X_d^* such that Ru is strictly positive and bounded on X_d^* . Also $\mathbf{M}_{X_c^*}$ is recurrent in the following sense: for any m-a.e. nonnegative Borel function u on X_c^* , Ru(x) = 0 or ∞ for $x \in X_c^*$. If further u is m-a.e. strictly positive on X_c^* , then $Ru(x) = \infty$ for $x \in X_c^*$. Finally we note that X_c^* and X_d^* can be taken to be open and closed if \mathbf{M} has the strong Feller property.

If $(T_t)_{t\geq 0}$ is also a family of contractive operators on $L^1(X; m)$, then we have the following assertion without assuming the local property of $(\mathcal{E}, \mathcal{F})$:

Theorem 2.2 (Ergodic decomposition II). Suppose that $(T_t)_{t\geq 0}$ forms a family of contractions on $L^1(X;m)$, equivalently, $(\mathcal{E},\mathcal{F})$ is a (non-symmetric) Dirichlet form with a lower bound $-\gamma$ on $L^2(X;m)$. Then the same conclusion as in Theorem 2.1

holds. More strongly, we have that for any m-a.e. nonegative $g \in L^1(X; m)$, $Rg < \infty$ \mathcal{E} -q.e. on X_d^* .

Any coercive closed form $(\mathcal{E}, \mathcal{F})$ with a lower bound $-\gamma$ on $L^2(X; m)$ is said to be strictly irreducible (resp. irreducible) if for any weakly (resp. strongly) invariant set B relative to the C_0 -semigroup $(T_t)_{t>0}$ of $(\mathcal{E}, \mathcal{F})$, m(B) = 0 or $m(B^c) = 0$.

Theorem 2.3 (Transience of part processes). Assume one of the following:

- $(\mathcal{E}, \mathcal{F})$ is local and irreducible.
- $(\mathcal{E}, \mathcal{F})$ is a strictly irreducible (non-symmetric) Dirichlet form.

Take an open set G such that $X \setminus G$ is non- \mathcal{E} -polar. Then the conservative part G_c^* in the ergodic decomposition $G = G_c^* + G_d^* + N$ for the part process \mathbf{M}_G is \mathcal{E} -polar. In particular, \mathbf{M}_G is transient in the sense specified in Theorem 2.1(2). Further assume that \mathbf{M} satisfies the absolute continuity condition with respect to m. Then $G = G_d^*$, and \mathbf{M}_G is transient in the sense of Getoor [4].

Theorem 2.4 (Comparison of transience). Let m be a σ -finite Borel measure on Xand $(\mathcal{E}^{(i)}, \mathcal{F}^{(i)})$ be a quasi-regular semi-Dirichlet form with the same lower bound 0 on $L^2(X;m)$ and assume that there exists a Borel right m-special standard process $\mathbf{M}^{(i)}$ associated with $(\mathcal{E}^{(i)}, \mathcal{F}^{(i)})$, for each i = 1, 2. Assume that $(\mathcal{E}^{(1)}, \mathcal{F}^{(1)})$ satisfies the strong sector condition. Suppose that $\mathcal{F}^{(2)} \subset \mathcal{F}^{(1)}$ and $(\mathcal{E}^{(1)})^{1/2} \leq (\mathcal{E}^{(2)})^{1/2}$ on $\mathcal{F}^{(2)}$. Then the transience of $\mathbf{M}^{(1)}$ in the sense specified in Theorem 2.1(2) implies the transience of $\mathbf{M}^{(2)}$ in the same sense.

References

- S. Carrillo-Menendez, Processus de Markov associé une forme de Dirichlet non symétrique. (German) Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), 139–154.
- [2] S.R. Foguel, The ergodic theory of Markov processes, Van Nostrand Mathematical Studies, No 21. Van Nostrand Reinholds Co., New York-Toront, Ont.-London 1969.
- [3] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics 19 Walter de Gruyter & Co., Berlin, 1994.
- [4] R.K. Getoor, Transience and recurrence of Markov processes. Seminar on Probability, XIV (Paris, 1978/1979) (French), 397–409, Lecture Notes in Math., 784, Springer, Berlin, Heidelberg, New York, 1980, 397–409.
- [5] H. Kunita, Sub-Markov semi-groups in Banach lattices.1970 Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) pp. 332–343 Univ. of Tokyo Press, Tokyo.
- [6] K. Kuwae, Maximum principles for subharmonic functions via local semi-Dirichlet forms, preprint, 2005.
- [7] K. Kuwae, Invariant sets and ergodic decomposition for semi-Dirichlet forms, preprint, 2005.
- [8] Z.M. Ma, L. Overbeck and M. Röckner, Markov processes associated with semi-Dirichlet forms, Osaka J. Math. 32 (1994), 97–119.
- [9] Z.M. Ma and M. Röckner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer Universitext, 1992.
- [10] Z.M. Ma and M. Röckner, Markov processes associated with positivity preserving coercive forms, Canad. J. Math. 47 (1995), 817–840.
- [11] R.G. Pinsky, Positive harmonic functions and diffusion, Cambridge Studies in Advanced Mathematics, 45. Cambridge University Press, Cambridge, 1995.
- [12] R.L. Schilling, A note on invariant sets, Probab. Math. Statist. 24 (2004), no. 1, Acta Univ. Wratislav. No. 2646, 47–66.