Schrödinger operators on the Wiener space^{*}

Ichiro Shigekawa[†] (Kyoto University)

We consider a Schrödinger operator A = L - V on an abstract Wiener space (B, H, μ) . Here L is the Ornstein-Uhlenbeck operator and V is a scalar potential. Our goal is to determine the domain of L - V. To be precise, we will show that $Dom(A) = Dom(L) \cap Dom(V)$ under a suitable condition. We also show the spectral of gap of this operator.

Essential self-adjointness

We define $\mathcal{F}C_0^{\infty}$ to be the set of all functions $f: B \to \mathbb{R}$ such that there exist $n \in \mathbb{N}$, $F \in C_0^{\infty}(\mathbb{R}^n)$ and $\varphi_1, \ldots, \varphi_n \in B^*$ with

(1)
$$f(x) = F(\langle x, \varphi_1 \rangle, \dots, \langle x, \varphi_n \rangle).$$

A Schrödinger operator L - V is defined on $L^2(\mu)$. Essentially self-adjointness of L - V is a fundamental problem and we have the following theorem:

Theorem 1. For a Schödinger operator L - V on an abstract when space (B, H, μ) , we suppose that V_+ , $e^{V_-} \in L^{2+}$ where $V_+ := \max\{V, 0\}$, $V_- := \max\{-V, 0\}$. Then L - V is essentially self-adjoint on $\mathcal{F}C_0^{\infty}$.

To show this theorem, we need the followig result for the logarithmic Sobolev inequalities. In general setting, the (defective) logarithmic Sobolev inequality for a Dirichlet form \mathcal{E} is written as

(2)
$$\int_{B} |f|^{2} \log(|f|/||f||_{2}) \, d\mu \leq \alpha \mathcal{E}(f, f) + \beta ||f||_{2}^{2}.$$

Here (B, μ) is a general measure space. We also denote the associated generator by L (not specify to the Ornstein-Uhlenbeck operator). For the Dirichlet form \mathcal{E} , we assume the local property and the existence of square field operator, i.e.,

(3)
$$\mathcal{E}(f,g) = \int_{B} \Gamma(f,g) \, d\mu$$

and Γ has the derivation property. In the case of an abstract Wiener space, $\Gamma(f, f) = |\nabla f|^2$, ∇ being a gradient operator. We have the following theorem.

Theorem 2. Asume that the logarithmic Sobolev (2) holds. Then, for any $\varepsilon > 0$, there exist positive constants K_1 , K_2 such that

(4)
$$\int_{B} f^{2} \log_{+}^{2} f \, d\mu \leq \alpha^{2} (1+\varepsilon) \|Lf\|_{2}^{2} + K_{1} + K_{2} \|f\|_{2}^{6}.$$

^{*}Stochastic analysis and related topics, Osaka University, January 7–9, 2005

[†]E-mail: ichiro@math.kyoto-u.ac.jp URL: http://www.math.kyoto-u.ac.jp/~ichiro

The domain of a Schrödinger operator

We consider an issue of the domain of a Schrödinger operator of the form A = L - V + W. Here we decompose the potential as follows:

(A.1) $V \ge 1$ and $V \in L^{2+}$.

(A.2) W is non-positive and there exists a constant $0 < \alpha < 1$ such that $e^W \in L^{2/\alpha}$.

Tough there are many ways to give sufficient conditions, we restrict ourselves to typical ones. One of them is

(5)
$$e^{W+|b|^2} \in L^{2/\alpha}.$$

The other is that there exists a constant C > 0 such that

$$(6) |b|^2 \le \alpha V + C.$$

Then we have the following

Theorem 3. We assume the same assumptions as before. Then we have that $Dom(A) = Dom(L) \cap Dom(V)$. Moreover, for sufficiently large λ , there exist positive constants K_1, K_2 such that

(7)
$$K_1 \| (A - \lambda)f \|_2 \le \|Lf\|_2 + \|Vf\|_2 \le K_2 \| (A - \lambda)f \|_2.$$

Spectral gap of a Schrödinger oerator

We denote the set of spectrum of A = L - V + W by $\sigma(A)$ and set $l = \sup \sigma(A)$. Then, using Theorem 3, we have

Theorem 4. Assume that V, W satisfy the conditions (A.1), (A.2). We also assume that either (5) or (6) is fulfilled. Then the spectrum of A = L - V + W is discrete on (l - 1, l], i.e., it consists of point spectrums of finite multiplicity.

References

- [1] J. Glimm and A. Jaffe, A $\lambda \phi^4$ quantum field theory without cutoffs II, The field operators and the approximate vacuum, Ann. Math. **91** (1970), 362–401.
- [2] M. Reed and B. Simon, "Method of modern mathematical physics, II: Fourier analysis, selfadjointness," Academic Press, San Diego, 1975.
- [3] I. Segal, Notes towards the construction of nonlinear relativistic quantum fields. III. Properties of the C^{*}-dynamics for a certain class of interactions, Bull. Amer. Math. Soc., 75 (1969), 1390–1395.
- [4] B. Simon, Essential self-adjointness of Schrdinger operators with positive potentials, Math. Ann., 201 (1973), 211–220.
- [5] B. Simon and R. Høegh-Krohn, Hypercontractive semigroups and two-dimensional self-coupled Bose fields, J. Funct. Anal., 9 (1972), 121–180.