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1. Kato class

Let (X, d) be a proper locally compact separable metric space and m a
positive Radon measure with full support, where proper means that every
closed ball is compact. Let (E ,F) be a regular symmetric Dirichlet form on
L2(X;m) and M= (Ω, Xt, Px) the m-symmetric Hunt process associated with
(E ,F). We assume the existence of the heat kernel pt(x, y) of M and pt(x, y)
is defined for all (t, x, y) ∈]0,∞[×X × X. Fix ν > 0. We assume (EΦβ) for
β > 0: there exist positive constants C1 < C2 and t0 > 0 such that for all
(x, y) ∈ X ×X and t ∈]0, t0[

C1

tν/β
Φ1

(d(x, y)
t1/β

)
≤ pt(x, y) ≤ C2

tν/β
Φ2

(d(x, y)
t1/β

)
,(1)

where Φi (i = 1, 2) are positive decreasing functions on [0,∞[ such that∫ ∞

1
tν−1Φ2(t)dt < ∞.

A positive Borel measure µ on X is said to be in the Kato class Kν if

lim
r→0

sup
x∈X

∫
Br(x)

µ(dy)
d(x, y)ν−β

= 0 if ν > β(2)

lim
r→0

sup
x∈X

∫
Br(x)

(log d(x, y)−1)µ(dy) = 0 if ν = β(3)

sup
x∈X

∫
B1(x)

µ(dy) < ∞ if ν < β.(4)

By definition, we see that every µ ∈ Kν is a Radon measure. On the other
hand, we have another definition of Kato class measure in terms of pt(x, y): A
positive Borel measure µ on X is said to be in S0

K (resp. S0
D) if

lim
t→0

sup
x∈X

∫
X

(∫ t

0
ps(x, y)ds

)
µ(dy) = 0.(5)

(resp. sup
x∈X

∫
X

(∫ t

0
ps(x, y)ds

)
µ(dy) < ∞ for some/all t > 0).(6)

Let S1 be the family of smooth measures in the strict sense (see [3] for the
definition of S1). We set SK := S0

K ∩ S1 (resp. SD := S0
D ∩ S1). We say

that µ ∈ Sloc
K (resp. Sloc

D ) if and only if IAµ ∈ S0
K (resp. IAµ ∈ S0

D) for any
Borel set A with µ(A) < ∞. We see that every finite measure µ ∈ S0

D is
1



in S00, that is, such µ is a measure of finite energy with bounded potential,
hence if µ ∈ Sloc

D is a Radon measure, then µ ∈ S1, consequently, there exists a
positive continuous additive functional At (PCAF in short) of M admitting no
exceptional set associated with any Radon measure µ ∈ Sloc

D (cf. [3]). Hence
(6) is equivalent to supx∈X Ex[At] < ∞ for some t > 0 in that case.

Our result is the following:

Theorem 1.1. S0
K ⊂ Kν ⊂ Sloc

D . In particular, Kν ⊂ S1.

Theorem 1.2. Suppose that M is conservative and m satisfies that there
exists V > 0 such that sup

x∈X
m(Br(x)) ≤ V rν , ∀r > 0. Then SK = S0

K = Kν .

In Aizenman-Simon [1] or Chung-Zhao [2], Kd = SK is showed in the case
µ(dx) = |f(x)|dx, f ∈ Kd for Brownian motion on Rd. Zhao [6] extends this
in more general setting including a subclass of Lévy processes, but his result
assures the case d ≥ 2 for Brownian motion and the case d > α for symmetric
α-stable process on Rd. Our result extends [1] and can be applicable to various
settings including the case of diffusion processes on fractals.

2. Example

Example 2.1 (Symmetric α-stable process). Take α ∈]0, 2[. Let Mα =
(Ω, Xt, Px)x∈Rd be the symmetric α-stable process on Rd, that is, Lévy pro-
cess satisfying E0[e〈ξ,Xt〉] = e−t|ξ|α . Mα admits a semigroup kernel pt(x, y)
satisfying the following estimate (see [4]):

C1

td/α

1(
1 + |x−y|

t1/α

)d+α
≤ pt(x, y) ≤ C2

td/α

1(
1 + |x−y|

t1/α

)d+α
.(7)

Then Kd = SK , in particular, for surface measure σ on Sd−1, we have σ ∈ SK

if and only if α > 1.
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