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1. KATO CLASS

Let (X,d) be a proper locally compact separable metric space and m a
positive Radon measure with full support, where proper means that every
closed ball is compact. Let (£, F) be a regular symmetric Dirichlet form on
L?(X;m) and M= (9, X;, P,) the m-symmetric Hunt process associated with
(€, F). We assume the existence of the heat kernel p;(x,y) of M and p;(x,y)
is defined for all (¢, z,y) €]0,00[xX x X. Fix v > 0. We assume (E®g) for
B > 0: there exist positive constants C; < Cy and tg > 0 such that for all
(x,y) € X x X and t €]0,to[

Ch d(x,y Cy d(x,y
(1) ty/ﬁ 1< Sflﬂg)) Spt(IE?y)Sty/ﬁ(I)Z( il/ﬁ)>a

where ®; (i = 1,2) are positive decreasing functions on [0, 00[ such that

/ 7 1®y(t)dt < 0.
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A positive Borel measure p on X is said to be in the Kato class K, if

: 1(dy) :
2 hmsup/ ——=— = 0ifv>p
( ) r=0zeXx B (x) d(xjy)l/—ﬁ
(3) fimsup [ (logd(e.) u(dy) = 0itv =4
r—=0zeXx By (x)
(4) sup/ pldy) < ooifv <p.
z€X J B1(z)

By definition, we see that every u € K, is a Radon measure. On the other
hand, we have another definition of Kato class measure in terms of p(z,y): A
positive Borel measure y on X is said to be in S% (resp. S%) if

(5) }ig%ilelg/x%tps(x,y)dS)u(dy) = 0.

¢
(6)  (resp. sup/ </ ps(m,y)ds),u(dy) < oo for some/all t > 0).
reX JX MO

Let S; be the family of smooth measures in the strict sense (see [3] for the

definition of S7). We set Sk := S?{ NSy (resp. Sp = S% NSi). We say

that p € Si¢ (vesp. S%°) if and only if Tapu € S% (vesp. Iap € SY) for any

Borel set A with p(A) < co. We see that every finite measure p € S9 is
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in Spg, that is, such p is a measure of finite energy with bounded potential,
hence if p € SZDOC is a Radon measure, then p € S, consequently, there exists a
positive continuous additive functional A; (PCAF in short) of M admitting no
exceptional set associated with any Radon measure p € S%¢ (cf. [3]). Hence
(6) is equivalent to sup,cx Fy[A¢] < oo for some t > 0 in that case.

Our result is the following:

Theorem 1.1. S% C K, C S}?c. In particular, K, C Sy.

Theorem 1.2. Suppose that M is conservative and m satisfies that there
exists V > 0 such that sup m(B,(z)) < Vr¥, ¥r > 0. Then S = S% = K,,.
zeX

In Aizenman-Simon [1] or Chung-Zhao [2], K; = Sk is showed in the case
w(dz) = |f(z)|dz, f € K4 for Brownian motion on R?. Zhao [6] extends this
in more general setting including a subclass of Lévy processes, but his result
assures the case d > 2 for Brownian motion and the case d > « for symmetric
a-stable process on R?. Our result extends [1] and can be applicable to various
settings including the case of diffusion processes on fractals.

2. EXAMPLE

Example 2.1 (Symmetric a-stable process). Take a €]0,2[. Let M® =
(2, X¢, Py)pcgra be the symmetric a-stable process on R?, that is, Lévy pro-
cess satisfying Eo[e!6Xt)] = e7€l", M* admits a semigroup kernel py(z,%)
satisfying the following estimate (see [4]):

Ch 1
(7) 2 :
/o _ _ d+o
T (1 ) (1+74)

Then K; = Sk, in particular, for surface measure o on S 1, we have o € Sg
if and only if o > 1.

Co
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