Stochastic quantization of the three dimensional polymer measure

Makoto Nakashima (Nagoya University)

We consider the Edwards model which describes a self-repulsive polymer. It is formally defined by

$$\nu_{\lambda}(\mathrm{d}\omega) = \frac{1}{Z_{\lambda}} \exp\left(-\lambda J(\omega)\right) \nu_{0}(\mathrm{d}\omega)$$

for $\lambda > 0$, where ν_0 denotes the Wiener measure, $J(\omega) = \int_0^1 \int_0^1 \delta_0(\omega_t - \omega_s) ds dt$ is a self-intersection local time, and Z_{λ} is a normalizing constant. ν_{λ} has been mathematically constructed for $d \leq 3$ in 1980s and it is known that ν_{λ} is singular with respect to ν_0 for $\lambda > 0$ when d = 3.

The stochastic quantization of ν_{λ} for d = 2 was studied by Albeverio, Hu, Röckner, Zhou but the case for d = 3 has been left. We talk about the stochastic quantization of ν_{λ} for d = 3 and mutually absolute continuity of ν_{λ} and $\nu_{\lambda} \circ \tau_{h}^{-1}$, where $\tau_{h} : \omega \mapsto \omega + h$ is a translation of a sample path ω by a continuous function h.

This talk is based on the joint work with Sergio Albeverio, Seiichiro Kusuoka, Song Liang.