Asymptotics of lowlying Dirichlet eigenvalues of Witten Laplacians on domains in pinned path groups

Shigeki Aida (University of Tokyo)

In mathematical physics, there are probability measures ν_{λ} on infinite dimensional spaces X which are formally written as the path integral $d\nu_{\lambda} = Z_{\lambda}^{-1}e^{-\lambda F}dv$, where F is a functional and dv is a fictitious Lebesgue measure on X and Z_{λ} is a normalizing constant. We consider finite dimensional case. Let X be a Riemannian manifold and F be a Morse function on X. For $\lambda > 0$, we consider a probability measure $Z_{\lambda}^{-1}e^{-\lambda F}dv$, where dv is the Riemannian volume. Let $|\text{grad}f(x)|_{T_{xX}}^2$ be the square field operator defined by the gradient vector field of f on X. There have been many studies of asymptotic behavior of the spectrum of the (non-negative) generator $-L_{\lambda}$ of the Dirichlet form of $\frac{1}{\lambda} \int_{X} |\text{grad}f(x)|_{T_{xX}}^2 e^{-\lambda F}dv$ as $\lambda \to \infty$ (Holley, Kusuoka, Stroock, Helffer, Nier, Bovier, Eckhoff, Gayrard, Klein,....). Also, Witten gave an approach to Morse inequality by using this semiclassical analysis of the Witten Laplacian acting on differential forms.

In this talk, we consider $-L_{\lambda}$ with the Dirichlet boundary condition on a bounded domain of the pinned path space with the pinned Brownian motion measure ν_{λ} over a Lie group SU(n), where the "Riemannian metric" on the space of paths is H^1 -Riemannian metric. Note that ν_{λ} has the formal path integral representation using $F(\gamma) = \frac{1}{2} \int_0^1 |\gamma'(t)|^2 dt$ (=the energy of the path γ). The local minima of F is just the global minimum path(=minimal geodesic). We determine the limit of the spectrum of $-L_{\lambda}$ order O(1) in terms of the eigenvalues of Hessian of F at geodesics in the domain. We also explain related previously known results (*e.g.* Eberle's result) and remaining open problems.