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In mathematical physics, there are probability measures νλ on infinite
dimensional spaces X which are formally written as the path integral dνλ =
Z−1

λ e−λFdv, where F is a functional and dv is a fictitious Lebesgue measure
on X and Zλ is a normalizing constant. We consider finite dimensional
case. Let X be a Riemannian manifold and F be a Morse function on X.
For λ > 0, we consider a probability measure Z−1

λ e−λFdv, where dv is the
Riemannian volume. Let |gradf(x)|2TxX

be the square field operator defined
by the gradient vector field of f on X. There have been many studies of
asymptotic behavior of the spectrum of the (non-negative) generator −Lλ of
the Dirichlet form of 1

λ

∫
X
|gradf(x)|2TxX

e−λFdv as λ → ∞ (Holley, Kusuoka,
Stroock, Helffer, Nier, Bovier, Eckhoff, Gayrard, Klein,.....). Also, Witten
gave an approach to Morse inequality by using this semiclassical analysis of
the Witten Laplacian acting on differential forms.

In this talk, we consider −Lλ with the Dirichlet boundary condition on a
bounded domain of the pinned path space with the pinned Brownian motion
measure νλ over a Lie group SU(n), where the “Riemannian metric” on
the space of paths is H1-Riemannian metric. Note that νλ has the formal
path integral representation using F (γ) = 1

2

∫ 1

0
|γ′(t)|2dt (=the energy of the

path γ). The local minima of F is just the global minimum path(=minimal
geodesic). We determine the limit of the spectrum of −Lλ order O(1) in
terms of the eigenvalues of Hessian of F at geodesics in the domain. We also
explain related previously known results (e.g. Eberle’s result) and remaining
open problems.


