Local B-model and Mixed Hodge Structure

Yukiko Konishi

\(^1\)Department of Mathematics
Kyoto University

International Conference
on
Symplectic Geometry and Physics
May. 17-21, 2010 (Nankai University)
Joint work with Satoshi Minabe (Tokyo Denki Univ.)
arXiv:0907.4108[math.AG]
Remote B-model and MHS

Yukiko Konishi

Motivation

Jacobian ring description of $H^2(\mathbb{T}^2, C_{a}^o)$

Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_{a}^o)$

Yukawa coupling

Holomorphic anomaly equation

Witten’s Geometric Quantization Approach

Appendix (Examples etc.)

Remark

In this talk:

- All manifolds (varieties) are complex.
- All variables and parameters are complex.
- $\mathbb{T}^n = (\mathbb{C} \setminus \{0\})^n$ n-dimensional complex torus, not $(S^1)^n.$
Remark

In this talk:

- All manifolds (varieties) are complex.
- All variables and parameters are complex.
- \(\mathbb{T}^n = (\mathbb{C} \setminus \{0\})^n \) \(n \)-dimensional complex torus, not \((S^1)^n \).
Remark

In this talk:

- All manifolds (varieties) are complex.
- All variables and parameters are complex.
- $\mathbb{T}^n = (\mathbb{C} \setminus \{0\})^n$ n-dimensional complex torus, not $(S^1)^n$.
Outline

1 Motivation

2 Jacobian ring description of $H^2(\mathbb{T}^2, C_a^\circ)$

3 Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^\circ)$

4 Yukawa coupling

5 Holomorphic anomaly equation

6 Witten’s Geometric Quantization Approach

7 Appendix (Examples etc.)
Local Mirror Symmetry

- Local mirror symmetry is a variant of (ordinary) mirror symmetry.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces. (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1, 1, 1, 6, 9) \sim \mathbb{P}^2$) [Katz–Klemm–Zaslow (1997), Chiang–Klemm–Yau–Zaslow (1999)]
- (Classical, not homological) local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry is a variant of (ordinary) mirror symmetry.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces. (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1, 1, 1, 6, 9) \sim \mathbb{P}^2$) [Katz–Klemm–Zaslow (1997), Chiang–Klemm–Yau–Zaslow (1999)]

- (Classical, not homological) local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry is a variant of (ordinary) mirror symmetry.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces. (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1, 1, 1, 6, 9) \leadsto \mathbb{P}^2$) [Katz–Klemm–Zaslow (1997), Chiang–Klemm–Yau–Zaslow (1999)]

- (Classical, not homological) local mirror symmetry is summarized as follows.
Local Mirror Symmetry

A-hypergeometric system with $\beta = \vec{0}$

Solutions give:
- Mirror map
- A derivative of prepotential

Δ

2 dim reflexive polyhedron

PF equation for period integrals of "top element"

$\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$

Compact toric surface

\mathbb{P} s.t. $-K_{\mathbb{P}}$ nef

$g = 0$ local GW inv.

Local A-model

A family of affine curves

$C_a \subset \mathbb{T}^2$

VMHS on $H^2(\mathbb{T}^2, C_a^0)$

Local B-model

Why?
Local Mirror Symmetry

A-hypergeometric system with $\beta = \vec{0}$

Solutions give:
- Mirror map
- A derivative of prepotential

Δ Detail

2 dim reflexive polyhedron

PF equation for period integrals of "top element"
$$\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$$

compact toric surface
- \mathbb{P} s.t. $-K_\mathbb{P}$ nef
- $g = 0$ local GW inv.
- local A-model

a family of affine curves
- $C_a^0 \subset \mathbb{T}^2$
- VMHS on $H^2(\mathbb{T}^2, C_a^0)$
- local B-model

Why?
Local Mirror Symmetry

A-hypergeometric system with $\beta = \vec{0}$

- Solutions give:
 - Mirror map
 - a derivative of prepotential

- 2 dim reflexive polyhedron

- Compact toric surface
 - \mathbb{P} s.t. $-K_\mathbb{P}$ nef
 - $g = 0$ local GW inv.
 - local A-model

- A family of affine curves
 - $C_a \subset \mathbb{T}^2$
 - VMHS on $H^2(\mathbb{T}^2, C_a^\circ)$
 - local B-model

PF equation for period integrals of "top element"

$\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0\right)$
Local Mirror Symmetry

A-hypergeometric system with $\beta = \bar{0}$

Solutions give:
- Mirror map
- a derivative of prepotential

Δ

2 dim reflexive polyhedron

PF equation for period integrals of "top element"
$\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$

compact toric surface
\mathbb{P} s.t. $-K_\mathbb{P}$ nef
$g = 0$ local GW inv.
local A-model

a family of affine curves
$C_a \subset \mathbb{T}^2$
VMHS on $H^2(\mathbb{T}^2, C_a^0)$
local B-model
Local Mirror Symmetry

A-hypergeometric system with $\beta = 0$

Solutions give:
- Mirror map
- A derivative of prepotential

Δ
2 dim reflexive polyhedron

PF equation for period integrals of "top element"
$\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$

Compact toric surface
- \mathbb{P} s.t. $-K_\mathbb{P}$ nef
- $g = 0$ local GW inv.
- Local A-model

A family of affine curves
- $C_a \subset \mathbb{T}^2$
- VMHS on $H^2(\mathbb{T}^2, C_a)$
- Local B-model
Local Mirror Symmetry

A-hypergeometric system with $\beta = \vec{0}$

Solutions give:
- Mirror map
- A derivative of prepotential

Δ

2 dim reflexive polyhedron

PF equation for period integrals of "top element"

$\left(\frac{dt_1}{t_1} \land \frac{dt_2}{t_2}, 0 \right)$

compact toric surface

\mathbb{P} s.t. $-K_\mathbb{P}$ nef

$g = 0$ local GW inv.

local A-model

a family of affine curves

$C_\alpha \subset \mathbb{T}^2$

VMHS on $H^2(\mathbb{T}^2, C_\alpha)$

local B-model
Comparison with Mirror Symmetry

Local B-model and MHS
Yukiko Konishi

Motivation
Jacobian ring description of $H^2(\mathbb{T}^2, C_a^0)$
Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^0)$
Yukawa coupling
Holomorphic anomaly equation
Witten’s Geometric Quantization Approach
Appendix
(Examples etc.)

A

MS

GW inv of X

B

VHS on $H^3(X^\vee)$

• holo. 3-form Ω

• Yukawa coupling

LMS

local GW inv of \mathbb{P}

VMHS on $H^2(\mathbb{T}^2, C_a^0)$

• $\omega := (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$

• ?? \leftrightarrow This talk

Important because it is:

• a third derivative of prepotential;

• necessary for BCOV’s holomorphic anomaly eq.
Comparison with Mirror Symmetry

A

MS

GW inv of X

VHS on $H^3(X^\vee)$

- holo. 3-form Ω
- Yukawa coupling

\[\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega \]

B

LMS

local GW inv of \mathbb{P}

VMHS on $H^2(T^2, C_\alpha)$

- $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
- ?? \iff This talk

Important because it is:

- a third derivative of prepotential;
- necessary for BCOV's holomorphic anomaly eq.
Comparison with Mirror Symmetry

MS

- GW inv of \mathcal{X}
- $\text{VHS on } H^3(\mathcal{X}^\vee)$
 - holomorphic 3-form Ω
 - Yukawa coupling

- $\int_{\mathcal{X}^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega$

LMS

- local GW inv of \mathbb{P}
- $\text{VMHS on } H^2(\mathbb{T}^2, C_{\hat{a}})$
 - $\omega := (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$

Important because it is:

- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.
Our aim

- In several examples of local B-model, the Yukawa couplings have been computed [Klemm–Zaslow, Jinzenji–Forbes, Aganagic–Bouchard–Klemm, Haghihat–Klemm–Rauch, Alim–Länge-Mayr, Brini–Tanzini]. However, there has been no direct definition.

- We gave a definition of local B-model Yukawa coupling using the results of Batyrev, Stienstra on the VMHS on $H^2(\mathbb{T}^2, C_a^o)$.

- We also proposed how to modify Bershadsky–Cecotti–Ooguri–Vafa’s holomorphic anomaly equation to the setting of local B-model.
Our aim

- In several examples of local B-model, the Yukawa couplings have been computed [Klemm–Zaslow, Jinzenji–Forbes, Aganagic–Bouchard–Klemm, Haghihat–Klemm–Rauch, Alim–Längen–Mayr, Brini–Tanzini]. However, there has been no direct definition.

- We gave a definition of local B-model Yukawa coupling using the results of Batyrev, Stienstra on the VMHS on $H^2(\mathbb{T}^2, C^0_a)$.

- We also proposed how to modify Bershadsky–Cecotti–Ooguri–Vafa’s holomorphic anomaly equation to the setting of local B-model.
Our aim

- In several examples of local B-model, the Yukawa couplings have been computed [Klemm–Zaslow, Jinzenji–Forbes, Aganagic–Bouchard–Klemm, Haghhihat–Klemm–Rauch, Alim–Länge–Mayr, Brini–Tanzini]. However, there has been no direct definition.

- We gave a definition of local B-model Yukawa coupling using the results of Batyrev, Stienstra on the VMHS on $H^2(\mathbb{T}^2, C_\alpha^o)$.

- We also proposed how to modify Bershadsky–Cecotti–Ooguri–Vafa’s holomorphic anomaly equation to the setting of local B-model.
Outline

1. Motivation

2. Jacobian ring description of $H^2(\mathbb{T}^2, C^0_{a})$

3. Mixed Hodge Structure of $H^2(\mathbb{T}^2, C^0_{a})$

4. Yukawa coupling

5. Holomorphic anomaly equation

6. Witten’s Geometric Quantization Approach

7. Appendix (Examples etc.)
Description of $H^2(\mathbb{T}^2, C_a^\circ)$

- $H^2(\mathbb{T}^2, C_a^\circ)$ was studied by Batyrev (’93) and Stienstra (’97).
- $H^2(\mathbb{T}^2, C_a^\circ)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_{F_a}, which is determined by the data of Δ and $F_a(t)$.
- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^\circ)$ is given in terms of filtrations of \mathcal{R}_{F_a}.
- The variation of mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^\circ)$ is also described in terms of \mathcal{R}_{F_a} ($\nabla a_m \iff$ Derivation by a_m on \mathcal{R}_{F_a}).
Decryption of $H^2(\mathbb{T}^2, C_a^\circ)$

- $H^2(\mathbb{T}^2, C_a^\circ)$ was studied by Batyrev (’93) and Stienstra (’97).
- $H^2(\mathbb{T}^2, C_a^\circ)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_{F_a}, which is determined by the data of Δ and $F_a(t)$.
- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^\circ)$ is given in terms of filtrations of \mathcal{R}_{F_a}.
- The variation of mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^\circ)$ is also described in terms of \mathcal{R}_{F_a} ($\nabla a_m \iff$ Derivation by a_m on \mathcal{R}_{F_a}).
Description of $H^2(\mathbb{T}^2, C_a^\circ)$

- $H^2(\mathbb{T}^2, C_a^\circ)$ was studied by Batyrev ('93) and Stienstra ('97).
- $H^2(\mathbb{T}^2, C_a^\circ)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_{F_a}, which is determined by the data of Δ and $F_a(t)$.
- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^\circ)$ is given in terms of filtrations of \mathcal{R}_{F_a}.
- The variation of mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^\circ)$ is also described in terms of \mathcal{R}_{F_a} ($\nabla a_m \leftrightarrow$ Derivation by a_m on \mathcal{R}_{F_a}).
Decryption of $H^2(\mathbb{T}^2, C_\a)$

- $H^2(\mathbb{T}^2, C_\a)$ was studied by Batyrev (’93) and Stienstra (’97).
- $H^2(\mathbb{T}^2, C_\a)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_{F_a}, which is determined by the data of Δ and $F_a(t)$.
- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_\a)$ is given in terms of filtrations of \mathcal{R}_{F_a}.
- The variation of mixed Hodge structures on $H^2(\mathbb{T}^2, C_\a)$ is also described in terms of \mathcal{R}_{F_a} ($\nabla a_m \leftrightarrow$ Derivation by a_m on \mathcal{R}_{F_a}).
"Jacobian Ring" \mathcal{R}_{F_a}

- $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.
- Consider the (infinite dim) vector space spanned by monomials $t_0^k t_m$ "lying on $\Delta(k)$":

$$S_{\Delta}^k := \bigoplus_{m \in \Delta(k)} \mathbb{C} t_0^k t_m \quad (t_m := t_1^m t_2^m)$$

$$S_{\Delta} := \bigoplus_{k \geq 0} S_{\Delta}^k, \quad \deg t_0^k t_m := k \quad \text{(a graded ring)}$$

- Define the differential operators on S_{Δ}: $(\theta_x := x \partial_x)$

$$\mathcal{D}_0(t_0^k t_m) = (k + t_0 F_a(t)) t_0^k t_m$$

$$\mathcal{D}_i(t_0^k t_m) = (m_i + t_0 \theta_i F_a(t)) t_0^k t_m \quad (i = 1, 2).$$

- The "Jacobian ring" \mathcal{R}_{F_a} is the quotient vector space:

$$\mathcal{R}_{F_a} := S_{\Delta}/(\sum_{i=0}^{2} \mathcal{D}_i S_{\Delta})$$
“Jacobian Ring” \mathcal{R}_{F_a}

- $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.
- Consider the (infinite dim) vector space spanned by monomials $t_0^k t_m$ “lying on $\Delta(k)$”:

$$S^k_{\Delta} := \bigoplus_{m \in \Delta(k)} \mathbb{C} t_0^k t_m \quad (t_m := t_1^{m_1} t_2^{m_2})$$

$$S_{\Delta} := \bigoplus_{k \geq 0} S^k_{\Delta}, \quad \text{deg} \ t_0^k t_m := k \quad \text{(a graded ring)}$$

- Define the differential operators on S_{Δ}: $(\theta_x := x \partial_x)$

$$\mathcal{D}_0(t_0^k t_m) = (k + t_0 F_a(t)) t_0^k t_m$$

$$\mathcal{D}_i(t_0^k t_m) = (m_i + t_0 \theta_{t_i} F_a(t)) t_0^k t_m \quad (i = 1, 2).$$

- The “Jacobian ring” \mathcal{R}_{F_a} is the quotient vector space:

$$\mathcal{R}_{F_a} := S_{\Delta}/(\sum_{i=0}^{2} \mathcal{D}_i S_{\Delta})$$
“Jacobian Ring” \mathcal{R}_{F_a}

- $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.

- Consider the (infinite dim) vector space spanned by monomials $t_0^k t_m$ “lying on $\Delta(k)$”:

$$S^k_\Delta := \bigoplus_{m \in \Delta(k)} \mathbb{C} t_0^k t_m \quad (t^m := t_1^{m_1} t_2^{m_2})$$

$$S_\Delta := \bigoplus_{k \geq 0} S^k_\Delta, \quad \deg t_0^k t_m := k \quad \text{(a graded ring)}$$

- Define the differential operators on S_Δ: ($\theta_x := x \partial_x$)

$$\mathcal{D}_0(t_0^k t^m) = (k + t_0 F_a(t)) t_0^k t^m$$

$$\mathcal{D}_i(t_0^k t^m) = (m_i + t_0 \theta_i F_a(t)) t_0^k t^m \quad (i = 1, 2).$$

- The “Jacobian ring” \mathcal{R}_{F_a} is the quotient vector space:

$$\mathcal{R}_{F_a} := S_\Delta / \left(\sum_{i=0}^{2} \mathcal{D}_i S_\Delta \right)$$
“Jacobian Ring” \mathcal{R}_{F_a}

- $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.

- Consider the (infinite dim) vector space spanned by monomials $t_0^k t^m$ “lying on $\Delta(k)$”:

$$S^k_\Delta := \bigoplus_{m \in \Delta(k)} t_0^k t^m \quad (t^m := t_1^{m_1} t_2^{m_2})$$

$$S_\Delta := \bigoplus_{k \geq 0} S^k_\Delta, \quad \deg t_0^k t^m := k \quad (a \text{ graded ring})$$

- Define the differential operators on S_Δ: $(\theta_x := x \partial_x)$

$$\mathcal{D}_0(t_0^k t^m) = (k + t_0 F_a(t))t_0^k t^m$$

$$\mathcal{D}_i(t_0^k t^m) = (m_i + t_0 \theta_{t_i} F_a(t))t_0^k t^m \quad (i = 1, 2).$$

- The “Jacobian ring” \mathcal{R}_{F_a} is the quotient vector space:

$$\mathcal{R}_{F_a} := S_\Delta / (\sum_{i=0}^{2} \mathcal{D}_i S_\Delta)$$
Examples of \mathcal{R}_F

• $\Delta = \triangle \Rightarrow F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}$

Relations $\mathcal{D}_i 1 = 0 \ (i = 0, 1, 2)$ imply:

$$t_0 t_1 = -\frac{a_0}{3a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3a_3} t_0.$$

By similar calculation, $t_0^k t_1^m \ (k \geq 2)$ is equal to

$$\text{const.} t_0^2 + \text{term of } t_0\text{-degree 1}.$$

$\therefore \mathcal{R}_F \cong \mathbb{C}1 + \mathbb{C}t_0 + \mathbb{C}t_0^2$

• $\Delta = \triangle \Rightarrow \mathcal{R}_F \cong \mathbb{C}1 + \mathbb{C}t_0 + \mathbb{C}t_0 t_1 + \mathbb{C}t_0^2$
Examples of \mathcal{R}_{F_a}

- $\Delta = \begin{array}{c} \triangle \end{array}$
 $$F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}$$

Relations $\mathcal{D}_i 1 = 0$ ($i = 0, 1, 2$) imply:

$$t_0 t_1 = -\frac{a_0}{3a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3a_3} t_0.$$

By similar calculation, $t_0^k t^m$ ($k \geq 2$) is equal to

$$\text{const.} t_0^2 + \text{term of } t_0\text{-degree } 1.$$

$$\therefore \mathcal{R}_{F_a} \cong \mathbb{C} 1 \oplus \mathbb{C} t_0 \oplus \mathbb{C} t_0^2$$

- $\Delta = \begin{array}{c} \triangle \end{array}$
\[\mathcal{R}_{F_a} \cong H^2(\mathbb{T}^2, C_a^\circ) \]

- For a (general) 2-dim reflexive polyhedron \(\Delta \),
 \[\mathcal{R}_{F_a} \cong \mathbb{C}1 \oplus R^1_{F_a} \oplus \mathbb{C}t_0^2 \quad (\text{dim} = \# \Delta \cap \mathbb{Z}^2 - 1) \]
 \[R^1_{F_a} := S^1_\Delta / \mathbb{C}t_0 F_a \oplus \mathbb{C}t_1 \theta_t F_a \oplus \mathbb{C}t_2 F_a \quad \text{(degree 1-part)} \]

- Note that there is an exact sequence
 \[
 0 \longrightarrow PH^1(C_a^\circ) \longrightarrow H^2(\mathbb{T}^2, C_a^\circ) \longrightarrow H^2(\mathbb{T}^2) \longrightarrow 0 \\
 (PH^1(C_a^\circ) := H^1(C_a^\circ)/H^1(\mathbb{T}^2))
 \]

- An isomorphism \(\mathcal{R}_{F_a} \overset{\sim}{\longrightarrow} H^2(\mathbb{T}^2, C_a^\circ) \) [Batyrev, Stienstra] is given by:
 \[
 \mathbb{C}1 \leftrightarrow H^2(\mathbb{T}^2) : 1 \leftrightarrow \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \\
 R^1_{F_a} \oplus \mathbb{C}t_0^2 \leftrightarrow PH^1(C_a^\circ) : t_0^k t \leftrightarrow \left(0, \text{Res}_{F_a=0} \frac{(k - 1)!t^m}{(-1)^{k-1} F_a^k} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right)
 \]
\[\mathcal{R}_{F_a} \cong H^2(\mathbb{T}^2, C^\circ_a) \]

- For a (general) 2-dim reflexive polyhedron \(\Delta \),
 \[\mathcal{R}_{F_a} \cong \mathbb{C} \mathbb{1} \oplus R^1_{F_a} \oplus \mathbb{C} t_0^2 \quad (\dim = \# \Delta \cap \mathbb{Z}^2 - 1) \]
 \[R^1_{F_a} := S^1_{\Delta}/\mathbb{C} t_0 F_a \oplus \mathbb{C} t_1 \theta_t F_a \oplus \mathbb{C} \theta_{t_2} F_a \] (degree 1-part)

- Note that there is an exact sequence
 \[0 \longrightarrow PH^1(C^\circ_a) \longrightarrow H^2(\mathbb{T}^2, C^\circ_a) \longrightarrow H^2(\mathbb{T}^2) \longrightarrow 0 \]
 \[(PH^1(C^\circ_a) := H^1(C^\circ_a)/H^1(\mathbb{T}^2)) \]

- An isomorphism \(\mathcal{R}_{F_a} \overset{\sim}{\longrightarrow} H^2(\mathbb{T}^2, C^\circ_a) \) [Batyrev, Stienstra] is given by:
 \[\mathbb{C} \mathbb{1} \leftrightarrow H^2(\mathbb{T}^2) : 1 \leftrightarrow \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \]
 \[R^1_{F_a} \oplus \mathbb{C} t_0^2 \leftrightarrow PH^1(C^\circ_a) : t_0^k t_1^m \leftrightarrow \left(0, \text{Res}_{F_a=0} \frac{(k-1)! t^m}{(-1)^{k-1} F^k_a} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right) \]
\[\mathcal{R}_{F_a} \cong H^2(\mathbb{T}^2, C_a^\circ) \]

- For a (general) 2-dim reflexive polyhedron \(\Delta \),
 \[
 \mathcal{R}_{F_a} \cong \mathbb{C} \mathbf{1} \oplus R^1_{F_a} \oplus \mathbb{C} t_0^2 \quad (\dim = \# \Delta \cap \mathbb{Z}^2 - 1)
 \]
 \[R^1_{F_a} := S_{\Delta}^1 \otimes \mathbb{C} t_0 F_a \oplus \mathbb{C} t_1 \theta_1 F_a \oplus \mathbb{C} \theta_2 F_a \quad \text{degree 1-part} \]

- Note that there is an exact sequence
 \[
 0 \longrightarrow PH^1(C_a^\circ) \longrightarrow H^2(\mathbb{T}^2, C_a^\circ) \longrightarrow H^2(\mathbb{T}^2) \longrightarrow 0
 \]
 \[(PH^1(C_a^\circ) := H^1(C_a^\circ)/H^1(\mathbb{T}^2)) \]

- An isomorphism \(\mathcal{R}_{F_a} \sim H^2(\mathbb{T}^2, C_a^\circ) \) [Batyrev, Stienstra] is given by:
 \[
 \mathbb{C} \mathbf{1} \iff H^2(\mathbb{T}^2) : 1 \iff \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)
 \]
 \[
 R^1_{F_a} \oplus \mathbb{C} t_0^2 \iff PH^1(C_a^\circ) : t_0^k t^m \iff \left(0, \text{Res}_{F_a=0} \frac{(k-1)!t^m}{(-1)^{k-1}F_a^k} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right)
 \]
Examples of $\mathcal{R}_{F_a} \cong H^2(\mathbb{T}^2, C_a^\circ)$

- $C_a :=$ compactification of C_a°, genus $C_a = 1$.

- $\Delta = \triangle$

\[\mathcal{R}_{F_a} \cong \mathbb{C} \bigoplus \mathbb{C} t_0 \bigoplus \mathbb{C} t_0^2 \]
\[\begin{align*}
\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \\
\text{on } \mathbb{T}^2
\end{align*} \]
\[(1, 0)-\text{form on } C_a \]
\[(0, 1)-\text{form on } C_a \]
Examples of $\mathcal{R}_{F_a} \cong H^2(\mathbb{T}^2, C_a^\circ)$

- $C_a :=$ compactification of C_a°, genus $C_a = 1$.

- Δ = \includegraphics[width=.5\textwidth]{example_triangle}

$$\mathcal{R}_{F_a} \cong \begin{array}{c}
\mathbb{C}1 \\ \oplus \\
\mathbb{C}t_0 \\ \oplus \\
\mathbb{C}t_0^2 \\
\end{array}$$

\[
\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}
\text{ on } \mathbb{T}^2
\]

- $(1, 0)$-form on C_a
- $(0, 1)$-form on C_a

- Δ = \includegraphics[width=.5\textwidth]{example_square}

$$\mathcal{R}_{F_a} \cong \begin{array}{c}
\mathbb{C}1 \\ \oplus \\
\mathbb{C}t_0 \\ \oplus \\
\mathbb{C}t_0 t_1 \\ \oplus \\
\mathbb{C}t_0^2 \\
\end{array}$$

\[
\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}
\text{ on } \mathbb{T}^2
\]

- $(1, 0)$-form on C_a
- $(1, 0)$-form on C_a with poles
- $(0, 1)$-form on C_a
Examples of $\mathcal{R}_{F_a} \cong H^2(\mathbb{T}^2, C_a^\circ)$

- $C_a :=$ compactification of C_a°, genus $C_a = 1$.

- $\Delta = \text{Diagram}$

$$\mathcal{R}_{F_a} \cong \mathbb{C}1 \oplus \mathbb{C}t_0 \oplus \mathbb{C}t_0^2$$

$$\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \text{ on } \mathbb{T}^2$$

$(1, 0)$-form on C_a

$(0, 1)$-form on C_a

- $\Delta = \text{Diagram}$

$$\mathcal{R}_{F_a} \cong \mathbb{C}1 \oplus \mathbb{C}t_0 \oplus \mathbb{C}t_0^2$$

$$\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \text{ on } \mathbb{T}^2$$

$(1, 0)$-form on C_a

$(1, 0)$-form on C_a with poles

$(0, 1)$-form on C_a
Outline

1. Motivation
2. Jacobian ring description of $H^2(\mathbb{T}^2, C_a^\circ)$
3. Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^\circ)$
4. Yukawa coupling
5. Holomorphic anomaly equation
6. Witten's Geometric Quantization Approach
7. Appendix (Examples etc.)
What’s Mixed Hodge Structure?

- \(H^k(V) \) of a smooth projective variety \(V \) has the canonical Hodge structure of weight \(k \):

\[
H^k(V) = \bigoplus_{p+q=k} H^{p,q}(V) \quad \text{(Hodge decomposition)}
\]

- To generalize this to \(H^k(U) \) of an open variety \(U \), it is necessary to consider the mixed Hodge structure.

- Roughly speaking, the mixed Hodge structure is the direct sum of Hodge structures of different weights:

\[
\bigoplus_{l} \bigoplus_{p+q=l} H^{p,q}
\]
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^k(V) = \bigoplus_{p+q=k} H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- To generalize this to $H^k(U)$ of an open variety U, it is necessary to consider the mixed Hodge structure.

- Roughly speaking, the mixed Hodge structure is the direct sum of Hodge structures of different weights:

$$\bigoplus_{l} \bigoplus_{p+q=l} H^{p,q}$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

\[
H^k(V) = \bigoplus_{p+q=k} H^{p,q}(V) \quad \text{(Hodge decomposition)}
\]

- To generalize this to $H^k(U)$ of an open variety U, it is necessary to consider the mixed Hodge structure.

- Roughly speaking, the mixed Hodge structure is the direct sum of Hodge structures of different weights:

\[
\bigoplus_{l} \bigoplus_{p+q=l} H^{p,q}
\]
Definition of MHS

- Mixed Hodge structure of weight k consists of:
 - free abelian group $H^*_\mathbb{Z}$,
 - the weight filtration W_\bullet on $H^*_\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H^*_\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on W_I/W_{I-1} has a Hodge structure of weight $I + k$.

$$H^{p,k+I-p} := \frac{F^p W_I/W_{I-1}}{F^{p+1} W_I/W_{I-1}}$$

satisfy $H^{p,q} = H^{q,p}$.
Definition of MHS

- Mixed Hodge structure of weight k consists of:
 - free abelian group $H_{\mathbb{Z}}$,
 - the weight filtration W_\bullet on $H_{\mathbb{Z}}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_{\mathbb{C}}$ (decreasing filtration),
- such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $i+k$.

$$H^{p,k+i-p} := \frac{F^p W_i/W_{i-1}}{F^{p+1} W_i/W_{i-1}}$$
satisfy $H^{p,q} = \overline{H}^{q,p}$.
Definition of MHS

- Mixed Hodge structure of weight k consists of:
 - free abelian group $H_{\mathbb{Z}}$,
 - the weight filtration W_\bullet on $H_{\mathbb{Z}}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_{\mathbb{C}}$ (decreasing filtration),
 - such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $i + k$.

\[H^{p,k+i-p} := \frac{F^p W_i / W_{i-1}}{F^{p+1} W_i / W_{i-1}} \text{ satisfy } H^{p,q} = \overline{H}_{q,p}. \]
Definition of MHS

- Mixed Hodge structure of weight k consists of:
 - free abelian group $H^\mathbb{Z}$,
 - the weight filtration W_\bullet on $H^\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H^\mathbb{C}$ (decreasing filtration),
- such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $l + k$.

\[
H^{p,k+l-p} := \frac{F^p W_i / W_{i-1}}{F^{p+1} W_i / W_{i-1}} \quad \text{satisfy} \quad H^{p,q} = \overline{H^{q,p}}.
\]
Definition of MHS

- Mixed Hodge structure of weight k consists of:
 - free abelian group $H_{\mathbb{Z}}$,
 - the weight filtration W^* on $H_{\mathbb{Z}}$ (increasing filtration),
 - the Hodge filtration F^* on $H_{\mathbb{C}}$ (decreasing filtration),
- such that the induced Hodge filtration on W_l/W_{l-1} has a Hodge structure of weight $l + k$.

$$H^{p,k+l-p} := \frac{F^p W_l / W_{l-1}}{F^{p+1} W_l / W_{l-1}}$$
satisfy $H^{p,q} = \overline{H}^{q,p}$.
MHS for an open variety

- If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.

- Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

$$F^p \Omega^\bullet_V(\log D) = \Omega^{\geq p}_V(\log D)$$

- Weight filtration is induced from the filtration

$$W_l \Omega^\bullet_V(\log D) = \wedge^l \Omega^1_V(\log D) \wedge \Omega^{\leq -l}_V.$$

Roughly speaking, $W_{k+l} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.

- For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

$$\ldots \rightarrow H^k(U_1) \rightarrow H^{k+1}(U_2, U_1) \rightarrow H^{k+1}(U_2) \rightarrow \ldots$$

is a long exact sequence of MHS’s.
MHS for an open variety

- If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.
- Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

$$F^p\Omega^\bullet_V(\log D) = \Omega^{\geq p}_V(\log D)$$

- Weight filtration is induced from the filtration

$$W^l\Omega^\bullet_V(\log D) = \wedge^l\Omega^1_V(\log D) \wedge \Omega^{\bullet - l}.$$

Roughly speaking, $W_{k+l} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.

- For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

$$\ldots \longrightarrow H^k(U_1) \longrightarrow H^{k+1}(U_2, U_1) \longrightarrow H^{k+1}(U_2) \longrightarrow \ldots$$

is a long exact sequence of MHS's.
MHS for an open variety

- If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.
- Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$
 \[F^p\Omega^\bullet_V(\log D) = \Omega^{>p}_V(\log D) \]

- Weight filtration is induced from the filtration
 \[W^l\Omega^\bullet_V(\log D) = \wedge^l\Omega^1_V(\log D) \wedge \Omega^\bullet_V^{-l} . \]

Roughly speaking, $W_{k+l} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.
- For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence
 \[\ldots \rightarrow H^k(U_1) \rightarrow H^{k+1}(U_2, U_1) \rightarrow H^{k+1}(U_2) \rightarrow \ldots \]
 is a long exact sequence of MHS’s.
MHS for an open variety

- If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.
- Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

$$F^p\Omega^\bullet_V(\log D) = \Omega^{>p}_V(\log D)$$

- Weight filtration is induced from the filtration

$$W_1\Omega^\bullet_V(\log D) = \wedge^1\Omega^1_V(\log D) \wedge \Omega^{\bullet-1}_V.$$

Roughly speaking, $W_{k+1} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.
- For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

$$\ldots \longrightarrow H^k(U_1) \longrightarrow H^{k+1}(U_2, U_1) \longrightarrow H^{k+1}(U_2) \longrightarrow \ldots$$

is a long exact sequence of MHS’s.
Filtrations on $H^2(\mathbb{T}^2, C_\alpha^\circ)$

- **Hodge filtration:**
 Let \mathcal{E}^{-i} ($i = 0, 1, 2, \ldots$) be the subspace of \mathcal{R}_F spanned by the images of all monomials of the t_0-degree $\leq i$.

 \[
 0 \subset \mathcal{E}^0 = \mathbb{C}1 \subset \mathcal{E}^{-1} \subset \mathcal{E}^{-2} = \mathcal{R}_F
 \]

 \[
 0 \subset F^2 \subset F^1 \subset F^0 = H^2(\mathbb{T}^2, C_\alpha^\circ)
 \]

- **Weight filtration:**
 Let \mathcal{I}_j ($1 \leq j \leq 3$) $\subset \mathcal{R}_F$ be spanned by the images of $t_0^k t^m$'s such that $k \geq 1$, $m \in \Delta(k)$ does not belong to any face of codimension j. Set $\mathcal{I}_4 := \mathcal{R}_F$.

 \[
 0 \subset \mathcal{I}_1 \subset \mathcal{I}_2 \subset \mathcal{I}_3 \subset \mathcal{I}_4 = \mathcal{R}_F
 \]

 \[
 0 \subset W_1 \subset W_2 = W_3 \subset W_4 = H^2(\mathbb{T}^2, C_\alpha^\circ)
 \]
Filtrations on $H^2(\mathbb{T}^2, C_a^o)$

- Hodge filtration:
 Let \mathcal{E}^{-i} $(i = 0, 1, 2, \ldots)$ be the subspace of \mathcal{R}_{F_a} spanned by the images of all monomials of the t_0-degree $\leq i$.

\[
\begin{array}{cccc}
0 & \subset & \mathcal{E}^0 = \mathbb{C}1 & \subset \mathcal{E}^{-1} & \subset \mathcal{E}^{-2} = \mathcal{R}_{F_a} \\
0 & \subset & F^2 & \subset F^1 & \subset F^0 = H^2(\mathbb{T}^2, C_a^o)
\end{array}
\]

- Weight filtration:
 Let \mathcal{I}_j $(1 \leq j \leq 3) \subset \mathcal{R}_{F_a}$ be spanned by the images of $t^k t^m$'s such that $k \geq 1$, $m \in \Delta(k)$ does not belong to any face of codimension j. Set $\mathcal{I}_4 := \mathcal{R}_{F_a}$.

\[
\begin{array}{cccc}
0 & \subset & \mathcal{I}_1 & \subset \mathcal{I}_2 & \subset \mathcal{I}_3 & \subset \mathcal{I}_4 = \mathcal{R}_{F_a} \\
0 & \subset & W_1 & \subset W_2 = W_3 & \subset W_4 = H^2(\mathbb{T}^2, C_a^o)
\end{array}
\]
Summary of MHS

\(C_a = \text{a compactification of } C_a^0, \text{ genus } C_a = 1. \)

<table>
<thead>
<tr>
<th></th>
<th>(F^2)</th>
<th>(F^1/F^2)</th>
<th>(F^0/F^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_1)</td>
<td>(H^1(C_a) =)</td>
<td>(\mathbb{C}t_0)</td>
<td>(\mathbb{C}t_0^2)</td>
</tr>
<tr>
<td>(W_2/W_1)</td>
<td>(R_F^1/\mathbb{C}t_0)</td>
<td>((1,0))-form on (C_a)</td>
<td></td>
</tr>
<tr>
<td>(W_3/W_2)</td>
<td>(\mathbb{C}1)</td>
<td>((0,1))-form on (C_a)</td>
<td></td>
</tr>
<tr>
<td>(W_4/W_3)</td>
<td>(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}) on (\mathbb{T}^2)</td>
<td>((1,0))-form on (C_a) with poles at (C_a - C_a^0)</td>
<td></td>
</tr>
</tbody>
</table>
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.

- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_{F_a} \otimes \mathbb{C}(a)$ [Batyrev, Stienstra]:

\[\nabla a_m =: \nabla a_m \iff D_a m := \partial a_m + t_0 t^m \quad (m \in \Delta) \]
Gauss–Manin connection

- So far, the parameter a of C_a° is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.

- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_{F_a} \otimes \mathbb{C}(a)$ [Batyrev, Stienstra]:

$$\nabla \partial_{a_m} =: \nabla a_m \Leftrightarrow D_{a_m} := \partial_{a_m} + t_0 t^m \quad (m \in \Delta)$$
GM connection

- How ∇_{a_m} acts on $H^2(\mathbb{T}^2, C_{a_0}^\circ) \cong \mathcal{R}_{F_a}$:

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$

(Griffiths transversality)
GM connection

- How ∇_{a_m} acts on $H^2(\mathbb{T}^2, C^a_\alpha) \cong \mathcal{R}_{F_a}$:

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$ (Griffiths transversality)
GM connection

- How ∇_{a_m} acts on $H^2(\mathbb{T}^2, C^0_a) \cong \mathcal{R}_{F_a}$:

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$ (Griffiths transversality)
GM connection

- How ∇_{a_m} acts on $H^2(\mathbb{T}^2, C_a^0) \cong \mathcal{R}_{F_a}$:

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td>∇a_0</td>
<td>∇a_m</td>
<td>$\mathbb{C}t_0$ ∇a_m</td>
</tr>
<tr>
<td>W_3/W_2</td>
<td>$\mathbb{C}1$</td>
<td>$\mathbb{C}t_0$</td>
<td>$\mathbb{C}t^2$</td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$ (Griffiths transversality)
Outline

1 Motivation

2 Jacobian ring description of $H^2(\mathbb{T}^2, C^\circ_a)$

3 Mixed Hodge Structure of $H^2(\mathbb{T}^2, C^\circ_a)$

4 Yukawa coupling

5 Holomorphic anomaly equation

6 Witten’s Geometric Quantization Approach

7 Appendix (Examples etc.)
Yukawa coupling

- In the case of $\mathcal{H}^3(X^\vee)$ of a Calabi–Yau threefold X^\vee, the Yukawa coupling is

$$
\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk}.
$$

- In this definition, the polarization

$$
\mathcal{H}^3(X^\vee) \times \mathcal{H}^3(X^\vee) \to \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta
$$

is necessary.

- In the case of $\mathcal{H}^2(\mathbb{T}^2, C_\alpha^\circ)$, we note that

$$
\mathcal{W}_1 \mathcal{H}^2(\mathbb{T}^2, C_\alpha^\circ) = \mathcal{H}^1(C_\alpha)
$$

and use the polarization on $\mathcal{H}^1(C_\alpha)$ instead.
Yukawa coupling

- In the case of \(H^3(X^\vee) \) of a Calabi–Yau threefold \(X^\vee \), the Yukawa coupling is

\[
\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk} .
\]

- In this definition, the polarization

\[
H^3(X^\vee) \times H^3(X^\vee) \to \mathbb{C} , \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta
\]

is necessary.

- In the case of \(H^2(\mathbb{T}^2, C_a^o) \), we note that

\[
W_1 H^2(\mathbb{T}^2, C_a^o) = H^1(C_a)
\]

and use the polarization on \(H^1(C_a) \) instead.
Yukawa coupling

- In the case of $H^3(X^\vee)$ of a Calabi–Yau threefold X^\vee, the Yukawa coupling is

$$
\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk} .
$$

- In this definition, the polarization

$$
H^3(X^\vee) \times H^3(X^\vee) \to \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta
$$

is necessary.

- In the case of $H^2(\mathbb{T}^2, C_a^\circ)$, we note that

$$
W_1 H^2(\mathbb{T}^2, C_a^\circ) = H^1(C_a)
$$

and use the polarization on $H^1(C_a)$ instead.
Definition of Yukawa coupling

- Recall

\[
\begin{array}{c|ccc}
 & F^2 & F^1/F^2 & F^0/F^1 \\
\hline
H^1(C_a) = W_1 & & & \\
W_2/W_1 & & & \\
W_3/W_2 & & & \\
W_4/W_3 & \mathbb{C}1 & & \\
\end{array}
\]

\[\nabla a_0 \rightarrow \mathbb{C}t_0 \rightarrow \mathbb{C}t_0^2\]

\[\nabla a_0 \rightarrow R^1_F/\mathbb{C}t_0\]

\[\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \in H^2(\mathbb{T}^2, C_a^0)\]

- Therefore \(\int_{C_a} \nabla^2 a_0 \omega \wedge \nabla a_0 \omega\) is well-defined.

- We define this as the Yukawa coupling \(\langle \partial a_0, \partial a_0; \partial a_0 \rangle\)
Definition of Yukawa coupling

- **Recall**

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^1(C_a) = W_1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C}1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} , 0 \right) \in H^2(\mathbb{T}^2, C_a^0) \]

- Therefore $\int_{\mathbb{C}a} \nabla_{a_0}^2 \omega \wedge \nabla_{a_0} \omega$ is well-defined.

- We define this as the Yukawa coupling $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$
Definition of Yukawa coupling

- Recall

\[H^1(C_a) = W_1 \]

\[F^2 \quad F^1/F^2 \quad F^0/F^1 \]

\[W_2/W_1 \]

\[W_3/W_2 \]

\[W_4/W_3 \]

\[\mathbb{C}1 \]

\[\omega = \left(\frac{dt_1}{t_1} \land \frac{dt_2}{t_2}, 0 \right) \in H^2(\mathbb{T}^2, C_a^0) \]

- Therefore \[\int_{C_a} \nabla_{a_0}^2 \omega \land \nabla_{a_0} \omega \] is well-defined.

- We define this as the Yukawa coupling \[\langle \partial_{a_0}, \partial_{a_0}, \partial_{a_0} \rangle \]
• The above pairing can be generalized to other vector fields as follows. Let
 • \(\mathbb{L} \): the base space of the family (space of the parameter \(a_m \)'s)
 • \(T^0 \mathbb{L} \): the subbundle of \(T \mathbb{L} \) spanned by \(\partial_{a_0} \)
 • The Yukawa coupling is a multilinear map:

\[
T \mathbb{L} \times T \mathbb{L} \times T^0 \mathbb{L} \rightarrow O_{\mathbb{L}},
\]

\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

• \(\nabla_C \omega \in F^1 \cap W_1 \) is a \((1, 0)\)-form on \(C_a \)
• \(\nabla_A \nabla_B \omega \) may be outside of \(W_1 \). But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 + \alpha_2 \quad \text{\((1, 0)\)-form on } C_a \text{\ with poles } + \text{\((0, 1)\)-form on } C_a \text{\ (without poles)}
\]

So set \((\nabla_A \nabla_B \omega)' := \alpha_2\).
• The above pairing can be generalized to other vector fields as follows. Let
 • \(\mathbb{L} \): the base space of the family (space of the parameter \(a_m \)'s)
 • \(T^0\mathbb{L} \): the subbundle of \(T\mathbb{L} \) spanned by \(\partial_{a_0} \)
• The Yukawa coupling is a multilinear map:

\[
T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \rightarrow \mathcal{O}_{\mathbb{L}},
\]
\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

• \(\nabla_C \omega \in F^1 \cap W_1 \) is a \((1, 0)\)-form on \(C_a \)
• \(\nabla_A \nabla_B \omega \) may be outside of \(W_1 \). But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}
+ \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}
\]

So set \((\nabla_A \nabla_B \omega)' := \alpha_2\).
The above pairing can be generalized to other vector fields as follows. Let

- \(\mathbb{L} \): the base space of the family (space of the parameter \(a_m \)'s)
- \(T^0 \mathbb{L} \): the subbundle of \(T \mathbb{L} \) spanned by \(\partial_{a_0} \)

The Yukawa coupling is a multilinear map:

\[
T \mathbb{L} \times T \mathbb{L} \times T^0 \mathbb{L} \to \mathcal{O}_\mathbb{L},
\]

\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

- \(\nabla_C \omega \in F^1 \cap W_1 \) is a \((1, 0)\)-form on \(C_a \)
- \(\nabla_A \nabla_B \omega \) may be outside of \(W_1 \). But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 \quad \text{\((1, 0)\)-form on } C_a \text{ with poles} \\
+ \alpha_2 \quad \text{\((0, 1)\)-form on } C_a \text{ (without poles)}
\]

So set \((\nabla_A \nabla_B \omega)' := \alpha_2\).
• The above pairing can be generalized to other vector fields as follows. Let
 • \(\mathbb{L} \): the base space of the family (space of the parameter \(a_m \)'s)
 • \(T^0 \mathbb{L} \): the subbundle of \(T \mathbb{L} \) spanned by \(\partial_{a_0} \)
 • The Yukawa coupling is a multilinear map:

\[
T \mathbb{L} \times T \mathbb{L} \times T^0 \mathbb{L} \rightarrow \mathcal{O}_\mathbb{L},
\]

\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

• \(\nabla_C \omega \in F^1 \cap W_1 \) is a \((1, 0)\)-form on \(C_a \)
• \(\nabla_A \nabla_B \omega \) may be outside of \(W_1 \). But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 \quad \text{(1, 0)-form on } C_a \text{ with poles}
+ \alpha_2 \quad \text{(0, 1)-form on } C_a \text{ (without poles)}
\]

So set \((\nabla_A \nabla_B \omega)' := \alpha_2\).
The above pairing can be generalized to other vector fields as follows. Let

- \mathbb{L}: the base space of the family (space of the parameter a_m's)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

$$T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \to \mathcal{O}_{\mathbb{L}},$$

$$\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega$$

- $\nabla_C \omega \in F^1 \cap W_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of W_1. But such a class can be written as

$$\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}$$
$$\quad + \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}$$

So set $(\nabla_A \nabla_B \omega)' := \alpha_2$.
The above pairing can be generalized to other vector fields as follows. Let

- \mathbb{L}: the base space of the family (space of the parameter a_m's)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

$$T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \to O_{\mathbb{L}},$$

$$\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega$$

- $\nabla_C \omega \in F^1 \cap W_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of W_1. But such a class can be written as

$$\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}$$

$$+ \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}$$

So set $(\nabla_A \nabla_B \omega)' := \alpha_2$.
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

- Essentially, only \(\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle \) is relevant:

 \[
 \langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = f_{ij}(a) \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle,
 \]

 where

 \[
 \nabla_{a_i} \nabla_{a_j} \omega = t_0^2 t^{i+j} = f_{ij}(a) t_0^2 + (t_0\text{-degree} \leq 1).
 \]

- Ex.

\[
\Delta = \begin{array}{c}
 \text{\textcircled{}}
\end{array}
\]

\[
\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle = \frac{\text{const}}{a_0^3(1 + 27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})
\]

\[
\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = \begin{cases}
 \frac{9 a_0^2}{a_i a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i, j \neq 0) \\
 \frac{3 a_0}{a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i = 0)
\end{cases}
\]

(Same as the one obtained as the limit of the Yukawa coupling of the mirror of \(X \subset \mathbb{P}(1, 1, 1, 6, 9) \).)
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.
- Essentially, only $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$ is relevant:

 $$\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = f_{ij}(a) \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle,$$

 where

 $$\nabla_{a_i} \nabla_{a_j} \omega = t_0^2 t^{i+j} = f_{ij}(a) t_0^2 + (t_0\text{-degree} \leq 1).$$

- Ex.

 \[
 \Delta = \begin{array}{c} \end{array}
 \]

 \[
 \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle = \frac{\text{const}}{a_0^3(1 + 27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})
 \]

 \[
 \langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = \begin{cases}
 \frac{9a_0^2}{a_i a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i, j \neq 0) \\
 \frac{3a_0}{a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i = 0)
 \end{cases}
 \]

 (Same as the one obtained as the limit of the Yukawa coupling of the mirror of $X \subset \mathbb{P}(1, 1, 1, 6, 9)$.)
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.
- Essentially, only $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$ is relevant:
 \[\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = f_{ij}(a)\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle, \]
 where \[\nabla_{a_i} \nabla_{a_j} \omega = t_0^2 t^{i+j} = f_{ij}(a) t_0^2 + (t_0\text{-degree} \leq 1). \]
- Ex. \[\Delta = \begin{array}{c} \cdot \end{array} \]
 \[\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle = \frac{\text{const}}{a_0^3 (1 + 27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3}) \]
 \[\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = \begin{cases} \frac{9a_0^2}{a_i a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i, j \neq 0) \\ \frac{3a_0}{a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i = 0) \end{cases} \]

(Same as the one obtained as the limit of the Yukawa coupling of the mirror of $X \subset \mathbb{P}(1, 1, 1, 6, 9)$)
Outline

1. Motivation
2. Jacobian ring description of $H^2(\mathbb{T}^2, C_a^o)$
3. Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^o)$
4. Yukawa coupling
5. Holomorphic anomaly equation
6. Witten’s Geometric Quantization Approach
7. Appendix (Examples etc.)
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials $F_g (g \geq 1)$.

- Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^3, and z_1, \ldots, z_n be its local coordinates.

- Holomorphic anomaly eq. involves:
 - Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^3} \Omega \wedge \overline{\Omega}$
 - Kähler metric on \mathcal{M}: $G_{ij} = \partial_i \overline{\partial}_j K$
 - Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M}^\otimes 3)$

- Holomorphic anomaly equation:

$$\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,j',k'} C_{ijk} e^{2K} G^{j'i'} G^{k'\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})$$
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV's holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$).

- Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates.

- Holomorphic anomaly eq. involves:
 - Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \bar{\Omega}$
 - Kähler metric on \mathcal{M}: $G_{ij} = \partial_i \overline{\partial}_j K$
 - Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes^3)$

- Holomorphic anomaly equation:

$$\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,\bar{j},\bar{k}} C_{ijk} e^{2K} G^{\bar{j}\bar{k}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})$$
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV's holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials \(F_g \) (\(g \geq 1 \)).
- Let \(\mathcal{M} \) be the complex moduli space of a Calabi–Yau 3-fold \(X^Y \), and \(z_1, \ldots, z_n \) be its local coordinates.
- Holomorphic anomaly eq. involves:
 - Kähler potential of \(\mathcal{M} \): \(K = -\log \sqrt{-1} \int_{X^Y} \Omega \wedge \overline{\Omega} \)
 - Kähler metric on \(\mathcal{M} \): \(G_{ij} = \partial_i \overline{\partial}_j K \)
 - Yukawa coupling \(C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes \mathbb{C}) \)
- Holomorphic anomaly equation:

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,j',k'} C_{ijkl} e^{2K} G^{ij} G^{k'\ell} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$).

- Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates.

- Holomorphic anomaly eq. involves:
 - Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
 - Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_{\bar{j}} K$
 - Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes \mathcal{M} \otimes \mathcal{M})$

- Holomorphic anomaly equation:

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j, k, \bar{j}, \bar{k}} C_{ijk} e^{2K} G^{\bar{j}\bar{k}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$).

- Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates.

- Holomorphic anomaly eq. involves:
 - Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \bar{\Omega}$
 - Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \bar{\partial}_{\bar{j}} K$
 - Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes^3)$

- Holomorphic anomaly equation:

$$\partial_{i} F_g = \frac{1}{2} \sum_{j,k,l,k} \bar{C}^{i\bar{j}k} e^{2K} G^{\bar{j}l} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})$$
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$).
- Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates.
- Holomorphic anomaly eq. involves:
 - Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
 - Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_{\bar{j}} K$
 - Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes^3)$
- Holomorphic anomaly equation:

$$\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,l,k} C_{ijkl} e^{2K} G^{\bar{j}\bar{k}} G^{k\bar{l}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})$$
Holomorphic Anomaly Eq.

- In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials \(F_g \) (\(g \geq 1 \)).

- Let \(\mathcal{M} \) be the complex moduli space of a Calabi–Yau 3-fold \(X^\vee \), and \(z_1, \ldots, z_n \) be its local coordinates.

- Holomorphic anomaly eq. involves:
 - Kähler potential of \(\mathcal{M} \): \(K = - \log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega} \)
 - Kähler metric on \(\mathcal{M} \): \(G_{i\bar{j}} = \partial_i \overline{\partial}_j K \)
 - Yukawa coupling \(C_{ijk} \in \Gamma(\mathcal{M}, \mathcal{T} \mathcal{M} \otimes^3) \)

- Holomorphic anomaly equation:

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,j',k'} \overline{C}_{ijk} e^{2K} G^{j'j} G^{k'k} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Quotient family

- To formulate the holomorphic anomaly equation for local B-model, it is convenient to introduce the quotient family of our family of affine curves:
 - Consider the \mathbb{T}^3-action
 \[\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2). \]
 - \mapsto the action on the parameter space \mathbb{L} and the family
 - \mapsto the quotient family
 - $\mathcal{M} := \mathbb{L}/\mathbb{T}^3$
 - (The above definition of the Yukawa coupling is also valid for the quotient family.)
Quotient family

- To formulate the holomorphic anomaly equation for local B-model, it is convenient to introduce the quotient family of our family of affine curves:

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

- \mapsto the action on the parameter space \mathbb{L} and the family
- \mapsto the quotient family
- $\mathcal{M} := \mathbb{L}/\mathbb{T}^3$
- (The above definition of the Yukawa coupling is also valid for the quotient family.)
Quotient family

- To formulate the holomorphic anomaly equation for local B-model, it is convenient to introduce the quotient family of our family of affine curves:

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

- \sim the action on the parameter space \mathbb{L} and the family
- \sim the quotient family
- $\mathcal{M} := \mathbb{L}/\mathbb{T}^3$
- (The above definition of the Yukawa coupling is also valid for the quotient family.)
Quotient family

- To formulate the holomorphic anomaly equation for local B-model, it is convenient to introduce the quotient family of our family of affine curves:

- Consider the \(\mathbb{T}^3 \)-action

\[
\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).
\]

- \(\sim \) the action on the parameter space \(\mathbb{L} \) and the family
- \(\sim \) the quotient family
 - \(\mathcal{M} := \mathbb{L} / \mathbb{T}^3 \)
 - (The above definition of the Yukawa coupling is also valid for the quotient family.)
Quotient family

- To formulate the holomorphic anomaly equation for local B-model, it is convenient to introduce the quotient family of our family of affine curves:

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

- The action on the parameter space \mathbb{L} and the family
- The quotient family
- $\mathcal{M} := \mathbb{L}/\mathbb{T}^3$

(The above definition of the Yukawa coupling is also valid for the quotient family.)
Quotient family

- To formulate the holomorphic anomaly equation for local B-model, it is convenient to introduce the quotient family of our family of affine curves:

 \[\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2). \]

- \(\sim\) the action on the parameter space \(\mathbb{L}\) and the family
- \(\sim\) the quotient family
- \(\mathcal{M} := \mathbb{L}/\mathbb{T}^3\)
- (The above definition of the Yukawa coupling is also valid for the quotient family.)
Special Kähler geometry

- It is necessary to modify the special Kähler geometry to the setting of local B-model.
 - \(Z_1, Z_2, \ldots, Z_{\dim \mathcal{M}}: \) local coordinates of \(\mathcal{M} \), \(\partial_i := \partial_{Z_i} \)
 - \(T^0 \mathcal{M} \subset T\mathcal{M} \): subbundle spanned by the image of \(a_0 \partial a_0 =: \theta_0 \)
 - Denote \((\theta_i := z_i \partial_i, \partial_i := \partial_{z_i}) \)
 \[Y_{i,j;0} := \langle \theta_i, \theta_j; \theta_0 \rangle \]
 - Hermitian metric on \(T^0 \mathcal{M} \):
 \[(\theta_0, \theta_0) = \int_{\mathcal{C}_a} \nabla_{\theta_0} \omega \wedge \overline{\nabla_{\theta_0} \omega} =: G_{0\bar{0}} \]
 - \(Y_{ij;0} \) and \(G_{0\bar{0}} \) satisfy the relation (analogue of special geometry relation):
 \[\overline{\partial_j} \frac{\theta_i G_{0\bar{0}}}{G_{0\bar{0}}} = -\frac{Y_{i0;0} \overline{Y}_{j0;0}}{G_{0\bar{0}}} \quad (\overline{\partial_j} = \overline{z} \partial_z) \]
Special Kähler geometry

- It is necessary to modify the special Kähler geometry to the setting of local B-model.
- \(z_1, z_2, \ldots, z_{\dim \mathcal{M}} \): local coordinates of \(\mathcal{M} \), \(\partial_i := \partial z_i \)
- \(T^0 \mathcal{M} \subset T \mathcal{M} \): subbundle spanned by the image of \(a_0 \partial a_0 =: \theta_0 \)
- Denote \((\theta_i := z_i \partial_i, \partial_i := \partial z_i) \)
 \(Y_{i,j;0} := \langle \theta_i, \theta_j; \theta_0 \rangle \)
- Hermitian metric on \(T^0 \mathcal{M} \):
 \[
 (\theta_0, \theta_0) = \int_{C_a} \nabla_{\theta_0} \omega \wedge \overline{\nabla_{\theta_0} \omega} =: G_{0\bar{0}}
 \]
- \(Y_{ij;0} \) and \(G_{0\bar{0}} \) satisfy the relation (analogue of special geometry relation):
 \[
 \overline{\partial}_j \frac{\theta_i G_{0\bar{0}}}{G_{0\bar{0}}} = - \frac{Y_{i0;0}}{G_{0\bar{0}}} \overline{Y}_{j0;0} \quad (\overline{\partial}_j = \overline{z} \partial z_j)
 \]
Special Kähler geometry

- It is necessary to modify the special Kähler geometry to the setting of local B-model.
- \(z_1, z_2, \ldots, z_{\dim M} \): local coordinates of \(M \), \(\partial_i := \partial_{z_i} \)
- \(T^0 M \subset T M \): subbundle spanned by the image of \(a_0 \partial a_0 =: \theta_0 \)

- Denote \(\theta_i := z_i \partial_i, \partial_i := \partial_{z_i} \)
 \[Y_{i,j;0} := \langle \theta_i, \theta_j; \theta_0 \rangle \]

- Hermitian metric on \(T^0 M \):
 \[(\theta_0, \theta_0) = \int_{C_a} \nabla_{\theta_0} \omega \wedge \overline{\nabla_{\theta_0} \omega} =: G_{0\bar{0}} \]

- \(Y_{i,j;0} \) and \(G_{0\bar{0}} \) satisfy the relation (analogue of special geometry relation):
 \[\bar{\partial}_j \frac{\theta_i G_{0\bar{0}}}{G_{0\bar{0}}} = - \frac{Y_{i0;0} \bar{Y}_{j0;0}}{G_{0\bar{0}}} \quad (\bar{\partial}_j = \bar{z} \partial_{\bar{z}_j}) \]
Special Kähler geometry

- It is necessary to modify the special Kähler geometry to the setting of local B-model.
- \(z_1, z_2, \ldots, z_{\dim \mathcal{M}} \): local coordinates of \(\mathcal{M} \), \(\partial_i := \partial_{z_i} \)
- \(T^0 \mathcal{M} \subset T\mathcal{M} \): subbundle spanned by the image of
 \[
 a_0 \partial_a =: \theta_0
 \]
- Denote \((\theta_i := z_i \partial_i, \partial_i := \partial_{z_i}) \)
 \[
 Y_{i,j;0} := \langle \theta_i, \theta_j; \theta_0 \rangle
 \]
- Hermitian metric on \(T^0 \mathcal{M} \):
 \[
 (\theta_0, \theta_0) = \int_{C_a} \nabla_{\theta_0} \omega \wedge \overline{\nabla_{\theta_0} \omega} =: G_{0\bar{0}}
 \]
- \(Y_{ij;0} \) and \(G_{0\bar{0}} \) satisfy the relation (analogue of special geometry relation):
 \[
 \overline{\partial_j} \theta_i \frac{G_{0\bar{0}}}{G_{0\bar{0}}} = - \frac{Y_{i0;0} \overline{Y}_{j0;0}}{G_{0\bar{0}}} \quad (\overline{\partial_j} = \overline{z} \partial_{z_j})
 \]
Special Kähler geometry

- It is necessary to modify the special Kähler geometry to the setting of local B-model.
- \(Z_1, Z_2, \ldots, Z_{\dim \mathcal{M}} \): local coordinates of \(\mathcal{M} \), \(\partial_i := \partial_{Z_i} \)
- \(T^0 \mathcal{M} \subset T\mathcal{M} \): subbundle spanned by the image of
 \[a_0 \partial_{a_0} =: \theta_0 \]
- Denote \((\theta_i := Z_i \partial_i, \partial_i := \partial_{Z_i}) \)
 \[Y_{i,j;0} := \langle \theta_i, \theta_j; \theta_0 \rangle \]
- Hermitian metric on \(T^0 \mathcal{M} \):
 \[(\theta_0, \theta_0) = \int_{C_a} \nabla_{\theta_0} \omega \wedge \overline{\nabla_{\theta_0} \omega} =: G_{0\bar{0}} \]
- \(Y_{i,j;0} \) and \(G_{0\bar{0}} \) satisfy the relation (analogue of special geometry relation):
 \[\overline{\theta}_j \theta_i \frac{G_{0\bar{0}}}{G_{0\bar{0}}} = - \frac{Y_{i0;0}}{G_{0\bar{0}}} \overline{Y}_{j0;0} \quad (\overline{\theta}_j = \overline{Z} \partial_{Z_j}) \]
Special Kähler geometry

- It is necessary to modify the special Kähler geometry to the setting of local B-model.

- \(z_1, z_2, \ldots, z_{\text{dim} M} \): local coordinates of \(M \), \(\partial_i := \partial z_i \)

- \(T^0 M \subset TM \): subbundle spanned by the image of

\[
a_0 \partial a_0 =: \theta_0
\]

- Denote \((\theta_i := z_i \partial_i, \partial_i := \partial z_i) \)

\[
Y_{i,j;0} := \langle \theta_i, \theta_j; \theta_0 \rangle
\]

- Hermitian metric on \(T^0 M \):

\[
(\theta_0, \theta_0) = \int_{C_a} \nabla_{\theta_0} \omega \wedge \overline{\nabla_{\theta_0} \omega} =: G_{0\bar{0}}
\]

- \(Y_{ij;0} \) and \(G_{0\bar{0}} \) satisfy the relation (analogue of special geometry relation):

\[
\overline{\theta_j} \frac{\theta_i G_{0\bar{0}}}{G_{0\bar{0}}} = -\frac{Y_{i0;0} \overline{Y_{j0;0}}}{G_{0\bar{0}}} \quad (\overline{\theta_j} = \bar{z} \partial \bar{z}_j)
\]
Holomorphic Anomaly Eq.

- Let $\tilde{C}_n^{(g)}$ be the “B-model topological string amplitude”

Set

$$
\begin{align*}
\tilde{C}_0^{(0)} &= \tilde{C}_1^{(0)} = \tilde{C}_2^{(0)} = 0, \quad \tilde{C}_3^{(0)} = Y_{00;0} \\
\tilde{C}_0^{(1)} &= 0 \\
\tilde{C}_n^{(g)} &= \left(\theta_0 - n\frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}} \right) \tilde{C}_n^{(g)}
\end{align*}
$$

(1)

- Holomorphic anomaly equation for local B-model is

$$
\begin{align*}
\bar{\theta}_j \tilde{C}_1^{(1)} &= -\frac{1}{2} \bar{\theta}_j \frac{\theta_0 G_{0\bar{0}}}{G_{0\bar{0}}} \\
\bar{\theta}_j \tilde{C}_0^{(g)} &= \frac{Y_{j,0;0}}{2G_0^2} (\tilde{C}_2^{(g-1)} + \sum_{r=1}^{g-1} \tilde{C}_1^{(r)} \tilde{C}_1^{(g-r)}) \quad (g \geq 2)
\end{align*}
$$

(2)

$$
(\bar{\theta}_j = \bar{Z} \partial_{Z_j})
$$
Holomorphic Anomaly Eq.

- Let $\tilde{C}^{(g)}_n$ be the “B-model topological string amplitude”

- Set

$$\begin{align*}
\tilde{C}^{(0)}_0 &= \tilde{C}^{(0)}_1 = \tilde{C}^{(0)}_2 = 0, \quad \tilde{C}^{(0)}_3 = Y_{00;0} \\
\tilde{C}^{(1)}_0 &= 0 \\
\tilde{C}^{(g)}_{n+1} &= \left(\theta_0 - n \frac{\theta G_{00\bar{0}}}{G_{00}} \right) \tilde{C}^{(g)}_n
\end{align*}$$

(1)

- Holomorphic anomaly equation for local B-model is

$$\begin{align*}
\bar{\theta}_j \tilde{C}^{(1)}_1 &= -\frac{1}{2} \frac{\theta_0 G_{00\bar{0}}}{G_{00}} \\
\bar{\theta}_j \tilde{C}^{(g)}_0 &= \frac{Y_{j,0;0}}{2G^2_{00}} (\tilde{C}^{(g-1)}_2 + \sum_{r=1}^{g-1} \tilde{C}^{(r)}_1 \tilde{C}^{(g-r)}_1) \quad (g \geq 2)
\end{align*}$$

(2)

$$\bar{\theta}_j = \bar{z} \partial_{\bar{z}_j}$$
Holomorphic Anomaly Eq.

- Let \(\tilde{C}_n^{(g)} \) be the “B-model topological string amplitude”

- Set

\[
\begin{align*}
\tilde{C}_0^{(0)} &= \tilde{C}_1^{(0)} = \tilde{C}_2^{(0)} = 0, \quad \tilde{C}_3^{(0)} = Y_{00;0} \\
\tilde{C}_0^{(1)} &= 0 \\
\tilde{C}_{n+1}^{(g)} &= \left(\theta_0 - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}} \right) \tilde{C}_n^{(g)}
\end{align*}
\]

- Holomorphmic anomaly equation for local B-model is

\[
\begin{align*}
\bar{\theta}_j \tilde{C}_1^{(1)} &= - \frac{1}{2} \bar{\theta}_j \theta_0 \frac{G_{0\bar{0}}}{G_{0\bar{0}}} \\
\bar{\theta}_j \tilde{C}_0^{(g)} &= \frac{Y_{j,0;0}}{2 G_{0\bar{0}}^2} (\tilde{C}_2^{(g-1)} + \sum_{r=1}^{g-1} \tilde{C}_1^{(r)} \tilde{C}_1^{(g-r)}) \ (g \geq 2)
\end{align*}
\]

\(\bar{\theta}_j = \bar{z} \partial_{\bar{z}_j} \)
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghhiat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länger–Mayr].
 - Contains no Kähler potential;
 - Only the one dimensional subbundle $T^0 M$ of TM matters. Similar to the one-parameter model.
- Holomorphic anomaly equation can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghhiat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].
 - Contains no Kähler potential;
 - Only the one dimensional subbundle $T^0 M$ of TM matters. Similar to the one-parameter model.
- Holomorphic anomaly equation can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghihat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].
 - Contains no Kähler potential;
 - Only the one dimensional subbundle T^0M of TM matters. Similar to the one-parameter model.

- Holomorphic anomaly equation can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghhiat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].
 - Contains no Kähler potential;
 - Only the one dimensional subbundle $T^0 \mathcal{M}$ of $T \mathcal{M}$ matters. Similar to the one-parameter model.

- Holomorphic anomaly equation can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Solutions

- \(\tilde{C}_n^{(g)} \) is a polynomial of degree \(3g - 3 + n \) in \(\mathbb{C}(z)[A] \), with
 \[
 A = \frac{\theta_0 G_{0\bar{0}}}{G_{0\bar{0}}}.
 \]

- For \((g, n) = (1, 1), (2, 0), \)
 \[
 \tilde{C}_1^{(1)} = \frac{1}{2} A + f_1^1(z)
 \]
 \[
 \tilde{C}_0^{(2)} = -\frac{1}{2 Y_{00;0}} \left[\frac{5}{12} A^3 - \left(\frac{\theta_0 Y_{00;0}}{4 Y_{00;0}} \right) A^2
 + \left(-\frac{\kappa(z)}{2} + \theta_0 f_1^1(z) + (f_1^1(z))^2 \right) A \right] + f_2(z)
 \]

- where
 - \(\kappa(z) \) is determined from special geometry.
 - \(f_1^1(z), f_0^2(z) \) are holomorphic (meromorphic) functions which cannot be determined from the holomorphic anomaly eq. (holomorphic ambiguities).
Local B-model and MHS
Yukiko Konishi

Motivation
Jacobian ring description of $H^2(\mathbb{T}^2, C_a^0)$
Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^0)$
Yukawa coupling
Holomorphic anomaly equation
Witten's Geometric Quantization Approach
Appendix (Examples etc.)

Solutions

- \(\bar{C}_n^{(g)} \) is a polynomial of degree $3g - 3 + n$ in $\mathbb{C}(z)[A]$, with

\[
A = \frac{\theta_0 G_{0\bar{0}}}{G_{0\bar{0}}}.
\]

- For \((g, n) = (1, 1), (2, 0)\),

\[
\bar{C}_1^{(1)} = \frac{1}{2}A + f_1^1(z)
\]

\[
\bar{C}_0^{(2)} = -\frac{1}{2Y_{00;0}} \left[\frac{5}{12} A^3 - \left(\frac{\theta_0 Y_{00;0}}{4 Y_{00;0}} \right) A^2 \right.
\]

\[
\left. + \left(-\frac{\kappa(z)}{2} + \theta_0 f_1^1(z) + (f_1^1(z))^2 \right) A \right] + f_2(z)
\]

- where

- \(\kappa(z) \) is determined from special geometry.
- \(f_1^1(z), f_2^2(z) \) are holomorphic (meromorphic) functions which cannot be determined from the holomorphic anomaly eq. (holomorphic ambiguities)
\(\tilde{C}_n(g) \) is a polynomial of degree \(3g - 3 + n \) in \(\mathbb{C}(z)[A] \), with
\[
A = \frac{\theta_0 G_{0\bar{0}}}{G_{0\bar{0}}}.
\]

For \((g, n) = (1, 1), (2, 0) \),
\[
\tilde{C}_1^{(1)} = \frac{1}{2} A + f_1^1(z)
\]
\[
\tilde{C}_0^{(2)} = -\frac{1}{2 Y_{00;0}} \left[\frac{5}{12} A^3 - \left(\frac{\theta_0 Y_{00;0}}{4 Y_{00;0}} \right) A^2
\right.
\]
\[
\left. + \left(-\frac{\kappa(z)}{2} + \theta_0 f_1^1(z) + (f_1^1(z))^2 \right) A \right] + f_2(z)
\]

where
- \(\kappa(z) \) is determined from special geometry.
- \(f_1^1(z), f_2^2(z) \) are holomorphic (meromorphic) functions which cannot be determined from the holomorphic anomaly eq. (holomorphic ambiguities).
Solutions

- \(\tilde{C}_n^{(g)} \) is a polynomial of degree \(3g - 3 + n \) in \(\mathbb{C}(z)[A] \), with
 \[
 A = \frac{\theta_0 G_{00\bar{0}}}{G_{0\bar{0}}}.
 \]

- For \((g, n) = (1, 1), (2, 0) \),
 \[
 \tilde{C}_1^{(1)} = \frac{1}{2} A + f_1^1(z) \]
 \[
 \tilde{C}_0^{(2)} = -\frac{1}{2 Y_{00;0}} \left[\frac{5}{12} A^3 - \left(\frac{\theta_0 Y_{00;0}}{4 Y_{00;0}} \right) A^2
 + \left(-\frac{\kappa(z)}{2} + \theta_0 f_1^1(z) + (f_1^1(z))^2 \right) A \right] + f_2(z)
 \]

- where
 - \(\kappa(z) \) is determined from special geometry.
 - \(f_1^1(z) \), \(f_2^2(z) \) are holomorphic (meromorphic) functions which cannot be determined from the holomorphic anomaly eq. (holomorphic ambiguities)
Solutions

- \(\tilde{C}_n^{(g)} \) is a polynomial of degree \(3g - 3 + n \) in \(\mathbb{C}(z)[A] \), with
 \[
 A = \frac{\theta_0 G_{0\bar{0}}}{G_{0\bar{0}}}.
 \]

- For \((g, n) = (1, 1), (2, 0) \),
 \[
 \tilde{C}_1^{(1)} = \frac{1}{2} A + f_1^1(z)
 \]
 \[
 \tilde{C}_0^{(2)} = - \frac{1}{2 Y_{00;0}} \left[\frac{5}{12} A^3 - \left(\frac{\theta_0 Y_{00;0}}{4 Y_{00;0}} \right) A^2 \right.
 + \left. \left(- \frac{\kappa(z)}{2} + \theta_0 f_1^1(z) + (f_1^1(z))^2 \right) A \right] + f_2(z)
 \]

- where
 - \(\kappa(z) \) is determined from special geometry. Example
 - \(f_1^1(z), f_0^2(z) \) are holomorphic (meromorphic) functions which cannot be determined from the holomorphic anomaly eq. (holomorphic ambiguities) Example
Outline

1 Motivation

2 Jacobian ring description of $H^2(\mathbb{T}^2, \mathcal{C}_a^\circ)$

3 Mixed Hodge Structure of $H^2(\mathbb{T}^2, \mathcal{C}_a^\circ)$

4 Yukawa coupling

5 Holomorphic anomaly equation

6 Witten’s Geometric Quantization Approach

7 Appendix (Examples etc.)
Witten’s Approach

- Witten gave a heuristic interpretation of BCOV’s holomorphic anomaly equation in the framework of geometric quantization (’93):
 - Holomorphic anomaly eq. \iff A proj. flat connection on infinite dim. vector bundle $\mathcal{H} \rightarrow \mathcal{M}$

- His approach can be fit into the setting of local B-model and our holomorphic anomaly equation.
Witten’s Approach

- Witten gave a heuristic interpretation of BCOV’s holomorphic anomaly equation in the framework of geometric quantization (’93):

 \[
 \text{Holomorphic anomaly eq.} \iff \text{A proj. flat connection on infinite dim. vector bundle } \mathcal{H} \to \mathcal{M}
 \]

- His approach can be fit into the setting of local B-model and our holomorphic anomaly equation.
Applying Geometric Quantization

- Consider the symplectic vector space $W = H^1(C_z, \mathbb{R})$ with the symplectic form given by the cup product.
- For each parameter $z \in \mathcal{M}$, let x, \bar{x} be the complex coordinates of $W_\mathbb{C}$ associated to the basis $\phi = \nabla_{\theta_0} \omega \ (\text{holo.1-form}), \bar{\phi}$
- Let $L = W \times \mathbb{C}$ be the complex line bundle with the connection $D = \delta + \frac{1}{2} G_{0\bar{0}}(xd\bar{x} - \bar{x}dx)$.
 (Remark: x, \bar{x} and D depend on $z \in \mathcal{M}$!)
- Consider the space of (square integrable) polarized sections $\mathcal{H}_z = \{ \Phi \in \Gamma(W, L) \mid D_{\partial_{\bar{x}}} \Phi = 0 \}$
Applying Geometric Quantization

- Consider the symplectic vector space $\mathcal{W} = H^1(C_z, \mathbb{R})$ with the symplectic form given by the cup product.
- For each parameter $z \in \mathcal{M}$, let x, \bar{x} be the complex coordinates of \mathcal{W}_C associated to the basis
 $$\phi = \nabla_{\theta_0} \omega \quad \text{(holo.1-form)}, \quad \overline{\phi}$$
- Let $L = \mathcal{W} \times \mathbb{C}$ be the complex line bundle with the connection
 $$D = \partial + \frac{1}{2} G_{0\bar{0}} (xd\bar{x} - \bar{x} dx) .$$
 (Remark: x, \bar{x} and D depend on $z \in \mathcal{M}$!)
- Consider the space of (square integrable) polarized sections
 $$\mathcal{H}_z = \{ \Phi \in \Gamma(\mathcal{W}, L) \mid D_{\partial_x} \Phi = 0 \}$$
Applying Geometric Quantization

- Consider the symplectic vector space $W = H^1(C_z, \mathbb{R})$ with the symplectic form given by the cup product.
- For each parameter $z \in \mathcal{M}$, let x, \bar{x} be the complex coordinates of W_C associated to the basis
 \[\phi = \nabla_{\theta_0}\omega \text{ (holo.1-form)}, \quad \bar{\phi} \]
- Let $L = W \times \mathbb{C}$ be the complex line bundle with the connection
 \[D = \delta + \frac{1}{2} G_{0\bar{0}}(xd\bar{x} - \bar{x}dx) \]

(Remark: x, \bar{x} and D depend on $z \in \mathcal{M}$!)

- Consider the space of (square integrable) polarized sections
 \[\mathcal{H}_z = \{ \Phi \in \Gamma(W, L) \mid D_{\partial_{\bar{x}}} \Phi = 0 \} \]
Applying Geometric Quantization

- Consider the symplectic vector space $\mathcal{W} = H^1(C_z, \mathbb{R})$ with the symplectic form given by the cup product.

- For each parameter $z \in \mathcal{M}$, let x, \bar{x} be the complex coordinates of $\mathcal{W}_\mathbb{C}$ associated to the basis
 $$\phi = \nabla_{\theta_0} \omega \quad \text{(holo.1-form)}, \quad \bar{\phi}$$

- Let $L = \mathcal{W} \times \mathbb{C}$ be the complex line bundle with the connection
 $$D = \delta + \frac{1}{2} G_{0\bar{0}}(xd\bar{x} - \bar{x}dx) .$$
 (Remark: x, \bar{x} and D depend on $z \in \mathcal{M}$!)

- Consider the space of (square integrable) polarized sections
 $$\mathcal{H}_z = \{ \Phi \in \Gamma(\mathcal{W}, L) \mid D_{\partial\bar{x}} \Phi = 0 \}$$
HAE as flat connection

- Witten’s idea is to interpret holomorphic anomaly eq. as a connection on the infinite dimensional vector bundle $\mathcal{H} \rightarrow \mathcal{M}$.

- In the case of local B-model, consider the connection d

\[d(\theta_j) = \theta_j \]

\[d(\tilde{\theta}_j) = \tilde{\theta}_j - \frac{Y_{j0;0}}{2G_{0\bar{0}}^2} \left(\delta_x - \frac{G_{0\bar{0}}}{2} \bar{x} \right)^2 \]

- Then d is a projectively flat connection on \mathcal{H}.

- AND

\[\exp \left[\sum_{n,g} \frac{\lambda^{2g-2+n}}{n!} \tilde{C}^{(g)}_n x^n \right] \]

\[\times e^{-\frac{G_{0\bar{0}}}{2} x \bar{x}} \]

\{ $C^{(g)}_n$ \} satisfies hol. anomaly eq.
HAE as flat connection

- Witten's idea is to interpret holomorphic anomaly eq. as a connection on the infinite dimensional vector bundle $\mathcal{H} \rightarrow \mathcal{M}$.

- In the case of local B-model, consider the connection d

\[
d(\theta_j) = \theta_j
\]

\[
d(\bar{\theta}_j) = \bar{\theta}_j - \frac{\overline{Y}_{j0;0}}{2G_{0,\bar{0}}^2} \left(\delta_x - \frac{G_{0\bar{0}}}{2} x \right)^2
\]

- Then d is a projectively flat connection on \mathcal{H}!
- AND

\[
\{ C_n^{(g)} \} \text{ satisfies hol. anomaly eq.} \iff \exp \left[\sum_{n,g} \frac{\lambda^{2g-2+n}}{n!} \tilde{C}_n^{(g)} x^n \right] \times e^{-\frac{G_{0\bar{0}}}{2} x \bar{x}}
\]

is a flat section
HAE as flat connection

- Witten's idea is to interpret holomorphic anomaly eq. as a connection on the infinite dimensional vector bundle \(\mathcal{H} \rightarrow \mathcal{M} \).
- In the case of local B-model, consider the connection \(d \)

\[
d(\theta_j) = \theta_j
\]

\[
d(\bar{\theta}_j) = \bar{\theta}_j - \frac{Y_{j0;0}}{2G_{00,\bar{0}}} \left(\delta_x - \frac{G_{0\bar{0}}}{2} \frac{x}{\bar{x}} \right)^2
\]

- Then \(d \) is a projectively flat connection on \(\mathcal{H} \)!
- AND

\[
\exp \left[\sum_{n,g} \frac{\lambda^{2g-2+n}}{n!} \tilde{C}_n^{(g)} x^n \right] \times e^{-\frac{G_{00\bar{0}}}{2} x \bar{x}}
\]

\{ \mathcal{C}_n^{(g)} \} \quad \text{satisfies hol. anomaly eq.} \quad \leftrightarrow \quad \text{is a flat section
HAE as flat connection

- Witten's idea is to interpret holomorphic anomaly eq. as a connection on the infinite dimensional vector bundle $\mathcal{H} \to \mathcal{M}$.
- In the case of local B-model, consider the connection d
 \[d(\theta_j) = \theta_j \]
 \[d(\overline{\theta}_j) = \overline{\theta}_j - \frac{Y_{j\overline{0};0}}{2G_{0\overline{0}}^2} \left(\delta_x - \frac{G_{0\overline{0}}}{2} \overline{x} \right)^2 \]
- Then d is a projectively flat connection on \mathcal{H}!
- AND

\[\left\{ C_n^{(g)} \right\} \text{ satisfies hol. anomaly eq.} \iff \exp \left[\sum_{n,g} \frac{\lambda^{2g-2+n}}{n!} \tilde{C}_n^{(g)} x^n \right] \times e^{-\frac{G_{0\overline{0}}}{2} \overline{x} x} \text{ is a flat section} \]
Outline

1. Motivation

2. Jacobian ring description of $H^2(\mathbb{T}^2, C^\circ_\alpha)$

3. Mixed Hodge Structure of $H^2(\mathbb{T}^2, C^\circ_\alpha)$

4. Yukawa coupling

5. Holomorphic anomaly equation

6. Witten’s Geometric Quantization Approach

7. Appendix (Examples etc.)
Reflexive Polyhedra

- A reflexive polyhedron Δ is a polyhedron satisfying:
 - it is a convex hull of integral points;
 - $0 \in \Delta$;
 - Distance between 0 and each codimension 1 face is 1.
- There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

- A reflexive polyhedron Δ is a polyhedron satisfying:
 - it is a convex hull of integral points;
 - $0 \in \Delta$;
 - Distance between 0 and each codimension 1 face is 1.

- There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

- A reflexive polyhedron Δ is a polyhedron satisfying:
 - it is a convex hull of integral points;
 - $0 \in \Delta$;
 - Distance between 0 and each codimension 1 face is 1.

- There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

- A reflexive polyhedron Δ is a polyhedron satisfying:
 - it is a convex hull of integral points;
 - $0 \in \Delta$;
 - Distance between 0 and each codimension 1 face is 1.

- There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

- A reflexive polyhedron Δ is a polyhedron satisfying:
 - it is a convex hull of integral points;
 - $0 \in \Delta$;
 - Distance between 0 and each codimension 1 face is 1.

- There are 16 2-dimensional reflexive polyhedra.
\[\Delta \sim \mathbb{P} \]

- Regard integral points of \(\Delta \) other than the origin as one dimensional cones in \(\mathbb{R}^2 \).
- Then they define a complete smooth 2-dimensional fan.
- This fan in turn defines a complete smooth toric surface \(\mathbb{P} \) whose anti-canonical divisor is nef.

Example

\[
\begin{align*}
\Delta &= \begin{array}{c}
\text{v}^1 \\
\end{array} \
\text{v}^2 \
\text{v}^3 \\
\text{v}^1 &\quad \text{v}^2 &\quad \text{v}^3 \\
1 &\quad 0 &\quad 1 \\
0 &\quad 1 &\quad -1 \\
\end{array}
\rightarrow \quad \mathbb{P} &= \mathbb{P}^2 \\
\text{v}^1 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \text{v}^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \text{v}^3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}.
\end{align*}
\]
- Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.
- Then they define a complete smooth 2-dimensional fan.
- This fan in turn defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

![Diagram](image)

$\Delta = \begin{array}{c} v_2 \\ v_1 \\ v_3 \end{array} \rightarrow \mathbb{P} = \mathbb{P}^2$

$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.
• Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.
• Then they define a complete smooth 2-dimensional fan.
• This fan in turn defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

\[
\Delta = \begin{array}{c} \downarrow \\ \searrow \\ \swarrow \end{array} \rightarrow \quad \mathbb{P} = \mathbb{P}^2
\]

\[
v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}.
\]
- Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.
- Then they define a complete smooth 2-dimensional fan.
- This fan in turn defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

$$
\Delta = \begin{array}{c}
\downarrow \\
V_1 \\
\downarrow \\
V_2 \\
\downarrow \\
V_3
\end{array} \quad \rightarrow \quad \mathbb{P} = \mathbb{P}^2
$$

$$
\nu_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \nu_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \nu_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}.
$$
Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g, \beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g, \beta}(\mathbb{P}) = \int_{[\overline{M}_{g,0}(\mathbb{P}, \beta)]^{vir}} e(\pi_* ev^* K_{\mathbb{P}}).$$

- Here
 - $\overline{M}_{g,n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $ev : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \overline{M}_{g,0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.
- Remark. This is defined for β such that $\beta . K_{\mathbb{P}} \neq 0$.
Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g,\beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g,\beta}(\mathbb{P}) = \int_{[\overline{M}_{g,0}(\mathbb{P}, \beta)]^{vir}} e(\pi_* ev^* K_{\mathbb{P}}).$$

- Here

 - $\overline{M}_{g,n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $ev : \overline{M}_{g,1}(\mathbb{P}, \beta) \rightarrow \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g,1}(\mathbb{P}, \beta) \rightarrow \overline{M}_{g,0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.

Remark. This is defined for β such that $\beta.K_{\mathbb{P}} \neq 0$.

Back To LMS
Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g, \beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g, \beta}(\mathbb{P}) = \int_{[\overline{M}_{g, 0}(\mathbb{P}, \beta)]^{vir}} e(\pi_* ev^* K_{\mathbb{P}}).$$

- Here
 - $\overline{M}_{g, n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $ev : \overline{M}_{g, 1}(\mathbb{P}, \beta) \to \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g, 1}(\mathbb{P}, \beta) \to \overline{M}_{g, 0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.
- Remark. This is defined for β such that $\beta.K_{\mathbb{P}} \neq 0$.

Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g, \beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g, \beta}(\mathbb{P}) = \int_{[\overline{M}_{g,0}(\mathbb{P}, \beta)]} e(\pi_* e v^* K_{\mathbb{P}}).$$

- Here
 - $\overline{M}_{g,n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $e v : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \overline{M}_{g,0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.
- Remark. This is defined for β such that $\beta \cdot K_{\mathbb{P}} \neq 0$.

Back To LMS
Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g, \beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g, \beta}(\mathbb{P}) = \int_{[\overline{M}_{g,0}(\mathbb{P}, \beta)]^{vir}} e(\pi_* ev^* K_{\mathbb{P}}).$$

- Here
 - $\overline{M}_{g,n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $ev : \overline{M}_{g,1}(\mathbb{P}, \beta) \rightarrow \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g,1}(\mathbb{P}, \beta) \rightarrow \overline{M}_{g,0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.
 - Remark. This is defined for β such that $\beta.K_{\mathbb{P}} \neq 0$.

Back To LMS
Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g, \beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

\[
N_{g, \beta}(\mathbb{P}) = \int_{[\overline{M}_{g,0}(\mathbb{P}, \beta)]^{\text{vir}}} e(\pi_* e v^* K_{\mathbb{P}}) .
\]

- Here
 - $\overline{M}_{g,n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $ev : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \overline{M}_{g,0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.
- Remark. This is defined for β such that $\beta.K_{\mathbb{P}} \neq 0$.

Back To LMS
Local Gromov–Witten invariants

- Genus g local Gromov–Witten invariant $N_{g, \beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g, \beta}(\mathbb{P}) = \int_{[\overline{M}_{g, 0}(\mathbb{P}, \beta)]^{vir}} e(\pi_*ev^*K_{\mathbb{P}}).$$

- Here
 - $\overline{M}_{g, n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
 - $ev : \overline{M}_{g, 1}(\mathbb{P}, \beta) \to \mathbb{P}$ is the evaluation map,
 - $\pi : \overline{M}_{g, 1}(\mathbb{P}, \beta) \to \overline{M}_{g, 0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
 - e denotes the Euler class.

- **Remark.** This is defined for β such that $\beta.K_{\mathbb{P}} \neq 0$.
\[\Delta \rightsquigarrow C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \longleftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]

- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]

- Example:
 \[\Delta = \begin{array}{c}
 \begin{array}{c}
 \hline
 \hline
 a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
 \end{array}
 \end{array} \]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C_a^o = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \} . \]

- \(C_a^o = \) genus 1 complete curve \(C_a \) – points

- Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification \(C_a \) are smooth.
\[\Delta \rightsquigarrow C^\circ_a \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \leftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]

- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]

- Example: \[\Delta = \triangleq \quad F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} . \]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C^\circ_a = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0\} . \]

- \(C^\circ_a = \) genus 1 complete curve \(C_a \) – points

- Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C^\circ_a \) and its compactification \(C_a \) are smooth.
\[\Delta \sim \mathcal{C}_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \leftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]
- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]
- Example:
 \[\Delta = \triangledown \quad F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} \]
- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[\mathcal{C}_a^o = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \} \]
- \(\mathcal{C}_a^o \) = genus 1 complete curve \(C_a \) – points
- Remark: we must put the \(\Delta \)-regularity condition on \(a_m \)
 so that \(\mathcal{C}_a^o \) and its compactification \(C_a \) are smooth.
\[\Delta \rightsquigarrow C_a^\circ \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[
 (m_1, m_2) \longleftrightarrow t^m := t_1^{m_1} t_2^{m_2}
 \]
- Take the sum of these monomials with parameters \(a_m \):
 \[
 F_a(t) := \sum_{m \in \Delta} a_m t^m
 \]
- Example: \(\Delta = \triangle \)
 \[
 F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
 \]
- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[
 C_a^\circ = \{ (t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \}.
 \]
- \(C_a^\circ = \) genus 1 complete curve \(C_a \) – points
- Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^\circ \) and its compactification \(C_a \) are smooth.
\[\Delta \sim C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \leftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]
- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]
- Example:
 \[\Delta = \begin{array}{c}
 F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
 \end{array} \]
- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C_a^o = \{ (t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \} . \]
- \(C_a^o = \) genus 1 complete curve \(C_a \) – points
- Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification \(C_a \) are smooth.
\[\Delta \rightsquigarrow C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \longleftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]

- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]

- Example:
 \[\Delta = \begin{array}{c}
 _ \\
 _ \\
 _ \\
 _ \\
 \end{array} \quad F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}. \]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C_a^o = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0\}. \]

- \(C_a^o \) = genus 1 complete curve \(C_a \) – points

- Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification \(C_a \) are smooth.
Why $H^2(\mathbb{T}^2, C^o_\alpha)$, Not $H^1(C^o_\alpha)$?

1. $H^2(\mathbb{T}^2, C^o_\alpha)$ has a structure similar to H^3 of a Calabi–Yau 3-fold:

VHS on H^3
- Hodge filtration
0 $\subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$
 has dim $F^3 = 1$
- H^3 generated by holo. 3-form $\in F^3$
 and GM connection

VMHS on $H^2(\mathbb{T}^2, C^o_\alpha)$
- Hodge filtration
0 $\subset F^2 \subset F^1 \subset F^0 = H^2$
 has dim $F^2 = 1$
- H^2 generated by
 $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$
 and GM connection

2. Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

3. $H^1(C^o_\alpha)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C_a^o)$, Not $H^1(C_a^o)$?

1. $H^2(\mathbb{T}^2, C_a^o)$ has a structure similar to H^3 of a Calabi–Yau 3-fold:

 - **VHS on H^3**
 - Hodge filtration
 - $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$
 - has dim $F^3 = 1$
 - H^3 generated by holo. 3-form $\in F^3$
 - and GM connection

 - **VMHS on $H^2(\mathbb{T}^2, C_a^o)$**
 - Hodge filtration
 - $0 \subset F^2 \subset F^1 \subset F^0 = H^2$
 - has dim $F^2 = 1$
 - H^2 generated by $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$
 - and GM connection

2. Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

3. $H^1(C_a^o)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C_a^\circ)$, Not $H^1(C_a^\circ)$?

1. $H^2(\mathbb{T}^2, C_a^\circ)$ has a structure similar to H^3 of a Calabi–Yau 3-fold:

 - **VHS on H^3**
 - Hodge filtration
 - $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$
 - has dim $F^3 = 1$
 - H^3 generated by holo. 3-form $\in F^3$

 - **VMHS on $H^2(\mathbb{T}^2, C_a^\circ)$**
 - Hodge filtration
 - $0 \subset F^2 \subset F^1 \subset F^0 = H^2$
 - has dim $F^2 = 1$
 - H^2 generated by
 - $\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \in F^2$

2. Period integrals of $\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$ satisfy the A-hypergeometric system.

3. $H^1(C_a^\circ)$ does not have these properties!
Example of $\Delta(k)$

$\Delta(2)$

$\Delta(1) = \Delta$

$\Delta(0)$
Examples of \mathcal{E}

- Regard each integral point m in $\Delta(k)$ as the Laurent monomial $t_0^k t^m$.
Example of \mathcal{I}

- Regard each integral point m in $\Delta(k)$ as the Laurent monomial $t_0^k t^m$.

![Diagram with points labeled \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4]
Example of quotient family 1

- $\mathcal{M} \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}$
- A local coordinate (around 0) is $z = \frac{a_1a_2a_3}{a_0}$.
- $C_a \sim \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z}{t_1t_2} = 0\}$
- Yukawa coupling is

$$\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.$$
Example of quotient family 1

\[\triangle = \]

- \[\mathcal{M} \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\} \]

- A local coordinate (around 0) is \[z = \frac{a_1 a_2 a_3}{a_0^3}. \]

- \(C_a \sim \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z}{t_1 t_2} = 0\} \)

- Yukawa coupling is

\[
\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.
\]
Example of quotient family 1

- $\Delta = \quad \triangle$

- $\mathcal{M} \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}$
- A local coordinate (around 0) is $z = \frac{a_1 a_2 a_3}{a_0^3}$.
- $C_a \cong \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z}{t_1 t_2} = 0\}$
- Yukawa coupling is
 \[
 \langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.
 \]
Example of quotient family 1

\[\Delta = \]

- \[\mathcal{M} \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\} \]
- A local coordinate (around 0) is \(z = \frac{a_1 a_2 a_3}{a_0^3} \).
- \(C_a \sim \{ (t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z}{t_1 t_2} = 0 \} \)
- Yukawa coupling is

\[
\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.
\]
Example of quotient family 1

- \(\Delta = \)

- \(\mathcal{M} \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\} \)
- A local coordinate (around 0) is \(z = \frac{a_1 a_2 a_3}{a_0^3} \).
- \(C_a \leadsto \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z}{t_1 t_2} = 0\} \)
- Yukawa coupling is

\[
\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.
\]
Example of quotient family 2

\[\Delta = \begin{array}{c}
\end{array} \]

- \(M \subset \mathbb{P}^2 \) (open subset)
- Local coordinates:
 \[z_1 = \frac{a_1 a_3}{a_0^2}, \quad z_2 = \frac{a_2 a_4}{a_0^2} \]
- \(C_a \sim \{ (t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z_1}{t_1} + \frac{z_2}{t_2} = 0 \} \)
- Yukawa coupling is
 \[\langle \theta_1, \theta_1, \theta_0 \rangle = \frac{8z_1}{d(z_1, z_2)}, \quad \langle \theta_1, \theta_2, \theta_0 \rangle = \frac{(1 - 4z_1 - 4z_2)}{d(z_1, z_2)}, \]
 where \(d(z_1, z_2) = (1 - 4z_1 - 4z_2) - 64z_1 z_2 \) and
 \[\theta_0 = -2z_1 \frac{\partial}{\partial z_1} - 2z_2 \frac{\partial}{\partial z_1} = a_0 \frac{\partial}{\partial a_0} \]
Example of quotient family 2

- $\Delta = \Diamond$
- $\mathcal{M} \subset \mathbb{P}^2$ (open subset)

Local coordinates:

\[
z_1 = \frac{a_1 a_3}{a_0^2}, \quad z_2 = \frac{a_2 a_4}{a_0^2}
\]

- $C_a \ni \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z_1}{t_1} + \frac{z_2}{t_2} = 0\}$

Yukawa coupling is

\[
\langle \theta_1, \theta_1, \theta_0 \rangle = \frac{8 z_1}{d(z_1, z_2)}, \quad \langle \theta_1, \theta_2, \theta_0 \rangle = \frac{(1 - 4z_1 - 4z_2)}{d(z_1, z_2)}
\]

where $d(z_1, z_2) = (1 - 4z_1 - 4z_2) - 64z_1z_2$ and

\[
\theta_0 = -2z_1 \frac{\partial}{\partial z_1} - 2z_2 \frac{\partial}{\partial z_1} = a_0 \frac{\partial}{\partial a_0}
\]
Example of quotient family 2

- $\Delta = \begin{array}{c}
\end{array}$
- $\mathcal{M} \subset \mathbb{P}^2$ (open subset)
- Local coordinates:
 \[z_1 = \frac{a_1 a_3}{a_0^2}, \quad z_2 = \frac{a_2 a_4}{a_0^2} \]
- $C_a \sim \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z_1}{t_1} + \frac{z_2}{t_2} = 0\}$
- Yukawa coupling is
 \[\langle \theta_1, \theta_1, \theta_0 \rangle = \frac{8z_1}{d(z_1, z_2)}, \quad \langle \theta_1, \theta_2, \theta_0 \rangle = \frac{(1 - 4z_1 - 4z_2)}{d(z_1, z_2)}, \]
 where $d(z_1, z_2) = (1 - 4z_1 - 4z_2) - 64z_1 z_2$ and
 \[\theta_0 = -2z_1 \frac{\partial}{\partial z_1} - 2z_2 \frac{\partial}{\partial z_1} = a_0 \frac{\partial}{\partial a_0} \]
Example of quotient family 2

- $\Delta = \diamondsuit$
- $M \subset \mathbb{P}^2$ (open subset)
- Local coordinates:
 \[z_1 = \frac{a_1 a_3}{a_0^2}, \quad z_2 = \frac{a_2 a_4}{a_0^2} \]
- $C_a \sim \{ (t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z_1}{t_1} + \frac{z_2}{t_2} = 0 \}$
- Yukawa coupling is
 \[\langle \theta_1, \theta_1, \theta_0 \rangle = \frac{8z_1}{d(z_1, z_2)}, \quad \langle \theta_1, \theta_2, \theta_0 \rangle = \frac{(1 - 4z_1 - 4z_2)}{d(z_1, z_2)}, \]
 where $d(z_1, z_2) = (1 - 4z_1 - 4z_2) - 64z_1 z_2$ and
 \[\theta_0 = -2z_1 \frac{\partial}{\partial z_1} - 2z_2 \frac{\partial}{\partial z_1} = a_0 \frac{\partial}{\partial a_0} \]
Example of quotient family 2

- $\triangle = \blacklozenge$
- $\mathcal{M} \subset \mathbb{P}^2$ (open subset)
- Local coordinates:
 \[
 z_1 = \frac{a_1 a_3}{a_0^2}, \quad z_2 = \frac{a_2 a_4}{a_0^2}
 \]
- $C_a \rightsquigarrow \{(t_1, t_2) \mid 1 + t_1 + t_2 + \frac{z_1}{t_1} + \frac{z_2}{t_2} = 0\}$
- Yukawa coupling is
 \[
 \langle \theta_1, \theta_1, \theta_0 \rangle = \frac{8z_1}{d(z_1, z_2)}, \quad \langle \theta_1, \theta_2, \theta_0 \rangle = \frac{(1 - 4z_1 - 4z_2)}{d(z_1, z_2)},
 \]
 where $d(z_1, z_2) = (1 - 4z_1 - 4z_2) - 64z_1 z_2$ and
 \[
 \theta_0 = -2z_1 \frac{\partial}{\partial z_1} - 2z_2 \frac{\partial}{\partial z_1} = a_0 \frac{\partial}{\partial a_0}
 \]
About definition of \tilde{C}_n^g

- At present, there is no clear mathematical definition for "B-model topological string amplitude" $\tilde{C}_n^{(g)}$ except for $(g, n) = (0, 3)$. To give a mathematical definition is a very important problem.
Example of κ

- κ is defined by

$$\kappa(z) := \theta_0 A + A^2 - \frac{\theta_0 Y_{00;0}}{Y_{00;0}} A.$$

- $\Delta = \triangle$

$$\kappa(z) = \frac{-54z}{1 + 27z}$$

- $\Delta = \square$

$$\kappa = \frac{8(z_1 + z_2 - 6(z_1^2 + z_2^2) + 12z_1z_2)}{(1 - 4z_1 - 4z_2)^2 - 64z_1z_2}$$
Example of κ

- κ is defined by

$$\kappa(z) := \theta_0 A + A^2 - \frac{\theta_0 Y_{00;0}}{Y_{00;0}} A.$$

- $\Delta = \begin{array}{c}
\frac{\theta_0}{Y_{00;0}} A
\end{array}$

$$\kappa(z) = \frac{-54z}{1 + 27z}$$

- $\Delta = \begin{array}{c}
\frac{8(z_1 + z_2 - 6(z_1^2 + z_2^2) + 12z_1z_2)}{(1 - 4z_1 - 4z_2)^2 - 64z_1z_2}
\end{array}$
Example of κ

- κ is defined by

$$\kappa(z) := \theta_0 A + A^2 - \frac{\theta_0 Y_{00;0}}{Y_{00;0}} A.$$

- $\Delta = \,$

$$\kappa(z) = \frac{-54z}{1 + 27z}$$

- $\Delta = \,$

$$\kappa = \frac{8(z_1 + z_2 - 6(z_1^2 + z_2^2) + 12z_1z_2)}{(1 - 4z_1 - 4z_2)^2 - 64z_1z_2}$$
Holomorphic Ambiguities

- For \(\Delta = \triangle\)

\[
f_1^{(1)}(z) = \frac{1 + 54z}{4(1 + 27z)} ,
\]

\[
f_0^{(2)}(z) = \frac{1}{(1 + 27z)^2} \left(\frac{3}{40}z + \frac{783}{80}z^2 + \frac{3645}{8}z^3 \right)
\]

- How these are obtained:

- It is expected that \(\tilde{C}_1^{(1)}, \tilde{C}_0^{(g)} (g \geq 2)\) should be equal to the A-model topological string amplitudes (i.e. the generating functions of local GW invariants at each genus) under the mirror map \(t = t(z)\) and the "holomorphic limit"

\[
G_{00} \longrightarrow \theta_0 t(z) .
\]

- \(f_1^{(1)}(z), f_0^{(g)}(z) (g \geq 2)\) should be determined so that \(\tilde{C}_1^{(1)}, \tilde{C}_0^2\) reproduce the right local GW invariants.
Holomorphic Ambiguities

- For
 \[\Delta = \begin{array}{c}
 \begin{array}{c}
 \text{\Large \text{\textbullet}} \\
 \text{\Large \text{\textbullet}} \\
 \text{\Large \text{\textbullet}} \\
 \end{array}
 \end{array} \]

 \[f_1^{(1)}(z) = \frac{1 + 54z}{4(1 + 27z)}, \]

 \[f_0^{(2)}(z) = \frac{1}{(1 + 27z)^2} \left(\frac{3}{40}z + \frac{783}{80}z^2 + \frac{3645}{8}z^3 \right) \]

- How these are obtained:
 - It is expected that \(\tilde{C}_1^{(1)}, \tilde{C}_0^{(g)} \) \((g \geq 2)\) should be equal to the A-model topological string amplitudes (i.e. the generating functions of local GW invariants at each genus) under the mirror map \(t = t(z) \) and the “holomorphic limit”
 \[G_{00} \longrightarrow \theta_0 t(z). \]
 - \(f_1^{(1)}(z), f_0^{(g)}(z) \) \((g \geq 2)\) should be determined so that \(\tilde{C}_1^{(1)}, \tilde{C}_0^{(2)} \) reproduce the right local GW invariants.
Holomorphic Ambiguities

- For

\[\Delta = \begin{array}{c}
\end{array} \]

\[f_1^{(1)}(z) = \frac{1 + 54z}{4(1 + 27z)}, \]

\[f_0^{(2)}(z) = \frac{1}{(1 + 27z)^2} \left(\frac{3}{40}z + \frac{783}{80}z^2 + \frac{3645}{8}z^3 \right) \]

- How these are obtained:

- It is expected that \(\tilde{C}_1^{(1)}, \tilde{C}_0^{(g)} (g \geq 2) \) should be equal to the A-model topological string amplitudes (i.e. the generating functions of local GW invariants at each genus) under the mirror map \(t = t(z) \) and the “holomorphic limit”

\[G_{00} \longrightarrow \theta_0 t(z). \]

- \(f_1^{(1)}(z), f_0^{(g)}(z) (g \geq 2) \) should be determined so that \(\tilde{C}_1^{(1)}, \tilde{C}_0^2 \) reproduce the right local GW invariants.
Holomorphic Ambiguities

- For
 \[\Delta = \begin{array}{c}
 \includegraphics{triangle}
 \end{array} \]
 \[f_1^{(1)}(z) = \frac{1 + 54z}{4(1 + 27z)}, \]
 \[f_0^{(2)}(z) = \frac{1}{(1 + 27z)^2} \left(\frac{3}{40}z + \frac{783}{80}z^2 + \frac{3645}{8}z^3 \right) \]

- How these are obtained:
 - It is expected that \(\tilde{C}_1^{(1)}, \tilde{C}_0^{(g)} (g \geq 2) \) should be equal to the A-model topological string amplitudes (i.e. the generating functions of local GW invariants at each genus) under the mirror map \(t = t(z) \) and the “holomorphic limit”
 \[G_{00} \longrightarrow \theta_0 t(z). \]

- \(f_1^{(1)}(z), f_0^{(g)}(z) (g \geq 2) \) should be determined so that
 \(\tilde{C}_1^{(1)}, \tilde{C}_0^{2} \) reproduce the right local GW invariants.