Local B-model and Mixed Hodge Structure

Yukiko Konishi1

1Department of Mathematics
Kyoto University

Mirror Symmetry and Gromov–Witten theory
Jan. 11-15, 2010 (NIMS)
Joint work with Satoshi Minabe (MPIM)
arXiv:0907.4108[math.AG]
Local Mirror Symmetry

- Local mirror symmetry was derived by Chiang–Klemm–Yau–Zaslow in 1999.
- It is a statement about local GW invariants of smooth complete weak Fano toric surfaces.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces.
 (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1, 1, 1, 6, 9) \rightsquigarrow \mathbb{P}^2$)

Local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry was derived by Chiang–Klemm–Yau–Zaslow in 1999.
- It is a statement about local GW invariants of smooth complete weak Fano toric surfaces.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces.
 (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1,1,1,6,9) \sim \mathbb{P}^2$)

Local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry was derived by Chiang–Klemm–Yau–Zaslow in 1999.
- It is a statement about local GW invariants of smooth complete weak Fano toric surfaces.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces.
 (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1, 1, 1, 6, 9) \sim \mathbb{P}^2$)

Local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry was derived by Chiang–Klemm–Yau–Zaslow in 1999.
- It is a statement about local GW invariants of smooth complete weak Fano toric surfaces.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces.
 (e.g. CY hypersurface $\subset \tilde{\mathbb{P}}(1,1,1,6,9) \sim \mathbb{P}^2$)

Local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry was derived by Chiang–Klemm–Yau–Zaslow in 1999.
- It is a statement about local GW invariants of smooth complete weak Fano toric surfaces.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces.
 (e.g. CY hypersurface $\subset \widehat{\mathbb{P}}(1, 1, 1, 6, 9) \sim \mathbb{P}^2$)

Local mirror symmetry is summarized as follows.
Local Mirror Symmetry

- Local mirror symmetry was derived by Chiang–Klemm–Yau–Zaslow in 1999.
- It is a statement about local GW invariants of smooth complete weak Fano toric surfaces.
- It is derived from mirror symmetry of toric Calabi–Yau hypersurfaces by considering a certain limits in moduli spaces.
 (e.g. CY hypersurface $\subset \hat{\mathbb{P}}(1, 1, 1, 6, 9) \rightsquigarrow \mathbb{P}^2$)

Local mirror symmetry is summarized as follows.
Local Mirror Symmetry

Start from:

\[\Delta \]

2 dim reflexive polyhedron
Reflexive Polyhedra

A reflexive polyhedron Δ is a polyhedron satisfying:

- it is a convex hull of integral points;
- $0 \in \Delta$;
- Distance between 0 and each codimension 1 face is 1.

There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

A reflexive polyhedron Δ is a polyhedron satisfying:

- it is a convex hull of integral points;
- $0 \in \Delta$;
- Distance between 0 and each codimension 1 face is 1.

There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

A reflexive polyhedron Δ is a polyhedron satisfying:
- it is a convex hull of integral points;
- $0 \in \Delta$;
- Distance between 0 and each codimension 1 face is 1.

There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

A reflexive polyhedron Δ is a polyhedron satisfying:
- it is a convex hull of integral points;
- $0 \in \Delta$;
- Distance between 0 and each codimension 1 face is 1.

There are 16 2-dimensional reflexive polyhedra.
Reflexive Polyhedra

A reflexive polyhedron Δ is a polyhedron satisfying:

- it is a convex hull of integral points;
- $0 \in \Delta$;
- Distance between 0 and each codimension 1 face is 1.

There are 16 2-dimensional reflexive polyhedra.
Local Mirror Symmetry

\[\Delta \]

2 dim reflexive polyhedron

compact toric surface

\[\mathbb{P} \quad \text{s.t. } -K_{\mathbb{P}} \text{ nef} \]
Local Mirror Symmetry

\[\Delta \]

2 dim reflexive polyhedron

compact toric surface

\[\mathbb{P} \quad \text{s.t. } -K_{\mathbb{P}} \text{ nef} \]
• Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.

• Then they define a complete smooth 2-dimensional fan.

• This fan defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

$\Delta = \triangle v_1 v_2 v_3 \quad \rightarrow \quad \mathbb{P} = \mathbb{P}^2$
Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.

Then they define a complete smooth 2-dimensional fan.

This fan defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

$$\Delta \sim \mathbb{P}$$
- Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.
- Then they define a complete smooth 2-dimensional fan.
- This fan defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

\[\Delta \sim \mathbb{P} \]
• Regard integral points of Δ other than the origin as one dimensional cones in \mathbb{R}^2.
• Then they define a complete smooth 2-dimensional fan.
• This fan defines a complete smooth toric surface \mathbb{P} whose anti-canonical divisor is nef.

Example

$$\Delta \sim \mathbb{P}$$
Local Mirror Symmetry

\[\Delta \]
2 dim reflexive polyhedron

compact toric surface
\[\mathbb{P} \text{ s.t. } -K_{\mathbb{P}} \text{ nef} \]
\[g = 0 \text{ local GW inv.} \]
local A-model
Local Mirror Symmetry

\[\Delta \]
2 dim reflexive polyhedron

compact toric surface
\[\mathbb{P} \quad \text{s.t.} \quad -K_{\mathbb{P}} \text{ nef} \]
\[g = 0 \text{ local GW inv.} \]
local A-model
Local Mirror Symmetry

\[\Delta \]
2 dim reflexive polyhedron

compact toric surface

\[\mathbb{P} \text{ s.t. } -K_\mathbb{P} \text{ nef} \]

\[g = 0 \text{ local GW inv.} \]

local A-model
Local Gromov–Witten invariants

Genus g local Gromov–Witten invariant $N_{g,\beta}(\mathbb{P})$ of degree $\beta \in H_2(\mathbb{P}, \mathbb{Z})$ is defined by

$$N_{g,\beta}(\mathbb{P}) = \int_{[\overline{M}_{g,0}(\mathbb{P}, \beta)]^{\text{vir}}} e(\pi_* ev^* K_\mathbb{P}) .$$

- $\overline{M}_{g,n}(\mathbb{P}, \beta)$ is the moduli stack of stable maps to \mathbb{P} of genus g and degree β,
- $ev : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \mathbb{P}$ is the evaluation map,
- $\pi : \overline{M}_{g,1}(\mathbb{P}, \beta) \to \overline{M}_{g,0}(\mathbb{P}, \beta)$ is the map forgetting the marked point,
- e denotes the Euler class.
- **Remark.** This is defined for β such that $\beta \cdot K_\mathbb{P} \neq 0$.
Local Mirror Symmetry

Δ

2 dim reflexive polyhedron

compact toric surface

\mathbb{P} s.t. $-K_{\mathbb{P}}$ nef

$g = 0$ local GW inv.

local A-model

a family of affine curves

$C^0_a \subset \mathbb{T}^2$

Local B-model and MHS
Yukiko Konishi

Motivation

Mixed Hodge Structure of $H^2(\mathbb{T}^2, C^0_a)$

Yukawa coupling

Holomorphic anomaly equation
Local Mirror Symmetry

\[\Delta \]
2 dim reflexive polyhedron

- compact toric surface
 \[\mathbb{P} \text{ s.t. } -K_\mathbb{P} \text{ nef} \]
 \[g = 0 \text{ local GW inv.} \]
 \[\text{local A-model} \]
- a family of affine curves
 \[C_a \subset T^2 \]
\[\Delta \sim C_a \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[
 (m_1, m_2) \leftrightarrow t^m := \frac{m_1}{t_1} \frac{m_2}{t_2}
 \]

- Take the sum of these monomials with parameters \(a_m \):
 \[
 F_a(t) := \sum_{m \in \Delta} a_m t^m
 \]

Ex. \(\Delta = \bigtriangleup \)

\[
F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
\]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[
 C_a^0 = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0\}.
 \]

- \(C_a^0 \) = genus 1 complete curve – points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^0 \) and its compactification are smooth.
\[\Delta \xrightarrow{\sim} C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[
 (m_1, m_2) \xrightarrow{\sim} t^m := t_1^{m_1} t_2^{m_2}
 \]

- Take the sum of these monomials with parameters \(a_m \):
 \[
 F_a(t) := \sum_{m \in \Delta} a_m t^m
 \]

Ex. \(\Delta = \)

\[
F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
\]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[
 C_a^o = \left\{ (t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \right\}.
 \]

- \(C_a^o = \) genus 1 complete curve \(\rightarrow \) points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification are smooth.
\[\Delta \sim C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \leftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]

- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]

Ex. \(\Delta = \)

\[F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} . \]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C_a^o = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0\} . \]

- \(C_a^o \) = genus 1 complete curve – points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification are smooth.
\[\Delta \land \Rightarrow C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[
 (m_1, m_2) \longleftrightarrow t^m := t_1^{m_1} t_2^{m_2}
 \]

- Take the sum of these monomials with parameters \(a_m \):
 \[
 F_a(t) := \sum_{m \in \Delta} a_m t^m
 \]

Ex. \(\Delta = \)\(\triangle \) \(\Rightarrow \)
\[
F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
\]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[
 C_a^o = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0\}.
 \]

- \(C_a^o = \text{genus 1 complete curve} \) – points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification are smooth.
\[\Delta \rightsquigarrow C^\circ_a \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[
 (m_1, m_2) \longleftrightarrow t^m := t_1^{m_1} t_2^{m_2}
 \]

- Take the sum of these monomials with parameters \(a_m \):
 \[
 F_a(t) := \sum_{m \in \Delta} a_m t^m
 \]

Ex. \(\Delta = \triangleleft \)

\[
F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}.
\]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[
 C^\circ_a = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0\}.
 \]

- \(C^\circ_a = \text{genus 1 complete curve} \) – points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C^\circ_a \) and its compactification are smooth.
\[\Delta \sim \sim C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \longleftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]

- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]

Ex. \(\Delta = \) \[F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} . \]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C_a^o = \{(t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \} . \]

- \(C_a^o = \) genus 1 complete curve – points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification are smooth.
\[\Delta \sim C_a^o \]

- Associate the Laurent monomial to an integral point in \(\Delta \):
 \[(m_1, m_2) \leftrightarrow t^m := t_1^{m_1} t_2^{m_2} \]

- Take the sum of these monomials with parameters \(a_m \):
 \[F_a(t) := \sum_{m \in \Delta} a_m t^m \]

Ex. \(\Delta = \triangle \) \[F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}. \]

- The zero set of \(F_a(t) \) is an affine curve in \(\mathbb{T}^2 \):
 \[C_a^o = \{ (t_1, t_2) \in \mathbb{T}^2 \mid F_a(t) = 0 \}. \]

- \(C_a^o \) = genus 1 complete curve \(\sim \) points

Remark: we must put the \(\Delta \)-regularity condition on \(a_m \) so that \(C_a^o \) and its compactification are smooth.
Local Mirror Symmetry

Local A,B-models are related to each other via

\[A \text{-hypergeometric system with } \beta = \bar{0} \]

\[\Delta \]

2 dim reflexive polyhedron

Compact toric surface

\[\mathbb{P} \text{ s.t. } -K_\mathbb{P} \text{ nef} \]

\[g = 0 \text{ local GW inv.} \]

Local A-model

A family of affine curves

\[C_\alpha \subset \mathbb{T}^2 \]

VMHS on \(H^2(\mathbb{T}^2, C_\alpha) \)

Local B-model

Studied by Stienstra, Batyrev

Motivation

Mixed Hodge Structure of \(H^2(\mathbb{T}^2, C_\alpha) \)

Yukawa coupling

Holomorphic anomaly equation
Local Mirror Symmetry

Local A,B-models are related to each other via

A-hypergeometric system with $\beta = \bar{\alpha}$

Δ
2 dim reflexive polyhedron

compact toric surface
\mathbb{P} s.t. $-K_{\mathbb{P}}$ nef
$g = 0$ local GW inv.
local A-model

a family of affine curves
$C_{\alpha} \subset \mathbb{T}^2$
VMHS on $H^2(\mathbb{T}^2, C_{\alpha})$
local B-model

(a system of diff. eqs introduced by Gel’fand–Kapranov–Zelevinsky)

Studied by Stienstra, Batyrev
Local Mirror Symmetry

local A,B-models are related to each other via

A-hypergeometric system with $\beta = \bar{\beta}$

(a system of diff. eqs introduced by Gel’fand–Kapranov–Zelevinsky)

Δ
2 dim reflexive polyhedron

Studied by Stienstra, Batyrev

compact toric surface
\mathbb{P} s.t. $-K_\mathbb{P}$ nef
$g = 0$ local GW inv.
local A-model

a family of affine curves
$C_\alpha^\circ \subset \mathbb{T}^2$
VMHS on $H^2(\mathbb{T}^2, C_\alpha^\circ)$

local B-model
Local Mirror Symmetry

local A,B-models are related to each other via

\[\Delta \]

2 dim reflexive polyhedron

A-hypergeometric system with \(\beta = \bar{0} \)

(a system of diff. eqs introduced by Gel’fand–Kapranov–Zelevinsky)

compact toric surface

\[\mathbb{P} \quad \text{s.t.} \quad -K_{\mathbb{P}} \text{ nef} \]

\(g = 0 \) local GW inv.

local A-model

a family of affine curves

\(C_\alpha \subset \mathbb{T}^2 \)

VMHS on \(H^2(\mathbb{T}^2, C_\alpha) \)

local B-model

Studied by Stienstra, Batyrev
Local Mirror Symmetry

local A,B-models are related to each other via

A-hypergeometric system with $\beta = \bar{\alpha}$

\[\Delta \]
2 dim reflexive polyhedron

compact toric surface
\mathbb{P} s.t. $-K_{\mathbb{P}}$ nef
$g = 0$ local GW inv.
local A-model

a family of affine curves
$C_{\alpha} \subset \mathbb{T}^2$
VMHS on $H^2(\mathbb{T}^2, C_{\alpha})$
local B-model

(a system of diff. eqs introduced by Gel'fand–Kapranov –Zelevinsky)

Studied by Stienstra, Batyrev
Local Mirror Symmetry

Local A,B-models are related to each other via

A-hypergeometric system with $\beta = \bar{\alpha}$

Δ
2 dim reflexive polyhedron

compact toric surface
\mathbb{P} s.t. $-K_\mathbb{P}$ nef
$g = 0$ local GW inv.
local A-model

a family of affine curves
$C_\alpha \subset \mathbb{T}^2$
VMHS on $H^2(\mathbb{T}^2, C_\alpha)$
local B-model

(a system of diff. eqs introduced by Gel’fand–Kapranov –Zelevinsky)

Studied by Stienstra, Batyrev
Local Mirror Symmetry

A-hypergeometric system with $\beta = \bar{0}$

Δ

2 dim reflexive polyhedron

compact toric surface

\mathbb{P} s.t. $-K_\mathbb{P}$ nef

g = 0 local GW inv.

local A-model

a family of affine curves

$C_\alpha \subset \mathbb{T}^2$

VMHS on $H^2(\mathbb{T}^2, C_\alpha)$

local B-model

Motivation

Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_\alpha)$

Yukawa coupling

Holomorphic anomaly equation

local A, B-models are related to each other via

(a system of diff. eqs introduced by Gel’fand–Kapranov–Zelevinsky)

Studied by Stienstra, Batyrev
Local Mirror Symmetry

How are they related?

A-hypergeometric system with \(\beta = \vec{0} \)

Solutions give:
- Mirror map
- A derivative of prepotential

\(\Delta \)
2 dim reflexive polyhedron

compact toric surface
\(\mathbb{P} \) s.t. \(-K_\mathbb{P}\) nef
\(g = 0 \) local GW inv.
local A-model

a family of affine curves
\(C_\alpha \subset \mathbb{T}^2 \)
VMHS on \(H^2(\mathbb{T}^2, C_\alpha) \)
local B-model

PF equation for period integrals of "top element"
\(\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \)
Local Mirror Symmetry

How are they related?

A-hypergeometric system with $\beta = \bar{0}$

- Mirror map
- A derivative of prepotential

\triangle
2 dim reflexive polyhedron

Solutions give:

- Compact toric surface \mathbb{P} s.t. $-K_\mathbb{P}$ nef
 - $g = 0$ local GW inv.
 - local A-model

- A family of affine curves $C_\alpha \subset \mathbb{T}^2$
 - VMHS on $H^2(\mathbb{T}^2, C_\alpha)$
 - local B-model

PF equation for period integrals of "top element" $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$
How are they related?

Solutions give:
- Mirror map
- A derivative of the prepotential

\[
\Delta \\
2 \text{ dim reflexive polyhedron}
\]

A-hypergeometric system with \(\beta = 0 \)

compact toric surface
\(\mathbb{P} \) s.t. \(-K_\mathbb{P}\) nef
\(g = 0 \) local GW inv.
local A-model

a family of affine curves
\(C_\alpha \subset \mathbb{T}^2 \)
VMHS on \(H^2(\mathbb{T}^2, C_\alpha^\circ) \)
local B-model

PF equation for period integrals of "top element"
\((\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \)
How are they related?

Solutions give:
- Mirror map
- A derivative of prepotential

Local Mirror Symmetry

A-hypergeometric system with $\beta = \tilde{\beta}$

Δ

2 dim reflexive polyhedron

PF equation for period integrals of "top element"

$(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$

compact toric surface

\mathbb{P} s.t. $-K_{\mathbb{P}}$ nef

$g = 0$ local GW inv.

local A-model

a family of affine curves

$C_a \subset \mathbb{T}^2$

VMHS on $H^2(\mathbb{T}^2, C_a)$

local B-model
Why $H^2(\mathbb{T}^2, C_a^\circ)$, Not $H^1(C_a^\circ)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

VHS on H^3

- Hodge filtration
 $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$
 has dim $F^3 = 1$

- H^3 generated by holo. 3-form $\in F^3$
 and GM connection

VMHS on $H^2(\mathbb{T}^2, C_a^\circ)$

- Hodge filtration
 $0 \subset F^2 \subset F^1 \subset F^0 = H^2$
 has dim $F^2 = 1$

- H^2 generated by
 $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$
 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

- $H^1(C_a^\circ)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C_a)$, Not $H^1(C_a^\circ)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- Hodge filtration
 $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$ has dim $F^3 = 1$

- H^3 generated by holo. 3-form $\in F^3$
 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

- $H^1(C_a^\circ)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C^\circ_a)$, Not $H^1(C^\circ_a)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- **VHS on H^3**
 - Hodge filtration

 $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$

 has dim $F^3 = 1$

 - H^3 generated by

 holo. 3-form $\in F^3$

 and GM connection

- **VMHS on $H^2(\mathbb{T}^2, C^\circ_a)$**
 - Hodge filtration

 $0 \subset F^2 \subset F^1 \subset F^0 = H^2$

 has dim $F^2 = 1$

 - H^2 generated by

 $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$

 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

- $H^1(C^\circ_a)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C_a^\circ)$, Not $H^1(C_a^\circ)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- **Hodge filtration**

 $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$

 has dim $F^3 = 1$

- H^3 generated by
 holo. 3-form $\in F^3$

 and GM connection

- **VMHS on $H^2(\mathbb{T}^2, C_a^\circ)$**

 - Hodge filtration

 $0 \subset F^2 \subset F^1 \subset F^0 = H^2$

 has dim $F^2 = 1$

 - H^2 generated by

 $(\frac{dt_1}{t_1} \land \frac{dt_2}{t_2}, 0) \in F^2$

 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \land \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

- $H^1(C_a^\circ)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C^*_a)$, Not $H^1(C^*_a)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- Hodge filtration
 \[0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3 \]
 has dim $F^3 = 1$

- H^3 generated by
 holo. 3-form $\in F^3$
 and GM connection

- VMHS on $H^2(\mathbb{T}^2, C^*_a)$
 - Hodge filtration
 \[0 \subset F^2 \subset F^1 \subset F^0 = H^2 \]
 has dim $F^2 = 1$
 - H^2 generated by
 \[(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2 \]
 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

- $H^1(C^*_a)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C_a^\circ)$, Not $H^1(C_a^\circ)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

VHS on H^3

- Hodge filtration

 $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$

 has dim $F^3 = 1$

- H^3 generated by holo. 3-form $\in F^3$

 and GM connection

VMHS on $H^2(\mathbb{T}^2, C_a^\circ)$

- Hodge filtration

 $0 \subset F^2 \subset F^1 \subset F^0 = H^2$

 has dim $F^2 = 1$

- H^2 generated by

 $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$

 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the A-hypergeometric system.

- $H^1(C_a^\circ)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C^\circ_\alpha)$, Not $H^1(C^\circ_\alpha)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- **VHS on H^3**
 - Hodge filtration
 \[0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3 \]
 has dim $F^3 = 1$
 - H^3 generated by
 holo. 3-form $\in F^3$
 and GM connection

- **VMHS on $H^2(\mathbb{T}^2, C^\circ_\alpha)$**
 - Hodge filtration
 \[0 \subset F^2 \subset F^1 \subset F^0 = H^2 \]
 has dim $F^2 = 1$
 - H^2 generated by
 \((\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2 \)
 and GM connection

(2) Period integrals of \((\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \) satisfy the A-hypergeometric system.

- $H^1(C^\circ_\alpha)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C_a^\circ)$, Not $H^1(C_a^\circ)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- **VHS on H^3**
 - Hodge filtration

 $0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$

 has dim $F^3 = 1$

 - H^3 generated by

 holo. 3-form $\in F^3$

 and GM connection

- **VMHS on $H^2(\mathbb{T}^2, C_a^\circ)$**
 - Hodge filtration

 $0 \subset F^2 \subset F^1 \subset F^0 = H^2$

 has dim $F^2 = 1$

 - H^2 generated by

 $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$

 and GM connection

(2) Period integrals of $(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$ satisfy the

A-hypergeometric system.

- $H^1(C_a^\circ)$ does not have these properties!
Why $H^2(\mathbb{T}^2, C^\circ_\alpha)$, Not $H^1(C^\circ_\alpha)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- **VHS on H^3**
 - Hodge filtration
 $$0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3$$
 has dim $F^3 = 1$
 - H^3 generated by holo. 3-form $\in F^3$
 and GM connection

- **VMHS on $H^2(\mathbb{T}^2, C^\circ_\alpha)$**
 - Hodge filtration
 $$0 \subset F^2 \subset F^1 \subset F^0 = H^2$$
 has dim $F^2 = 1$
 - H^2 generated by
 $$(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2$$
 and GM connection

(2) Period integrals of $$(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$$ satisfy the A-hypergeometric system.

- $H^1(C^\circ_\alpha)$ does not have these properties!
Why $H^2(T^2, C^\circ_a)$, Not $H^1(C^\circ_a)$?

(1) It has a structure similar to H^3 of a Calabi–Yau 3-fold:

- Hodge filtration

 \[0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = H^3\]

 has \(\text{dim } F^3 = 1\)

- \(H^3\) generated by
 holo. 3-form \(\in F^3\)
 and GM connection

- Hodge filtration

 \[0 \subset F^2 \subset F^1 \subset F^0 = H^2\]

 has \(\text{dim } F^2 = 1\)

- \(H^2\) generated by
 \((\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in F^2\)
 and GM connection

(2) Period integrals of \((\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)\) satisfy the
A-hypergeometric system.

- \(H^1(C^\circ_a)\) does not have these properties!
Comparison with Mirror Symmetry

A

GW inv of X

VHS on $H^3(X^\vee)$

- holo. 3-form Ω
- Yukawa coupling

\[\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega \]

Important because it is:

- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.

B

local GW inv of \mathbb{P}

VMHS on $H^2(\mathbb{T}^2, C_3^a)$

- $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
- ??
Comparison with Mirror Symmetry

A

GW inv of X

VHS on $H^3(X^\vee)$

- holo. 3-form Ω
- Yukawa coupling

$$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega$$

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.

B

MS

LMS

local GW inv of \mathbb{P}

VMHS on $H^2(\mathbb{T}^2, \mathbb{C}_a)$

- $\omega := (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$
- ???
Comparison with Mirror Symmetry

A
- GW inv of X
- VHS on $H^3(X^\vee)$
 - holo. 3-form Ω
 - Yukawa coupling

\[\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega \]

- Important because it is:
 - a third derivative of prepotential;
 - necessary for BCOV’s holomorphic anomaly eq.

B
- MS
- LMS
- local GW inv of \mathbb{P}
- VMHS on $H^2(T^2, C_a)$
 - $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
 - ??
Comparison with Mirror Symmetry

\[\text{MS} \]

GW inv of \(X \)

VHS on \(H^3(X^\vee) \)

- holo. 3-form \(\Omega \)
- Yukawa coupling

\[\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega \]

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV's holomorphic anomaly eq.

\[\text{LMS} \]

local GW inv of \(\mathbb{P} \)

VMHS on \(H^2(\mathbb{T}^2, C_a^\circ) \)

- \(\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \)
- ??
Comparison with Mirror Symmetry

A
- **GW inv of** X
- **VHS on** $H^3(X^\vee)$
 - holo. 3-form Ω
 - Yukawa coupling

B
- **local GW inv of** \mathbb{P}
- **VMHS on** $H^2(T^2, C_a^\circ)$
 - $\omega := (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$
 - ??

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.
Comparison with Mirror Symmetry

A
- GW inv of X
- VHS on $H^3(X^\vee)$
- holo. 3-form Ω
- Yukawa coupling

$$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega$$

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.

B
- local GW inv of \mathbb{P}
- VMHS on $H^2(T^2, C_a)$
- $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
- ??
Comparison with Mirror Symmetry

A

- **GW inv of X**
- **VHS on $H^3(X^\vee)$**
 - holo. 3-form Ω
 - Yukawa coupling
 \[\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega \]

B

- **MS**
- **LMS**
 - local GW inv of \mathbb{P}
 - VMHS on $H^2(T^2, C_a)$
 - $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
 - ??

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV's holomorphic anomaly eq.
Comparison with Mirror Symmetry

A

- **MS**
 - GW inv of X
 - VHS on $H^3(X^\vee)$
 - holo. 3-form Ω
 - Yukawa coupling
 $$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega$$

B

- **LMS**
 - local GW inv of \mathbb{P}
 - VMHS on $H^2(\mathbb{T}^2, C_a)$
 - $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
 - ??

Important because it is:

- a third derivative of prepotential;
- necessary for BCOV's holomorphic anomaly eq.
Comparison with Mirror Symmetry

MS

- GW inv of X
- VHS on $H^3(X^\vee)$
 - holo. 3-form Ω
 - Yukawa coupling
 $$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega$$

LMS

- local GW inv of \mathbb{P}
- VMHS on $H^2(\mathbb{T}^2, C_a)$
 - $\omega := (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0)$
 - ??

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.
Comparison with Mirror Symmetry

A
- GW inv of X
- VHS on $H^3(X^\vee)$
 - holo. 3-form Ω
 - Yukawa coupling
 \[\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega \]

B
- local GW inv of \mathbb{P}
- VMHS on $H^2(\mathbb{T}^2, C_a^2)$
 - $\omega := \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right)$
 - ??

Important because it is:
- a third derivative of prepotential;
- necessary for BCOV’s holomorphic anomaly eq.
Our aim

- In several examples of local B-model, the Yukawa couplings have been computed [Klemm–Zaslow, Jinzenji–Forbes, Aganagic–Bouchard–Klemm, Haghhiat–Klemm–Rauch, Alim–Länge-Mayr, Brini–Tanzini]. However, there has been no direct definition.

- We gave a definition of local B-model Yukawa coupling using the results of Batyrev, Stienstra on the VMHS on $H^2(T^2, C_a^\circ)$.
Our aim

- In several examples of local B-model, the Yukawa couplings have been computed [Klemm–Zaslow, Jinzenji–Forbes, Aganagic–Bouchard–Klemm, Haghhiat–Klemm–Rauch, Alim–Länge-Mayr, Brini–Tanzini]. However, there has been no direct definition.

- We gave a definition of local B-model Yukawa coupling using the results of Batyrev, Stienstra on the VMHS on $H^2(\mathbb{T}^2, \mathcal{C}_a)$.
Our aim

- In several examples of local B-model, the Yukawa couplings have been computed [Klemm–Zaslow, Jinzenji–Forbes, Aganagic–Bouchard–Klemm, Haghihat–Klemm–Rauch, Alim–Länge-Mayr, Brini–Tanzini]. However, there has been no direct definition.

- We gave a definition of local B-model Yukawa coupling using the results of Batyrev, Stienstra on the VMHS on $H^2(\mathbb{T}^2, C_\alpha)$.
Plan

- Mixed Hodge Structure of $H^2(\mathbb{T}^2, C^\circ_a)$ [Batyrev, Stienstra]
- Yukawa coupling
- Holomorphic anomaly equation
Plan

- Mixed Hodge Structure of $H^2(\mathbb{T}^2, \mathcal{C}^\circ_a)$ [Batyrev, Stienstra]
- Yukawa coupling
- Holomorphic anomaly equation
Plan

- Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_\alpha)$ [Batyrev, Stienstra]
- Yukawa coupling
 - Holomorphic anomaly equation
Plan

- Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^\circ)$ [Batyrev, Stienstra]
- Yukawa coupling
- Holomorphic anomaly equation
Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^o)$

- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^o)$ was studied by Batyrev (’93) and Stienstra (’97).
- $H^2(\mathbb{T}^2, C_a^o)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_F, which is determined by the data of Δ and $F_a(t)$.
- The variation of Mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^o)$ is also described in terms of \mathcal{R}_F.
Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^o)$

- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^o)$ was studied by Batyrev (’93) and Stienstra (’97).
- $H^2(\mathbb{T}^2, C_a^o)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_F, which is determined by the data of Δ and $F_a(t)$.
- The variation of Mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^o)$ is also described in terms of \mathcal{R}_F.
Mixed Hodge Structure of $H^2(\mathbb{T}^2, C_a^\circ)$

- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^\circ)$ was studied by Batyrev ('93) and Stienstra ('97).
- $H^2(\mathbb{T}^2, C_a^\circ)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_F, which is determined by the data of Δ and $F_a(t)$.
- The variation of Mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^\circ)$ is also described in terms of \mathcal{R}_F.
Mixed Hodge Structure of

$$H^2(\mathbb{T}^2, C_a^o)$$

- The mixed Hodge structure on $H^2(\mathbb{T}^2, C_a^o)$ was studied by Batyrev ('93) and Stienstra ('97).
- $H^2(\mathbb{T}^2, C_a^o)$ has a Jacobian-ring like description. It is isomorphic to a (quotient) vector space \mathcal{R}_F, which is determined by the data of Δ and $F_a(t)$.
- The variation of Mixed Hodge structures on $H^2(\mathbb{T}^2, C_a^o)$ is also described in terms of \mathcal{R}_F.
\(\Delta(k) \): the polyhedron obtained by enlarging \(\Delta \) by \(k \)-times.

\[
\begin{align*}
\Delta(0) \quad & \\
\Delta(1) = \Delta \quad & \\
\Delta(2) \quad & \\
\end{align*}
\]
\[R_F \]

- \(\Delta(k) \): the polyhedron obtained by enlarging \(\Delta \) by \(k \)-times.
- $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.
• \(\Delta(k) \): the polyhedron obtained by enlarging \(\Delta \) by \(k \)-times.

\[
S_{\Delta}^k := \bigoplus_{m \in \Delta(k)} C t_0^k t^m \quad (t^m := t_1^{m_1} t_2^{m_2})
\]

\[
S_{\Delta} := \bigoplus_{k \geq 0} S_{\Delta}^k, \quad \deg t_0^k t^m := k \quad (a \text{ graded ring})
\]

• Recall the defining equation \(F_a(t) \) of \(C_a^\circ \):

\[
F_a(t) = \sum_{m \in \Delta} a_m t^m.
\]

• Define the differential operators on \(S_{\Delta} \): \((\theta_x := x \partial_x) \)

\[
\mathcal{D}_0(t_0^k t^m) = (k + t_0 F_a(t)) t_0^k t^m
\]

\[
\mathcal{D}_i(t_0^k t^m) = (m_i + t_0 \theta_{t_i} F_a(t)) t_0^k t^m \quad (i = 1, 2).
\]

\[
\mathcal{R}_F := S_{\Delta}/(\sum_{i=0}^2 \mathcal{D}_i S_{\Delta})
\]
• $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.

$$S_{\Delta}^k := \bigoplus_{m \in \Delta(k)} t_0^k t^m \quad (t^m := t_1^{m_1} t_2^{m_2})$$

$$S_{\Delta} := \bigoplus_{k \geq 0} S_{\Delta}^k, \quad \text{deg } t_0^k t^m := k \quad \text{(a graded ring)}$$

• Recall the defining equation $F_a(t)$ of C_α°:

$$F_a(t) = \sum_{m \in \Delta} a_m t^m.$$

• Define the differential operators on S_{Δ}: ($\theta_x := x \partial_x$)

$$D_0(t_0^k t^m) = (k + t_0 F_a(t)) t_0^k t^m$$

$$D_i(t_0^k t^m) = (m_i + t_0 \theta_i F_a(t)) t_0^k t^m \quad (i = 1, 2).$$

$$R_F := S_{\Delta}/(\sum_{i=0}^{2} D_i S_{\Delta})$$
\begin{itemize}
 \item \(\Delta(k)\): the polyhedron obtained by enlarging \(\Delta\) by \(k\)-times.

 \[
 S^k_{\Delta} := \bigoplus_{m \in \Delta(k)} \mathbb{C} t_0^k t^m \quad (t^m := t_1^{m_1} t_2^{m_2})
 \]

 \[
 S_{\Delta} := \bigoplus_{k \geq 0} S^k_{\Delta}, \quad \deg t_0^k t^m := k \quad \text{(a graded ring)}
 \]

 \item Recall the defining equation \(F_a(t)\) of \(C^0_a\):

 \[
 F_a(t) = \sum_{m \in \Delta} a_m t^m .
 \]

 \item Define the differential operators on \(S_{\Delta}\): \((\theta_x := x \partial_x)\)

 \[
 \mathcal{D}_0(t_0^k t^m) = (k + t_0 F_a(t)) t_0^k t^m
 \]

 \[
 \mathcal{D}_i(t_0^k t^m) = (m_i + t_0 \theta_i F_a(t)) t_0^k t^m \quad (i = 1, 2).
 \]

 \[
 \mathcal{R}_F := S_{\Delta}/(\sum_{i=0}^{2} \mathcal{D}_i S_{\Delta})
 \]
\end{itemize}
• $\Delta(k)$: the polyhedron obtained by enlarging Δ by k-times.

\[
S^k_\Delta := \bigoplus_{m \in \Delta(k)} \mathbb{C} t_0^k t^m \quad (t^m := t_1^{m_1} t_2^{m_2})
\]

\[
S_\Delta := \bigoplus_{k \geq 0} S^k_\Delta, \quad \text{deg } t_0^k t^m := k \quad \text{(a graded ring)}
\]

• Recall the defining equation $F_a(t)$ of C^o_a:

\[
F_a(t) = \sum_{m \in \Delta} a_m t^m.
\]

• Define the differential operators on S_Δ: ($\theta_x := x \partial_x$)

\[
\mathcal{D}_0(t_0^k t^m) = (k + t_0 F_a(t)) t_0^k t^m
\]

\[
\mathcal{D}_i(t_0^k t^m) = (m_i + t_0 \theta t_i F_a(t)) t_0^k t^m \quad (i = 1, 2).
\]

\[
\mathcal{R}_F := S_\Delta / \left(\sum_{i=0}^{2} \mathcal{D}_i S_\Delta \right)
\]
- \(\Delta(k) \): the polyhedron obtained by enlarging \(\Delta \) by \(k \)-times.

\[
S^k_\Delta := \bigoplus_{m \in \Delta(k)} C t_0^k t^m \quad (t^m := t_1^{m_1} t_2^{m_2})
\]

\[
S_\Delta := \bigoplus_{k \geq 0} S^k_\Delta, \quad \deg t_0^k t^m := k \quad \text{(a graded ring)}
\]

- Recall the defining equation \(F_a(t) \) of \(C_\alpha \):

\[
F_a(t) = \sum_{m \in \Delta} a_m t^m.
\]

- Define the differential operators on \(S_\Delta \): \(\theta_x := x \partial_x \)

\[
\mathcal{D}_0(t_0^k t^m) = (k + t_0 F_a(t)) t_0^k t^m
\]

\[
\mathcal{D}_i(t_0^k t^m) = (m_i + t_0 \theta_{t_i} F_a(t)) t_0^k t^m \quad (i = 1, 2).
\]

\[
\mathcal{R}_F := S_\Delta/(\sum_{i=0}^{2} \mathcal{D}_i S_\Delta)
\]
Example:

\[\Delta = \begin{array}{c} \bigtriangleup \end{array} \]

- \[F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} \]
- Relations \(D_i 1 = 0 \) \((i = 0, 1, 2)\) imply:
 \[
 t_0 t_1 = -\frac{a_0}{3 a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3 a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3 a_3} t_0.
 \]

- By similar calculation, an element in \(S^k_\Delta \) \((k \geq 2)\) is equal to
 \[
 \text{const.} t_0^2 + \text{an element in } S^1_\Delta.
 \]

\[\therefore \mathcal{R}_F \cong \mathbb{C}1 \oplus \mathbb{C}t_0 \oplus \mathbb{C}t_0^2. \]

For a reflexive polyhedron \(\Delta \),

\[\mathcal{R}_F \cong \mathbb{C}1 \oplus R^1_F \oplus \mathbb{C}t_0^2 \]

\[R^1_F := S^1_\Delta / \mathbb{C}t_0 F_a \oplus \mathbb{C}t_1 \theta t_1 F_a \oplus \mathbb{C} \theta t_2 F_a \]
Example: \[\Delta = \begin{array}{c} \text{Diagram} \end{array} \]

- \[F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} \]
- Relations \(\mathcal{D}_i 1 = 0 \ (i = 0, 1, 2) \) imply:
 \[
 t_0 t_1 = -\frac{a_0}{3a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3a_3} t_0.
 \]
- By similar calculation, an element in \(S^k_\Delta \) \((k \geq 2)\) is equal to
 \[
 \text{const.} t_0^2 + \text{an element in } S^1_\Delta.
 \]

\[
\therefore \mathcal{R}_F \cong \mathbb{C} 1 \oplus \mathbb{C} t_0 \oplus \mathbb{C} t_0^2 \]

For a reflexive polyhedron \(\Delta \),

\[
\mathcal{R}_F \cong \mathbb{C} 1 \oplus R^1_F \oplus \mathbb{C} t_0^2
\]

\[
R^1_F := S^1_\Delta / \mathbb{C} t_0 F_a \oplus \mathbb{C} t_1 \theta t_1 F_a \oplus \mathbb{C} \theta t_2 F_a
\]
Example: $\Delta = \begin{array}{c}
\end{array}$

- $F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}$
- Relations $D_i 1 = 0$ ($i = 0, 1, 2$) imply:

\[
\begin{align*}
 t_0 t_1 &= - \frac{a_0}{3a_1} t_0, \\
 t_0 t_2 &= - \frac{a_0}{3a_2} t_0, \\
 \frac{t_0}{t_1 t_2} &= - \frac{a_0}{3a_3} t_0.
\end{align*}
\]

- By similar calculation, an element in S^k_Δ ($k \geq 2$) is equal to

\[
\text{const. } t^2 + \text{an element in } S^1_\Delta.
\]

\[\therefore R_F \cong \mathbb{C}1 \oplus \mathbb{C}t_0 \oplus \mathbb{C}t^2_0.\]

For a reflexive polyhedron Δ,

\[R_F \cong \mathbb{C}1 \oplus R^1_F \oplus \mathbb{C}t^2_0\]

\[R^1_F := S^1_\Delta / \mathbb{C}t_0 F_a \oplus \mathbb{C}t_1 \theta t_1 F_a \oplus \mathbb{C}\theta t_2 F_a\]
Example: \(\Delta = \text{\image} \)

- \(F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} \)

- Relations \(D_i 1 = 0 \) (\(i = 0, 1, 2 \)) imply:

 \[
 t_0 t_1 = -\frac{a_0}{3 a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3 a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3 a_3} t_0.
 \]

- By similar calculation, an element in \(S^k_\Delta \) (\(k \geq 2 \)) is equal to

 \[
 \text{const.} t_0^2 + \text{an element in } S^1_\Delta.
 \]

\[
\therefore R_F \cong \mathbb{C}1 \oplus \mathbb{C}t_0 \oplus \mathbb{C}t_0^2.
\]

For a reflexive polyhedron \(\Delta \),

\[
R_F \cong \mathbb{C}1 \oplus R^1_F \oplus \mathbb{C}t_0^2
\]

\[
R^1_F := S^1_\Delta / \mathbb{C}t_0 F_a \oplus \mathbb{C}t_1 \theta t_1 F_a \oplus \mathbb{C} \theta t_2 F_a
\]
Example:

- \(F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2} \)
- Relations \(D_i 1 = 0 \) \((i = 0, 1, 2)\) imply:

\[
t_0 t_1 = -\frac{a_0}{3a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3a_3} t_0.
\]

- By similar calculation, an element in \(S_{\Delta}^k \) \((k \geq 2)\) is equal to

\[
\text{const.} t_0^2 + \text{an element in } S_{\Delta}^1.
\]

\[
\therefore R_F \cong \mathbb{C} t_0 \oplus \mathbb{C} t_0^2.
\]

For a reflexive polyhedron \(\Delta \),

\[
R_F \cong \mathbb{C} t_0 \oplus R_F^1 \oplus \mathbb{C} t_0^2
\]

\[
R_F^1 := S_{\Delta}^1 / \mathbb{C} t_0 F_a \oplus \mathbb{C} t_1 \theta_{t_1} F_a \oplus \mathbb{C} \theta_{t_2} F_a
\]
Example:

- $F_a(t) = a_0 + a_1 t_1 + a_2 t_2 + \frac{a_3}{t_1 t_2}$
- Relations $\mathcal{D}_i 1 = 0$ $(i = 0, 1, 2)$ imply:

$$
t_0 t_1 = -\frac{a_0}{3a_1} t_0, \quad t_0 t_2 = -\frac{a_0}{3a_2} t_0, \quad \frac{t_0}{t_1 t_2} = -\frac{a_0}{3a_3} t_0.
$$

- By similar calculation, an element in S^k_Δ $(k \geq 2)$ is equal to

$$
\text{const.} t_0^2 + \text{an element in } S^1_\Delta.
$$

\[\therefore \mathcal{R}_F \cong \mathbb{C} 1 \oplus \mathbb{C} t_0 \oplus \mathbb{C} t_0^2. \]

For a reflexive polyhedron Δ,

\[\mathcal{R}_F \cong \mathbb{C} 1 \oplus R^1_F \oplus \mathbb{C} t_0^2 \]

\[R^1_F := S^1_\Delta / \mathbb{C} t_0 F_a \oplus \mathbb{C} t_1 \theta t_1 F_a \oplus \mathbb{C} \theta t_2 F_a \]
\[\mathcal{R}_F \cong H^2(\mathbb{T}^2, C^\circ_a) \]

Stienstra, Batyrev showed that \(\mathcal{R}_F \cong H^2(\mathbb{T}^2, C^\circ_a) \). This isomorphism is as follows.

- Note that
 \[\mathcal{R}_F \cong \mathcal{R}_F^+ \oplus \mathbb{C}1 \]
 (\(\mathcal{R}_F^+ \subset \mathcal{R}_F \): spanned by monomials \(t_0^k t^m \) with \(k \geq 1 \))
- There is an exact sequence
 \[
 0 \to PH^1(C^\circ_a) \to H^2(\mathbb{T}^2, C^\circ_a) \to H^2(\mathbb{T}^2) \to 0
 \]
 \((PH^1(C^\circ_a) \coloneqq H^1(C^\circ_a)/H^1(\mathbb{T}^2)) \)

\[\mathbb{C}1 \iff H^2(\mathbb{T}^2) \text{-part} : \quad 1 \iff (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \]

\[\mathcal{R}_F^+ \iff PH^1(C^\circ_a) \text{-part} : \quad t_0^k t^m \iff (0, \text{Res}_{F_a=0} \frac{(-1)^{k-1}(k-1)!}{F_a^k} t^m \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}) \]
\[R_F \cong H^2(\mathbb{T}^2, C_a^\circ) \]

Stienstra, Batyrev showed that \(R_F \cong H^2(\mathbb{T}^2, C_a^\circ) \). This isomorphism is as follows.

- Note that
 \[R_F \cong R_F^+ \oplus \mathbb{C}1 \]
 \((R_F^+ \subset R_F):\) spanned by monomials \(t_0^k t^m \) with \(k \geq 1 \)

- There is an exact sequence
 \[0 \rightarrow PH^1(C_a^\circ) \rightarrow H^2(\mathbb{T}^2, C_a^\circ) \rightarrow H^2(\mathbb{T}^2) \rightarrow 0 \]
 \((PH^1(C_a^\circ) := H^1(C_a^\circ)/H^1(\mathbb{T}^2))\)

\[\mathbb{C}1 \iff H^2(\mathbb{T}^2)\text{-part}: \quad 1 \iff (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \]

\[R_F^+ \iff PH^1(C_a^\circ)\text{-part}: \]

\[t_0^k t^m \iff (0, \text{Res}_{F_a = 0} \frac{(-1)^{k-1} (k - 1)! t^m}{F_a^k} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}) \]
\[\mathcal{R}_F \cong H^2(\mathbb{T}^2, C_a^\circ) \]

Stienstra, Batyrev showed that \(\mathcal{R}_F \cong H^2(\mathbb{T}^2, C_a^\circ) \). This isomorphism is as follows.

- Note that
 \[\mathcal{R}_F \cong \mathcal{R}_F^+ \oplus \mathbb{C}1 \]

 \((\mathcal{R}_F^+ \subset \mathcal{R}_F): \) spanned by monomials \(t_0^k t_m \) with \(k \geq 1 \)

- There is an exact sequence
 \[0 \longrightarrow PH^1(C_a^\circ) \longrightarrow H^2(\mathbb{T}^2, C_a^\circ) \longrightarrow H^2(\mathbb{T}^2) \longrightarrow 0 \]

 \((PH^1(C_a^\circ) := H^1(C_a^\circ)/H^1(\mathbb{T}^2)) \)

\[\mathbb{C}1 \leftrightarrow H^2(\mathbb{T}^2) \text{-part} : \quad 1 \leftrightarrow \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \]

\[\mathcal{R}_F^+ \leftrightarrow PH^1(C_a^\circ) \text{-part} : \]

\[t_0^k t_m \leftrightarrow (0, \text{Res}_{F_a=0} \frac{(-1)^{k-1} (k-1)! t_m}{F_a^k} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}) \]
\[\mathcal{R}_F \cong H^2(\mathbb{T}^2, C_a^\circ) \]

Stienstra, Batyrev showed that \(\mathcal{R}_F \cong H^2(\mathbb{T}^2, C_a^\circ) \). This isomorphism is as follows.

- Note that
 \[\mathcal{R}_F \cong \mathcal{R}_F^\perp \oplus \mathbb{C}1 \]
 (\(\mathcal{R}_F^\perp \subset \mathcal{R}_F \): spanned by monomials \(t_0^k t_m^m \) with \(k \geq 1 \))
- There is an exact sequence
 \[0 \longrightarrow PH^1(C_a^\circ) \longrightarrow H^2(\mathbb{T}^2, C_a^\circ) \longrightarrow H^2(\mathbb{T}^2) \longrightarrow 0 \]
 (\(PH^1(C_a^\circ) := H^1(C_a^\circ)/H^1(\mathbb{T}^2) \))

\[\mathbb{C}1 \leftrightarrow H^2(\mathbb{T}^2) \text{-part} : \quad 1 \leftrightarrow \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \]
\[\mathcal{R}_F^\perp \leftrightarrow PH^1(C_a^\circ) \text{-part} : \]
\[t_0^k t_m^m \leftrightarrow (0, \text{Res}_{F_a=0} \frac{(-1)^{k-1}(k-1)! t^m}{F_a^k} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}) \]
\[\mathcal{R}_F \cong H^2(\mathbb{T}^2, C_a^n) \]

Stienstra, Batyrev showed that \(\mathcal{R}_F \cong H^2(\mathbb{T}^2, C_a^n) \). This isomorphism is as follows.

- Note that

\[\mathcal{R}_F \cong \mathcal{R}_F^+ \oplus \mathbb{C}1 \]

\((\mathcal{R}_F^+ \subset \mathcal{R}_F: \text{spanned by monomials } t_0^k t^n \text{ with } k \geq 1) \)

- There is an exact sequence

\[0 \rightarrow PH^1(C_a^n) \rightarrow H^2(\mathbb{T}^2, C_a^n) \rightarrow H^2(\mathbb{T}^2) \rightarrow 0 \]

\((PH^1(C_a^n) := H^1(C_a^n)/H^1(\mathbb{T}^2)) \)

\[
\mathbb{C}1 \leftrightarrow H^2(\mathbb{T}^2)-\text{part} : \quad 1 \leftrightarrow \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \\
\mathcal{R}_F^+ \leftrightarrow PH^1(C_a^n)-\text{part} : \\
t_0^k t^n \leftrightarrow (0, \text{Res}_{F_a=0} \frac{(-1)^{k-1}(k-1)! t^n}{F_a^k} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2})
\]
Example

\[\Delta = \ \ \ \ \ \ \]

- \[\mathcal{R}_F \cong \mathbb{C}^1 \oplus \mathbb{C}t_0 \oplus \mathbb{C}t_0^2 \]

- \[\text{PH}^1(C_\alpha) = H^1(C_a) \text{ (} C_a \text{ is a compactification of } C_\alpha \text{)} \]

\[1 \leftrightarrow \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \text{ on } \mathbb{T}^2 \]

\[t_0 \leftrightarrow (1, 0)-\text{form on } C_a \]

\[t_0^2 \leftrightarrow (0, 1)-\text{form on } C_a \]
Example

\[\Delta = \begin{array}{c}
\end{array} \]

\[\mathcal{R}_F \cong \bigoplus_{H^2(T^2)} \mathbb{C} \bigoplus \mathbb{C}t_0 \bigoplus \mathbb{C}t_0^2 \bigoplus_{PH^1(C_a^0)} \]

- \(PH^1(C_a^0) = H^1(C_a) \) (\(C_a \) is a compactification of \(C_a^0 \))

1 \(\leftrightarrow \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \) on \(T^2 \)

\(t_0 \leftrightarrow (1, 0)\)-form on \(C_a \)

\(t_0^2 \leftrightarrow (0, 1)\)-form on \(C_a \)
Example

\[\Delta = \bigtriangleup \]

- \(R_F \cong H^2(\mathbb{T}^2) \oplus \mathbb{C}t_0 \oplus \mathbb{C}t_0^2 \)(\(PH^1(C_a^o) \))

- \(PH^1(C_a^o) = H^1(C_a) \) (\(C_a \) is a compactification of \(C_a^o \))

\[
\begin{align*}
1 & \iff \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \text{ on } \mathbb{T}^2 \\
t_0 & \iff (1, 0)-\text{form on } C_a \\
t_0^2 & \iff (0, 1)-\text{form on } C_a
\end{align*}
\]
Example

\[\Delta = \begin{array}{c}
\end{array} \]

- \[\mathcal{R}_F \cong \bigoplus_{H^2(\mathbb{T}^2)} \mathbb{C} \bigoplus_{PH^1(C_a^0)} \mathbb{C}t_0 \bigoplus_{PH^2(C_a^0)} \mathbb{C}t_0^2 \]

- \[PH^1(C_a^0) = H^1(C_a) \text{ (} C_a \text{ is a compactification of } C_a^0 \text{)} \]

1 \[\iff \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \text{ on } \mathbb{T}^2 \]

\[t_0 \iff (1, 0)-\text{form on } C_a \]

\[t_0^2 \iff (0, 1)-\text{form on } C_a \]
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group $H_\mathbb{Z}$,
 - the weight filtration W_\bullet on $H_\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $l + k$.

$$H^{p,k+l-p} := \frac{F^p W_i/W_{i-1}}{F^{p+1} W_i/W_{i-1}} \quad \text{satisfy} \quad H^{p,q} = H^{q,p}_{\overline{}}.$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:
 \[H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)} \]

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group H^\bullet_Z,
 - the weight filtration W_\bullet on H^\bullet_Z (increasing filtration),
 - the Hodge filtration F^\bullet on H^\bullet_C (decreasing filtration),
- such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $i + k$.

\[
H^{p,k+i-p} := \frac{F^p W_i / W_{i-1}}{F^{p+1} W_i / W_{i-1}} \text{ satisfy } H^{p,q} = H^{q,p}.
\]
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.

- Mixed Hodge structure of weight k consists of
 - free abelian group $H_\mathbb{Z}$,
 - the weight filtration W_\bullet on $H_\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on W_l/W_{l-1} has a Hodge structure of weight $l+k$.

$$H^{p,k+l-p} := \frac{F^p W_l/W_{l-1}}{F^{p+1} W_l/W_{l-1}} \quad \text{satisfy } H^{p,q} = \bar{H}^{q,p}.$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group $H^\bullet_{\mathbb{Z}}$,
 - the weight filtration W_{\bullet} on $H^\bullet_{\mathbb{Z}}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H^\bullet_{\mathbb{C}}$ (decreasing filtration),

such that the induced Hodge filtration on W_I/W_{I-1} has a Hodge structure of weight $I + k$.

$$H^{p,k+I-p} := \frac{F^p W_I/W_{I-1}}{F^{p+1} W_I/W_{I-1}} \quad \text{satisfy} \quad H^{p,q} = \overline{H}^{q,p}.$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^{p,q} = H^{p,q}(V) \quad (\text{Hodge decomposition})$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.

- Mixed Hodge structure of weight k consists of
 - free abelian group $H_{\mathbb{Z}}$,
 - the weight filtration W_\bullet on $H_{\mathbb{Z}}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_{\mathbb{C}}$ (decreasing filtration),

 such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $i + k$.

$$H^{p,k+i-p} := \frac{F^p W_i/W_{i-1}}{F^{p+1} W_i/W_{i-1}} \quad \text{satisfy} \quad H^{p,q} = \overline{H}^{q,p}.$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.

- Mixed Hodge structure of weight k consists of
 - free abelian group $H_\mathbb{Z}$,
 - the weight filtration W_\cdot on $H_\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\cdot on $H_\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on W_l/W_{l-1} has a Hodge structure of weight $l + k$.

$$H^{p,k+l-p} := \frac{F^p W_l/W_{l-1}}{F^{p+1} W_l/W_{l-1}} \quad \text{satisfy } H^{p,q} = \overline{H}^{q,p}.$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^p,q = H^p,q(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group $H^\mathbb{Z}$,
 - the weight filtration W_\bullet on $H^\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration \mathcal{F}_\bullet on $H^\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on W_{l}/W_{l-1} has a Hodge structure of weight $l + k$.

$$H^{p,k+l-p} := \frac{\mathcal{F}^p W_l / W_{l-1}}{\mathcal{F}^{p+1} W_l / W_{l-1}} \quad \text{satisfy } H^{p,q} = \overline{H}^{q,p}.$$
What's Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:
 \[H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)} \]

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group $H_\mathbb{Z}$,
 - the weight filtration \mathcal{W}_* on $H_\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on $\mathcal{W}_i/\mathcal{W}_{i-1}$ has a Hodge structure of weight $i + k$.

\[H^{p,k+i-p} := \frac{F^p \mathcal{W}_i/\mathcal{W}_{i-1}}{F^{p+1} \mathcal{W}_i/\mathcal{W}_{i-1}} \quad \text{satisfy} \quad H^{p,q} = \overline{H}^{q,p}. \]
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:
 $$H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group $H_\mathbb{Z}$,
 - the weight filtration W_\bullet on $H_\mathbb{Z}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_\mathbb{C}$ (decreasing filtration),

such that the induced Hodge filtration on W_l/W_{l-1} has a Hodge structure of weight $l + k$.

$$H^{p,k+l-p} := \frac{F^p W_l/W_{l-1}}{F^{p+1} W_l/W_{l-1}} \quad \text{satisfy} \quad H^{p,q} = H^{q,p}.$$
What’s Mixed Hodge Structure?

- $H^k(V)$ of a smooth projective variety V has the canonical Hodge structure of weight k:

$$H^{p,q} = H^{p,q}(V) \quad \text{(Hodge decomposition)}$$

- Mixed Hodge structure is, in a sense, a generalization of Hodge structure to $H^k(U)$ of an open variety U.
- Mixed Hodge structure of weight k consists of
 - free abelian group $H_{\mathbb{Z}}$,
 - the weight filtration W_\bullet on $H_{\mathbb{Z}}$ (increasing filtration),
 - the Hodge filtration F^\bullet on $H_{\mathbb{C}}$ (decreasing filtration),

such that the induced Hodge filtration on W_i/W_{i-1} has a Hodge structure of weight $i + k$.

$$H^{p,k+i-p} := \frac{F^p W_i/W_{i-1}}{F^{p+1} W_i/W_{i-1}} \quad \text{satisfy} \quad H^{p,q} = \overline{H}^{q,p}.$$
• If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.

• Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

\[F^p \Omega^\bullet_V(\log D) = \Omega^{\geq p}_V(\log D) \]

• Weight filtration is induced from the filtration

\[W_l \Omega^\bullet_V(\log D) = \wedge^l \Omega^1_V(\log D) \wedge \Omega^{*-l}_V. \]

Roughly speaking, $W_{k+l} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.

• For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

\[\ldots \rightarrow H^k(U_1) \rightarrow H^{k+1}(U_2, U_1) \rightarrow H^{k+1}(U_2) \rightarrow \ldots \]

is a long exact sequence of MHS's.
• If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.

• Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

$$F^p \Omega^\bullet_V(\log D) = \Omega^{>p}_V(\log D)$$

• Weight filtration is induced from the filtration

$$W^I \Omega^\bullet_V(\log D) = \wedge^I \Omega^1_V(\log D) \wedge \Omega^{\bullet-I}_V.$$

Roughly speaking, $W_{k+1} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most I.

• For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

$$\ldots \rightarrow H^k(U_1) \rightarrow H^{k+1}(U_2, U_1) \rightarrow H^{k+1}(U_2) \rightarrow \ldots$$

is a long exact sequence of MHS's.
• If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.

• Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

$$F^p \Omega^\bullet_V(\log D) = \Omega^>\,^p_V(\log D)$$

• Weight filtration is induced from the filtration

$$W_l \Omega^\bullet_V(\log D) = \wedge^l \Omega^1_V(\log D) \wedge \Omega^\bullet_{-l}.$$

Roughly speaking, $W_{k+l} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.

• For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

$$\ldots \longrightarrow H^k(U_1) \longrightarrow H^{k+1}(U_2, U_1) \longrightarrow H^{k+1}(U_2) \longrightarrow \ldots$$

is a long exact sequence of MHS's.
• If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.

• Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

$$F^p \Omega^\bullet_V(\log D) = \Omega^\succ^p_V(\log D)$$

• Weight filtration is induced from the filtration

$$W_i \Omega^\bullet_V(\log D) = \wedge^i \Omega^1_V(\log D) \wedge \Omega^{-i}.$$

Roughly speaking, $W_{k+1} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.

• For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

$$\ldots \longrightarrow H^k(U_1) \longrightarrow H^{k+1}(U_2, U_1) \longrightarrow H^{k+1}(U_2) \longrightarrow \ldots$$

is a long exact sequence of MHS’s.
• If $U = V - D$ where V is a smooth projective variety and D is a simple normal crossing divisor, then $H^k(U)$ has a canonical mixed Hodge structure.

• Hodge filtration F^\bullet is induced from the filtration on $\Omega^\bullet_V(\log D)$

\[F^p \Omega^\bullet_V(\log D) = \Omega^{>p}_V(\log D) \]

• Weight filtration is induced from the filtration

\[W^l \Omega^\bullet_V(\log D) = \wedge^l \Omega^1_V(\log D) \wedge \Omega^{-l}_V. \]

Roughly speaking, $W_{k+l} \subset H^k(U)$ consists of forms on V with logarithmic poles on D of order at most l.

• For the relative cohomology of the pair $U_1 \subset U_2$, there is a canonical MHS. The long exact sequence

\[\ldots \longrightarrow H^k(U_1) \longrightarrow H^{k+1}(U_2, U_1) \longrightarrow H^{k+1}(U_2) \longrightarrow \ldots \]

is a long exact sequence of MHS’s.
Hodge filtration

Hodge filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the filtration on \mathcal{R}_F:

- Let \mathcal{E}^{-i} ($i = 0, 1, 2, \ldots$) be the subspace of \mathcal{R}_F spanned by the images of all monomials of the t_0-degree $\leq i$.

![Diagram](image)

- $\mathcal{E}^0 = \mathbb{C}1 \Leftrightarrow H^2(\mathbb{T}^2)$, $\mathcal{R}_F = \mathcal{E}^{-2} = \mathcal{E}^{-3} = \mathcal{E}^{-4} = \ldots$

<table>
<thead>
<tr>
<th>0</th>
<th>\mathcal{E}^0</th>
<th>\mathcal{E}^{-1}</th>
<th>\mathcal{E}^{-2}</th>
<th>\mathcal{R}_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ll</td>
<td>\ll</td>
<td>\ll</td>
<td>\ll</td>
<td>\ll</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>F^2</th>
<th>F^1</th>
<th>F^0</th>
<th>$H^2(\mathbb{T}^2, C_a^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ll</td>
<td>\ll</td>
<td>\ll</td>
<td>\ll</td>
<td>\ll</td>
</tr>
</tbody>
</table>
Hodge filtration

Hodge filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the filtration on \mathcal{R}_F:

- Let \mathcal{E}^{-i} ($i = 0, 1, 2, \ldots$) be the subspace of \mathcal{R}_F spanned by the images of all monomials of the t_0-degree $\leq i$.

Ex.

- $\mathcal{E}^0 = \mathbb{C}1 \iff H^2(\mathbb{T}^2)$, $\mathcal{R}_F = \mathcal{E}^{-2} = \mathcal{E}^{-3} = \mathcal{E}^{-4} = \ldots$

<table>
<thead>
<tr>
<th>0 \subset \mathcal{E}^0 \subset \mathcal{E}^{-1} \subset \mathcal{E}^{-2} $=\mathcal{R}_F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \subset F^2 \subset F^1 \subset F^0 $=H^2(\mathbb{T}^2, C_a^\circ)$</td>
</tr>
</tbody>
</table>
Hodge filtration

Hodge filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the filtration on \mathcal{R}_F:

- Let \mathcal{E}^{-i} ($i = 0, 1, 2, \ldots$) be the subspace of \mathcal{R}_F spanned by the images of all monomials of the t_0-degree $\leq i$.

Ex.

- $\mathcal{E}^0 = \mathbb{C}1 \iff H^2(\mathbb{T}^2)$, $\mathcal{R}_F = \mathcal{E}^{-2} = \mathcal{E}^{-3} = \mathcal{E}^{-4} = \ldots$

<table>
<thead>
<tr>
<th>0</th>
<th>\mathcal{E}^0</th>
<th>\mathcal{E}^{-1}</th>
<th>\mathcal{E}^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\subseteq</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>F^2</th>
<th>F^1</th>
<th>F^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\subseteq</td>
</tr>
</tbody>
</table>

$H^2(\mathbb{T}^2, C_a^\circ)$
Hodge filtration

Hodge filtration on $H^2(\mathbb{T}^2, C_\alpha^\circ)$ is given by the filtration on \mathcal{R}_F:

- Let $\mathcal{E}^{-i} (i = 0, 1, 2, \ldots)$ be the subspace of \mathcal{R}_F spanned by the images of all monomials of the t_0-degree $\leq i$.

Ex.

\mathcal{E}^0 \mathcal{E}^{-1} \mathcal{E}^{-2}

- $\mathcal{E}^0 = \mathbb{C}1 \Leftrightarrow H^2(\mathbb{T}^2), \mathcal{R}_F = \mathcal{E}^{-2} = \mathcal{E}^{-3} = \mathcal{E}^{-4} = \ldots$

\[
\begin{array}{cccc}
0 & \subset & \mathcal{E}^0 & \subset \mathcal{E}^{-1} & \subset \mathcal{E}^{-2} & = & \mathcal{R}_F \\
& | & | & | & | & | & \\
0 & \subset & F^2 & \subset F^1 & \subset F^0 & = & H^2(\mathbb{T}^2, C_\alpha^\circ)
\end{array}
\]
Hodge filtration

Hodge filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the filtration on \mathcal{R}_F:

- Let \mathcal{E}^{-i} ($i = 0, 1, 2, \ldots$) be the subspace of \mathcal{R}_F spanned by the images of all monomials of the t_0-degree $\leq i$.

Ex.

\mathcal{E}^0 \hspace{1cm} \mathcal{E}^{-1} \hspace{1cm} \mathcal{E}^{-2}

- $\mathcal{E}^0 = \mathbb{C}1 \iff H^2(\mathbb{T}^2), \mathcal{R}_F = \mathcal{E}^{-2} = \mathcal{E}^{-3} = \mathcal{E}^{-4} = \ldots$

<table>
<thead>
<tr>
<th>0</th>
<th>\mathcal{E}^0</th>
<th>\mathcal{E}^{-1}</th>
<th>\mathcal{E}^{-2}</th>
<th>\mathcal{R}_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F^2</td>
<td>F^1</td>
<td>F^0</td>
<td>$H^2(\mathbb{T}^2, C_a^\circ)$</td>
</tr>
</tbody>
</table>
Weight filtration

Weight filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the following.

- Let l_j (1 ≤ j ≤ 3) be the subspace of \mathcal{R}_F spanned by the images of monomials $t_0^k t^m$ with $k \geq 1$ such that $m \in \Delta(k)$ does not belong to any face of codimension j. Set $l_4 := \mathcal{R}_F$.

Ex.

- $l_3 = \mathcal{R}_F^\perp \Leftrightarrow PH^1(C_a^\circ)$

<table>
<thead>
<tr>
<th>0 ⊂ l_1 ⊂ l_2 ⊂ l_3 ⊂ l_4 = R_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ⊂ W_1 ⊂ W_2 = W_3 ⊂ W_4 = H^2(\mathbb{T}^2, C_a^\circ)</td>
</tr>
</tbody>
</table>
Weight filtration

Weight filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the following.

- Let $I_j (1 \leq j \leq 3)$ be the subspace of R_F spanned by the images of monomials $t_0^k t_m$ with $k \geq 1$ such that $m \in \Delta(k)$ does not belong to any face of codimension j. Set $I_4 := R_F$.

\[0 \subset I_1 \subset I_2 \subset I_3 \subset I_4 = R_F \]

\[0 \subset W_1 \subset W_2 = W_3 \subset W_4 = H^2(\mathbb{T}^2, C_a^\circ) \]
Weight filtration

Weight filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the following.

- Let $l_j (1 \leq j \leq 3)$ be the subspace of \mathcal{R}_F spanned by the images of monomials $t_0^k t^m$ with $k \geq 1$ such that $m \in \Delta(k)$ does not belong to any face of codimension j. Set $l_4 := \mathcal{R}_F$.

Ex.

- $l_3 = \mathcal{R}_F^+ \iff \text{PH}^1(C_a^\circ)$

<table>
<thead>
<tr>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
<th>l_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \subset l_1 \subset l_2 \subset l_3 \subset l_4 = \mathcal{R}_F$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0 \subset W_1 \subset W_2 = W_3 \subset W_4 = H^2(\mathbb{T}^2, C_a^\circ)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weight filtration

Weight filtration on $H^2(\mathbb{T}^2, C^\circ_a)$ is given by the following.

- Let $l_j \ (1 \leq j \leq 3)$ be the subspace of \mathcal{R}_F spanned by the images of monomials $t_0^k t_m$ with $k \geq 1$ such that $m \in \Delta(k)$ does not belong to any face of codimension j. Set $l_4 := \mathcal{R}_F$.

![Diagram](image)

Ex.

- $l_3 = \mathcal{R}_F^+ \iff PH^1(C^\circ_a)$

<table>
<thead>
<tr>
<th>0</th>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
<th>$l_4 = \mathcal{R}_F$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\supset</td>
<td>\supset</td>
<td>\supset</td>
<td>\supset</td>
</tr>
<tr>
<td>0</td>
<td>W_1</td>
<td>$W_2 = W_3$</td>
<td>$W_4 = H^2(\mathbb{T}^2, C^\circ_a)$</td>
<td></td>
</tr>
</tbody>
</table>
Weight filtration on $H^2(\mathbb{T}^2, C_a^\circ)$ is given by the following.

- Let l_j ($1 \leq j \leq 3$) be the subspace of \mathcal{R}_F spanned by the images of monomials $t_0^k t^m$ with $k \geq 1$ such that $m \in \Delta(k)$ does not belong to any face of codimension j. Set $l_4 := \mathcal{R}_F$.

$$
\begin{array}{c}
\bullet l_1 \\
\bullet l_2 \\
\bullet l_3 \\
\bullet l_4 \\
\end{array}
$$

- $l_3 = \mathcal{R}_F^+ \iff PH^1(C_a^\circ)$

<table>
<thead>
<tr>
<th>0</th>
<th>l_1</th>
<th>l_2</th>
<th>l_3</th>
<th>l_4</th>
<th>\mathcal{R}_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>\subset</td>
<td>\subset</td>
<td>\subset</td>
<td>\subset</td>
<td>\subset</td>
<td>\subset</td>
</tr>
<tr>
<td>\parallel</td>
<td>\parallel</td>
<td>\parallel</td>
<td>\parallel</td>
<td>\parallel</td>
<td>\parallel</td>
</tr>
<tr>
<td>0</td>
<td>W_1</td>
<td>$W_2 = W_3$</td>
<td>$W_4 = H^2(\mathbb{T}^2, C_a^\circ)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of MHS

<table>
<thead>
<tr>
<th>W_1</th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_2/W_1</td>
<td>$\mathbb{C} t_0$</td>
<td>$\mathbb{C} t_0^2$</td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td>$R_F^1/\mathbb{C} t_0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| W_4/W_3 | $\mathbb{C} 1$ | $\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}$ | (1, 0)-form on C_a
| | | | (0, 1)-form on C_a
| | | | (1, 0)-form on C_a with poles at $C_a - C_a^\circ$
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (1, 0)-form on C_a
- (0, 1)-form on C_a
- (1, 0)-form on C_a with poles at $C_a - C_a^o$

\[\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \]
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $(1, 0)$-form on C_a
- $(0, 1)$-form on C_a
- $(1, 0)$-form on C_a with poles at $C_a - C_a^0$

\[
\text{C}t_0, \quad \text{C}t_0^2, \quad R^1_F/\text{C}t_0
\]

\[
\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}
\]
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td>$\mathbb{C}t_0$</td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C}1$</td>
<td></td>
<td>$\text{degree} 1$</td>
</tr>
</tbody>
</table>

- **(1, 0)-form on** C_a
- **(0, 1)-form on** C_a
- **(1, 0)-form on** C_a with poles at $C_a - C_a^o$
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td>$\mathbb{C}t_0$</td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C}1$</td>
<td>$\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}$</td>
<td></td>
</tr>
</tbody>
</table>

- $\mathbb{C}t_0^2$ arrowed with $(0, 1)$-form on C_a
- $R_F^1/\mathbb{C}t_0$ arrowed with $(1, 0)$-form on C_a
- $\mathbb{C}1$ arrowed with $(1, 0)$-form on C_a with poles at $C_a - C_a^0$
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td>$\mathbb{C}t_0$</td>
<td>$\mathbb{C}t_0^2$</td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C}1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R_F^{1}/\mathbb{C}t_0$ → (1, 0)-form on C_a

(0, 1)-form on C_a

(1, 0)-form on C_a with poles at $C_a - C_a^o$
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1 / F^2</th>
<th>F^0 / F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td>$\mathbb{C} t_0$</td>
<td>$\mathbb{C} t_0^2$</td>
</tr>
<tr>
<td>W_2 / W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3 / W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4 / W_3</td>
<td>$\mathbb{C} \mathbb{C}$</td>
<td>$\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}$</td>
<td></td>
</tr>
</tbody>
</table>

- (1, 0)-form on C_a
- (0, 1)-form on C_a
- $R_{F_0}^1 / \mathbb{C} t_0$ with poles at $C_a - C_a^\circ$
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td>$\mathbb{C}t_0$</td>
<td>$\mathbb{C}t_0^2$</td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td>$R_F^1/\mathbb{C}t_0$</td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C}1$</td>
<td>$dt_1/t_1 \wedge dt_2/t_2$</td>
<td></td>
</tr>
</tbody>
</table>

$(1, 0)$-form on C_a

$(0, 1)$-form on C_a

$(1, 0)$-form on C_a with poles at $C_a - C_a^\circ$
Summary of MHS

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td>$\mathbb{C}t_0$</td>
<td>$\mathbb{C}t_0^2$</td>
</tr>
<tr>
<td>W_3/W_2</td>
<td>$R_F^1/\mathbb{C}t_0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C}1$</td>
<td>$\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}$</td>
<td></td>
</tr>
</tbody>
</table>

$(1, 0)$-form on C_a

$(0, 1)$-form on C_a

$(1, 0)$-form on C_a with poles at $C_a - C_a^\circ$
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_F \otimes \mathbb{C}(a)$:

$\nabla \partial_{am} =: \nabla a_m \iff D_{am} := \partial_{am} + t_0 t^m \quad (m \in \Delta)$

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td>∇a_0</td>
<td>$\mathbb{C}t_0$</td>
<td>∇a_m</td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td>$\nabla a_m \ (m \neq 0)$</td>
</tr>
</tbody>
</table>
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $R_F \otimes \mathbb{C}(a)$:

$$\nabla \partial_{a_m} =: \nabla_{a_m} \iff D_{a_m} := \partial_{a_m} + t_0 t^m \quad (m \in \Delta)$$

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1 / F^2</th>
<th>F^0 / F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td>$\mathbb{C}t_0$ \xrightarrow{am} $\mathbb{C}t_0^2$</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>W_2 / W_1</td>
<td>∇a_0 \xrightarrow{am} $R_{F / \mathbb{C}t_0}$</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>W_3 / W_2</td>
<td>\</td>
<td>$\nabla_{am} \ (m \neq 0)$</td>
<td></td>
</tr>
<tr>
<td>W_4 / W_3</td>
<td>$\mathbb{C}1$</td>
<td>\</td>
<td></td>
</tr>
</tbody>
</table>
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_F \otimes \mathbb{C}(a)$:

$$\nabla_{a_m} =: \nabla a_m \iff D_{a_m} =: \partial a_m + t_0 t^m \quad (m \in \Delta)$$

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\nabla a_0 \rightarrow \mathbb{C} t_0 \quad \nabla_{a_m} \rightarrow \mathbb{C} t^2_0 \quad \nabla a_m (m \neq 0)$
Gauss–Manin connection

- So far, the parameter a of C^a_t is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_F \otimes \mathbb{C}(a)$:

$$\nabla \partial_{am} =: \nabla a_m \iff D_{am} := \partial_{am} + t_0 t^m \quad (m \in \Delta)$$
Gauss–Manin connection

- So far, the parameter a of C^a_ρ is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $R_F \otimes \mathbb{C}(a)$:

$$\nabla_{\partial_m} =: \nabla_m \Leftrightarrow D_m := \partial_m + t_0 t^m \quad (m \in \Delta)$$

<table>
<thead>
<tr>
<th></th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>∇a_0</td>
<td>$\nabla a_m (m \neq 0)$</td>
<td>∇t_0</td>
</tr>
</tbody>
</table>
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_F \otimes \mathbb{C}(a)$:

$$\nabla \partial_{am} := \nabla a_m \iff D_{am} := \partial_{am} + t_0 t^m \quad (m \in \Delta)$$
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $R_F \otimes \mathbb{C}(a)$:

\[
\nabla \partial_{am} =: \nabla a_m \iff D_{am} := \partial_{am} + t_0 t^m \quad (m \in \Delta)
\]

<table>
<thead>
<tr>
<th>W_1</th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_2/W_1</td>
<td>∇a_0</td>
<td>$\mathbb{C} t_0$</td>
<td>$\mathbb{C} t_0^2$</td>
</tr>
<tr>
<td>W_3/W_2</td>
<td>$R^1_F/\mathbb{C} t_0$</td>
<td>∇a_m</td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>$\mathbb{C} 1$</td>
<td>∇a_m (for $m \neq 0$)</td>
<td></td>
</tr>
</tbody>
</table>
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_F \otimes \mathbb{C}(a)$:

$$\nabla_{\partial_a m} =: \nabla_a m \Leftrightarrow D_{a m} := \partial_a m + t_0 t^m \quad (m \in \Delta)$$
Gauss–Manin connection

- So far, the parameter a of C_a is fixed. From now on, we move a (in the range such that $F_a(t)$ is Δ-regular) and consider the family of affine curves.
- The Gauss–Manin connection ∇ corresponds to the differential operators on $\mathcal{R}_F \otimes \mathbb{C}(a)$:

$$\nabla \partial_{am} =: \nabla a_m \iff D_{am} := \partial_{am} + t_0 t^m \quad (m \in \Delta)$$
Remarks

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$ (Griffiths transversality)

- It is easy to see that $\omega = (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in H^2(\mathbb{T}^2, C^\circ_a)$ satisfies the A-hypergeometric system with the parameter $\tilde{0}$.
Remarks

• By the GM connection ∇,
 • The Weight filtration is preserved: $\nabla_{am}W_k \subset W_k$
 • The Hodge filtration is changed by 1: $\nabla_{am}F^k \subset F^{k+1}$
 (Griffiths transversality)

• It is easy to see that $\omega = (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in H^2(\mathbb{T}^2, C^\circ_a)$
 satisfies the A-hypergeometric system with the parameter $\vec{0}$.
Remarks

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$
 (Griffiths transversality)

- It is easy to see that $\omega = (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in H^2(\mathbb{T}^2, C_\alpha^\circ)$ satisfies the A-hypergeometric system with the parameter $\tilde{0}$.
Remarks

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$ (Griffiths transversality)

- It is easy to see that $\omega = (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in H^2(\mathbb{T}^2, C_a^\circ)$ satisfies the A-hypergeometric system with the parameter $\bar{0}$.
Remarks

- By the GM connection ∇,
 - The Weight filtration is preserved: $\nabla_{a_m} W_k \subset W_k$
 - The Hodge filtration is changed by 1: $\nabla_{a_m} F^k \subset F^{k+1}$ (Griffiths transversality)

- It is easy to see that $\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \in H^2(\mathbb{T}^2, C_a^\circ)$ satisfies the A-hypergeometric system with the parameter $\tilde{\theta}$.
Yukawa coupling

In the case of $H^3(X^\vee)$ of a Calabi–Yau threefold X^\vee, the Yukawa coupling is

$$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk}.$$

In this definition, the polarization

$$H^3(X^\vee) \times H^3(X^\vee) \to \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta$$

is necessary.

In the case of $H^2(\mathbb{T}^2, C_a^\circ)$, we note that

$$W_1 H^2(\mathbb{T}^2, C_a^\circ) = H^1(C_a)$$

and use the polarization on $H^1(C_a)$ instead.
Yukawa coupling

In the case of $H^3(X^\vee)$ of a Calabi–Yau threefold X^\vee, the Yukawa coupling is

$$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk}.$$

In this definition, the polarization

$$H^3(X^\vee) \times H^3(X^\vee) \rightarrow \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta$$

is necessary.

In the case of $H^2(\mathbb{T}^2, C_\alpha^\circ)$, we note that

$$\mathcal{W}_1 H^2(\mathbb{T}^2, C_\alpha^\circ) = H^1(C_\alpha)$$

and use the polarization on $H^1(C_\alpha)$ instead.
Yukawa coupling

In the case of $H^3(X^\vee)$ of a Calabi–Yau threefold X^\vee, the Yukawa coupling is

$$
\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk}.
$$

In this definition, the polarization

$$
H^3(X^\vee) \times H^3(X^\vee) \to \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta
$$

is necessary.

In the case of $H^2(\mathbb{T}^2, C_a^\circ)$, we note that

$$
W_1 H^2(\mathbb{T}^2, C_a^\circ) = H^1(C_a)
$$

and use the polarization on $H^1(C_a)$ instead.
Yukawa coupling

In the case of $H^3(X^\vee)$ of a Calabi–Yau threefold X^\vee, the Yukawa coupling is

$$\int_{X^\vee} \Omega \wedge \nabla_i \nabla_j \nabla_k \Omega =: C_{ijk}.$$

In this definition, the polarization

$$H^3(X^\vee) \times H^3(X^\vee) \to \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{X^\vee} \alpha \wedge \beta$$

is necessary.

In the case of $H^2(\mathbb{T}^2, \mathcal{C}_a^0)$, we note that

$$W_1 H^2(\mathbb{T}^2, \mathcal{C}_a^0) = H^1(\mathcal{C}_a)$$

and use the polarization on $H^1(\mathcal{C}_a)$ instead.
Definition

Recall:

<table>
<thead>
<tr>
<th>$H^1(C_a) = W_1$</th>
<th>F^2</th>
<th>F^1/F^2</th>
<th>F^0/F^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_2/W_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_3/W_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_4/W_3</td>
<td>\mathbb{C}^1</td>
<td>$\nabla a_0 R^{1}_{F/\mathbb{C}t_0}$</td>
<td>$(1,0)$-form on C_a</td>
</tr>
</tbody>
</table>

$\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \in H^2(\mathbb{T}^2, C_a^0)$

Therefore $\int_{C_a} \nabla^2 a_0 \omega \wedge \nabla a_0 \omega$ is well-defined.

We define this as the Yukawa coupling $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$.
Definition

Recall:

$H^1(C_a) = W_1$

W_2/W_1

W_3/W_2

W_4/W_3

$H^1(C_a)$

F^2

F^1/F^2

F^0/F^1

$(1, 0)$-form on C_a

$(0, 1)$-form on C_a

∇a_0

∇a_0

∇t_0

∇t_0^2

$R_F/\mathbb{C}t_0$

$\omega = (\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0) \in H^2(\mathbb{T}^2, C_a^0)$

Therefore $\int_{C_a} \nabla^2_{a_0} \omega \wedge \nabla_{a_0} \omega$ is well-defined.

We define this as the Yukawa coupling $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$
Definition

Recall:

\[
\begin{array}{|c|c|c|}
\hline
 & F^2 & F^1/F^2 & F^0/F^1 \\
\hline
H^1(C_a) = W_1 & C & C & C \\
W_2/W_1 & R^1_F/C_t_0 & C & C \\
W_3/W_2 & C & C & C \\
W_4/W_3 & C & C & C \\
\hline
\end{array}
\]

\[\nabla a_0 \phi_0 \rightarrow C_t_0 \rightarrow C_t_0^2 \rightarrow (1,0)\text{-form on } C_a\]

\[\nabla a_0 \phi_0 \rightarrow (0,1)\text{-form on } C_a\]

\[
\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0\right) \in H^2(\mathbb{T}^2, C_a)\]

Therefore \(\int_{C_a} \nabla^2 a_0 \omega \wedge \nabla a_0 \omega\) is well-defined.

We define this as the Yukawa coupling \(\langle \partial a_0, \partial a_0; \partial a_0 \rangle\).
Definition

Recall:

\[H^1(C_a) = W_1 \]

\[W_2/W_1 \]

\[W_3/W_2 \]

\[W_4/W_3 \]

\[F^2 \quad F^1/F^2 \quad F^0/F^1 \]

\[\nabla a_0 \quad \nabla a_0 \quad \nabla a_0 \quad \nabla a_0 \quad \nabla a_0 \]

\[\mathbb{C} t_0 \quad \mathbb{C} t_0^2 \]

\[R^1_F/\mathbb{C} t_0 \]

\[\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \in H^2(\mathbb{T}^2, C_a^0) \]

Therefore \[\int_{C_a} \nabla^2_{a_0} \omega \wedge \nabla a_0 \omega \] is well-defined.

We define this as the Yukawa coupling \(\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle \).
Definition

Recall:

\[
\begin{array}{|c|c|c|}
\hline
 & F^2 & F^1 / F^2 \\
\hline
H^1(C_a) = W_1 & & \\
W_2 / W_1 & & \\
W_3 / W_2 & R^{1}_F / \mathbb{C}t_0 & \\
W_4 / W_3 & \mathbb{C}1 & \\
\hline
\end{array}
\]

Therefore \[\int_{C_a} \nabla^2_{a_0} \omega \wedge \nabla_{a_0} \omega \] is well-defined.

We define this as the Yukawa coupling \[\langle \partial_{a_0}, \partial_{a_0}, \partial_{a_0} \rangle \]
Definition

Recall:

\[
\begin{array}{|c|c|c|}
\hline
 & F^2 & F^1/F^2 \quad F^0/F^1 \\
\hline
H^1(C_a) = W_1 & & \\
W_2/W_1 & & \\
W_3/W_2 & & \\
W_4/W_3 & \mathbb{C}1 & \\
\hline
\end{array}
\]

\[\nabla_{a_0} \mathbb{C}t_0 \quad R^1_F/\mathbb{C}t_0 \quad (1, 0)\text{-form on } C_a \]

\[\nabla_{a_0} \mathbb{C}t_0 \quad (0, 1)\text{-form on } C_a \]

\[
\omega = \left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \in H^2(\mathbb{T}^2, C_a^0)
\]

Therefore \[\int_{C_a} \nabla^2_{a_0} \omega \wedge \nabla_{a_0} \omega\] is well-defined.

We define this as the Yukawa coupling \[\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle\]
This can be generalized to other vector fields as follows.

- \mathbb{L}: the base space of the family (space of the parameter a_m's)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

$$T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \rightarrow \mathcal{O}_\mathbb{L},$$

$$\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega$$

- $\nabla_C \omega \in F^1 \cap W_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of W_1. But such a class can be written as

$$\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}$$
$$+ \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}$$

So set $(\nabla_A \nabla_B \omega)' := \alpha_2.$
This can be generalized to other vector fields as follows.

- \mathbb{L}: the base space of the family (space of the parameter a_m's)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

$$T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \rightarrow \mathcal{O}_{\mathbb{L}},$$

$$\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega$$

- $\nabla_C \omega \in F^1 \cap W_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of W_1. But such a class can be written as

$$\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}$$

$$+ \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}$$

So set $(\nabla_A \nabla_B \omega)' := \alpha_2$.
This can be generalized to other vector fields as follows.

- \mathbb{L}: the base space of the family (space of the parameter a_m’s)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

$$T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \rightarrow \mathcal{O}_\mathbb{L},$$

$$\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega$$

- $\nabla_C \omega \in F^1 \cap W_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of W_1. But such a class can be written as

$$\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}$$
$$+ \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}$$

So set $(\nabla_A \nabla_B \omega)' := \alpha_2$.
This can be generalized to other vector fields as follows.

- \mathbb{L}: the base space of the family (space of the parameter a_m’s)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

\[
T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \to \mathcal{O}_\mathbb{L},
\]

\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

- $\nabla_C \omega \in F^1 \cap \mathcal{W}_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of \mathcal{W}_1. But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)$-form on C_a with poles

+ $\alpha_2 \quad (0, 1)$-form on C_a (without poles)

So set $(\nabla_A \nabla_B \omega)' := \alpha_2$.
This can be generalized to other vector fields as follows.

- \mathbb{L}: the base space of the family (space of the parameter a_m's)
- $T^0\mathbb{L}$: the subbundle of $T\mathbb{L}$ spanned by ∂_{a_0}

The Yukawa coupling is a multilinear map:

\[
T\mathbb{L} \times T\mathbb{L} \times T^0\mathbb{L} \rightarrow \mathcal{O}_\mathbb{L},
\]

\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

- $\nabla_C \omega \in F^1 \cap W_1$ is a $(1, 0)$-form on C_a
- $\nabla_A \nabla_B \omega$ may be outside of W_1. But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 \quad (1, 0)\text{-form on } C_a \text{ with poles}
\]

\[
+ \alpha_2 \quad (0, 1)\text{-form on } C_a \text{ (without poles)}
\]

So set $(\nabla_A \nabla_B \omega)' := \alpha_2$.
This can be generalized to other vector fields as follows.

- \(\mathbb{L} \): the base space of the family (space of the parameter \(a_m \)'s)
- \(T^0 \mathbb{L} \): the subbundle of \(T \mathbb{L} \) spanned by \(\partial_{a_0} \)

The Yukawa coupling is a multilinear map:

\[
T \mathbb{L} \times T \mathbb{L} \times T^0 \mathbb{L} \rightarrow \mathcal{O}_\mathbb{L},
\]

\[
\langle A, B; C \rangle := \int_{C_a} (\nabla_A \nabla_B \omega)' \wedge \nabla_C \omega
\]

- \(\nabla_C \omega \in F^1 \cap W_1 \) is a \((1, 0)\)-form on \(C_a \)
- \(\nabla_A \nabla_B \omega \) may be outside of \(W_1 \). But such a class can be written as

\[
\nabla_A \nabla_B \omega = \alpha_1 \quad \text{(1, 0)-form on \(C_a \) with poles}
+ \alpha_2 \quad \text{(0, 1)-form on \(C_a \) (without poles)}
\]

So set \((\nabla_A \nabla_B \omega)' := \alpha_2\).
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

- Essentially, only $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$ is relevant:

$$
\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = f_{ij}(a) \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle,
$$

where $\nabla_{a_i} \nabla_{a_j} \omega = t_0^2 t^{i+j} = f_{ij}(a)t_0^2 + (t_0\text{-degree} \leq 1)$.

Ex. $\Delta = \square$

$$
\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle = \frac{\text{const}}{a_0^3(1 + 27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})
$$

$$
\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = \begin{cases}
\frac{9a_0^2}{a_i a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i, j \neq 0) \\
\frac{3a_0}{a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (j = 0)
\end{cases}
$$
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

- Essentially, only $\langle \partial a_0, \partial a_0; \partial a_0 \rangle$ is relevant:

$$
\langle \partial a_i, \partial a_j; \partial a_0 \rangle = f_{ij}(a) \langle \partial a_0, \partial a_0; \partial a_0 \rangle,
$$

where $\nabla_m \nabla_m \omega = t_0^2 t^{i+j} = f_{ij}(a) t_0^2 + (t_0\text{-degree} \leq 1)$.

Ex.

$$
\Delta = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\quad
\langle \partial a_0, \partial a_0; \partial a_0 \rangle = \frac{\text{const}}{a_0^3 (1 + 27 z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})
$$

$$
\langle \partial a_i, \partial a_j; \partial a_0 \rangle = \begin{cases}
\frac{9 a_0^2}{a_i a_j} \langle \partial a_0, \partial a_0; \partial a_0 \rangle & (i, j \neq 0) \\
\frac{3 a_0}{a_j} \langle \partial a_0, \partial a_0; \partial a_0 \rangle & (i = 0)
\end{cases}
$$
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

- Essentially, only $\langle \partial a_0, \partial a_0 ; \partial a_0 \rangle$ is relevant:

$$\langle \partial a_i, \partial a_j ; \partial a_0 \rangle = f_{ij}(a) \langle \partial a_0, \partial a_0 ; \partial a_0 \rangle,$$

where $\nabla_a \nabla_a \omega = t_0^2 t^{i+j} = f_{ij}(a) t_0^2 + (t_0\text{-degree} \leq 1)$.

Ex.

\[
\Delta = \begin{array}{c}
\begin{array}{c}
\text{const} \\
\frac{a_3}{a_0 (1 + 27z)}
\end{array}
\end{array}
\]

$$\langle \partial a_0, \partial a_0 ; \partial a_0 \rangle = \frac{\text{const}}{a_0^3 (1 + 27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})$$

$$\langle \partial a_i, \partial a_j ; \partial a_0 \rangle = \begin{cases}
\frac{9a_0^2}{a_i a_j} \langle \partial a_0, \partial a_0 ; \partial a_0 \rangle & (i, j \neq 0) \\
\frac{3a_0}{a_j} \langle \partial a_0, \partial a_0 ; \partial a_0 \rangle & (i = 0)
\end{cases}$$
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

- Essentially, only $\langle \partial a_0, \partial a_0; \partial a_0 \rangle$ is relevant:

 $$\langle \partial a_i, \partial a_j; \partial a_0 \rangle = f_{ij}(a) \langle \partial a_0, \partial a_0; \partial a_0 \rangle,$$

 where $\nabla a_i \nabla a_j \omega = t_0^2 t^{i+j} = f_{ij}(a)t_0^2 + (t_0\text{-degree} \leq 1)$.

Ex.

$$\Delta = \begin{array}{c}
\begin{array}{c}
\text{const} \\
\frac{a_1 a_2 a_3}{a_0^3(1 + 27z)} \\
(z = \frac{a_1 a_2 a_3}{a_0^3})
\end{array}
\end{array}$$

$$\langle \partial a_0, \partial a_0; \partial a_0 \rangle = \begin{cases}
\text{const} \\
\frac{9a_0^2}{a_i a_j} \langle \partial a_0, \partial a_0; \partial a_0 \rangle & (i, j \neq 0) \\
\frac{3a_0}{a_j} \langle \partial a_0, \partial a_0; \partial a_0 \rangle & (i = 0)
\end{cases}$$
Remarks

- We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

- Essentially, only $\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle$ is relevant:

$$\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = f_{ij}(a) \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle,$$

where $\nabla_{a_i} \nabla_{a_j} \omega = t_0^2 t^{i+j} = f_{ij}(a)t_0^2 + (t_0\text{-degree} \leq 1)$.

Ex. $\Delta = \begin{array}{c} \framebox{3} \\
\framebox{3} \end{array}$

$$\langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle = \frac{\text{const}}{a_0^3(1+27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})$$

$$\langle \partial_{a_i}, \partial_{a_j}; \partial_{a_0} \rangle = \begin{cases} \frac{9a_0^2}{a_i a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i, j \neq 0) \\ \frac{3a_0}{a_j} \langle \partial_{a_0}, \partial_{a_0}; \partial_{a_0} \rangle & (i = 0) \end{cases}$$
Remarks

• We can compute the Yukawa coupling by solving differential equations coming from A-hypergeometric system.

• Essentially, only $\langle \partial a_0, \partial a_0; \partial a_0 \rangle$ is relevant:

$$\langle \partial a_i, \partial a_j; \partial a_0 \rangle = f_{ij}(a)\langle \partial a_0, \partial a_0; \partial a_0 \rangle,$$

where $\nabla a_i \nabla a_j \omega = t_0^2 t^{i+j} = f_{ij}(a)t_0^2 + (t_0 \text{-degree } \leq 1)$.

Ex. $\Delta = \triangle$

$$\langle \partial a_0, \partial a_0; \partial a_0 \rangle = \frac{\text{const}}{a_0^3(1 + 27z)} \quad (z = \frac{a_1 a_2 a_3}{a_0^3})$$

$$\langle \partial a_i, \partial a_j; \partial a_0 \rangle = \begin{cases}
\frac{9a_i^2}{a_i a_j} \langle \partial a_0, \partial a_0; \partial a_0 \rangle & (i, j \neq 0) \\
\frac{3a_0}{a_j} \langle \partial a_0, \partial a_0; \partial a_0 \rangle & (j = 0)
\end{cases}$$
Yukawa coupling for the quotient family

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

This is the action on the parameter space \mathbb{L} and the family of curves \sim the quotient family.

- The above definition of the Yukawa coupling is also valid for the quotient family.

Ex. $\Delta = \begin{diag}$

$$\mathcal{M} = \mathbb{L}/\mathbb{T}^3 \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}. A \text{ local coordinate (around 0)} \text{ is } z = \frac{a_1 a_2 a_3}{a_0^3}.$$

$$\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.$$

(Same as the known result)
Yukawa coupling for the quotient family

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

This is the action on the parameter space \mathbb{L} and the family of curves \rightsquigarrow the quotient family.

- The above definition of the Yukawa coupling is also valid for the quotient family.

Ex. \[\Delta = \triangle\]

$$\mathcal{M} = \mathbb{L}/\mathbb{T}^3 \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}. \text{ A local coordinate (around 0) is } z = \frac{a_1 a_2 a_3}{a_0^3}.$$

$$\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.$$

(Same as the known result)
Yukawa coupling for the quotient family

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

This is the action on the parameter space \mathbb{L} and the family of curves \sim the quotient family.

- The above definition of the Yukawa coupling is also valid for the quotient family.

Ex. $\Delta = \bigtriangleup$

$$\mathcal{M} = \mathbb{L}/\mathbb{T}^3 \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}. \text{ A local coordinate (around 0) is } z = \frac{a_1 a_2 a_3}{a_0^3}.$$

$$(\partial_z, \partial_z; \partial_z) = \frac{\text{const}}{27z^3(1 + 27z)}.$$
Yukawa coupling for the quotient family

- Consider the \mathbb{T}^3-action

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

This is the action on the parameter space \mathbb{L} and the family of curves \sim the quotient family.
- The above definition of the Yukawa coupling is also valid for the quotient family.

Ex. $\Delta = \triangle$

$$\mathcal{M} = \mathbb{L}/\mathbb{T}^3 \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}. \text{ A local coordinate (around } 0 \text{) is } z = \frac{a_1 a_2 a_3}{a_0}.$$

$$\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}.$$

(Same as the known result)
Yukawa coupling for the quotient family

- Consider the \mathbb{T}^3-action

\[\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2). \]

This is the action on the parameter space \mathcal{L} and the family of curves \sim the quotient family.

- The above definition of the Yukawa coupling is also valid for the quotient family.

Ex. \[\Delta = \begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \]

\[\mathcal{M} = \mathcal{L}/\mathbb{T}^3 \cong \mathbb{P}(1, 3) \setminus \{0, \frac{1}{27}\}. \] A local coordinate (around 0) is $z = \frac{a_1 a_2 a_3}{a_0^3}$.

\[\langle \partial_z, \partial_z; \partial_z \rangle = \frac{\text{const}}{27z^3(1 + 27z)}. \]

(Same as the known result)
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials $F_g \ (g \geq 1)$. Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates. Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \partial_{\bar{j}} K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes^3)$

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,j,k} \overline{C}_{ijk} e^{2K} G^{\bar{j}\bar{k}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$).

Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates.

Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_{\bar{j}} K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes^3)$

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,j,k} \overline{C}_{ijk} e^{2K} G^{j\bar{i}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$). Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold $X^\mathbb{V}$, and z_1, \ldots, z_n be its local coordinates.

Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\mathbb{V}} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_{\bar{j}} K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, TM \otimes^3)$

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,j',\bar{k}} \overline{C}^{ijk}_{j'\bar{k}} e^{2K} G^{j\bar{j}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$). Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates. Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = - \log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_j K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, TM \otimes^3)$

$$\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,i,j,k} \overline{C}_{ijk} e^{2K} G^{i\bar{j}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})$$
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$). Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates. Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_{\bar{j}} K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes^3)$

\[
\overline{\partial}_i F_g = \frac{1}{2} \sum_{j, k, \bar{j}, \bar{k}} C_{ijk} e^{2K} G^{j\bar{j}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$). Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates. Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \partial_{\bar{j}} K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, TM \otimes^3)$

\[
\overline{\partial_i} F_g = \frac{1}{2} \sum_{j,k,j,k} \overline{C}_{ij\bar{k}} e^{2K} G^{j\bar{i}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})
\]
Holomorphic anomaly eq.

In the B-model of mirror symmetry, there is BCOV’s holomorphic anomaly equation. It is a system of differential equations for higher genus prepotentials F_g ($g \geq 1$). Let \mathcal{M} be the complex moduli space of a Calabi–Yau 3-fold X^\vee, and z_1, \ldots, z_n be its local coordinates.

Holomorphic anomaly eq. involves:

- Kähler potential of \mathcal{M}: $K = -\log \sqrt{-1} \int_{X^\vee} \Omega \wedge \overline{\Omega}$
- Kähler metric on \mathcal{M}: $G_{i\bar{j}} = \partial_i \overline{\partial}_{\bar{j}} K$
- Yukawa coupling $C_{ijk} \in \Gamma(\mathcal{M}, T\mathcal{M} \otimes 3)$

$$\overline{\partial}_i F_g = \frac{1}{2} \sum_{j,k,\bar{j},\bar{k}} C_{i\bar{j}\bar{k}} e^{2K} G^{j\bar{j}} G^{k\bar{k}} (D_j D_k F_{g-1} + \sum_{r=1}^{g-1} D_j F_r \cdot D_k F_{g-r})$$
Holomorphic anomaly eq. for Local B-model

For local B-model, we propose the following. We consider the quotient family of curves by the \mathbb{T}^3-action:

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

Let $\mathcal{M} = \mathbb{L}/\mathbb{T}^3$, z_1, z_2, \ldots be local coordinates of \mathcal{M}.

- $T^0 \mathcal{M} \subset T \mathcal{M}$: subbundle spanned by the image of $a_0 \partial_{a_0} =: \theta$.
- Hermitian metric on $T^0 \mathcal{M}$:

\[
(\theta, \theta) = \int_{C_a} \nabla_\theta \omega \wedge \overline{\nabla_\theta \omega} =: G_{0\bar{0}}
\]

($\partial_i := \partial_{z_i}$)

\[
\bar{\partial}_i F_0^{(g)} = \frac{\langle \partial_i, \theta; \theta \rangle}{2 G_{0\bar{0}}^2} (F_2^{(g-1)} + \sum_{r=1}^{g-1} F_1^{(r)} F_1^{(g-r)})
\]

\[
F_n^{(g+1)} := (\theta - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}}) F_n^{(g)}
\]
Holomorphic anomaly eq. for Local B-model

For local B-model, we propose the following.
We consider the quotient family of curves by the \mathbb{T}^3-action:

$$
\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).
$$

Let $\mathcal{M} = \mathbb{L}/\mathbb{T}^3$, z_1, z_2, \ldots be local coordinates of \mathcal{M}.
- $T^0 \mathcal{M} \subset T \mathcal{M}$: subbundle spanned by the image of $a_0 \partial a_0 =: \theta$.
- Hermitian metric on $T^0 \mathcal{M}$:
 $$(\theta, \theta) = \int_{C_a} \nabla_\theta \omega \wedge \overline{\nabla_\theta \omega} =: G_{0\bar{0}}$$

$(\partial_i := \partial_{z_i})$

$$
\overline{\partial}_i F_0^{(g)} = \frac{\langle \partial_i, \theta; \theta \rangle}{2G_{0\bar{0}}^2} \left(F_2^{(g-1)} + \sum_{r=1}^{g-1} F_1^{(r)} F_1^{(g-r)} \right)
$$

$$
F_{n+1}^{(g)} := (\theta - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}}) F_n^{(g)}
$$
Holomorphic anomaly eq. for Local B-model

For local B-model, we propose the following. We consider the quotient family of curves by the \mathbb{T}^3-action:

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2).$$

Let $\mathcal{M} = \mathbb{L}/\mathbb{T}^3$, z_1, z_2, \ldots be local coordinates of \mathcal{M}.

- $T^0\mathcal{M} \subset T\mathcal{M}$: subbundle spanned by the image of $a_0 \partial a_0 =: \theta$.
- Hermitian metric on $T^0\mathcal{M}$:

$$(\theta, \theta) = \int_{C_a} \nabla_\theta \omega \wedge \overline{\nabla_\theta \omega} =: G_{0\bar{0}}$$

$(\partial_i := \partial_{z_i})$

\[
\overline{\partial_i} F_0^{(g)} = \frac{\langle \partial_i, \theta; \theta \rangle}{2G_{0\bar{0}}^2} (F_2^{(g-1)} + \sum_{r=1}^{g-1} F_1^{(r)} F_1^{(g-r)})
\]

$F_{n+1}^{(g)} := (\theta - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}}) F_n^{(g)}$
Holomorphic anomaly eq. for Local B-model

For local B-model, we propose the following.

We consider the quotient family of curves by the \mathbb{T}^3-action:

$$
\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2)
$$

Let $\mathcal{M} = \mathbb{L}/\mathbb{T}^3$, z_1, z_2, \ldots be local coordinates of \mathcal{M}.

- $T^0\mathcal{M} \subset \mathcal{T}\mathcal{M}$: subbundle spanned by the image of $a_0 \partial a_0 =: \theta$.
- Hermitian metric on $T^0\mathcal{M}$:

 $$(\theta, \theta) = \int_{C_a} \nabla_\theta \omega \wedge \overline{\nabla_\theta \omega} =: G_{0\bar{0}}$$

$(\partial_i := \partial_{z_i})$

\[
\partial_i F_0^{(g)} = \frac{\langle \partial_i, \theta; \theta \rangle}{2 G_{0\bar{0}}^2} (F_2^{(g-1)} + \sum_{r=1}^{g-1} F_1^{(r)} F_1^{(g-r)})
\]

\[
F_n^{(g)} := (\theta - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}}) F_n^{(g)}
\]
Holomorphic anomaly eq. for Local B-model

For local B-model, we propose the following.

We consider the quotient family of curves by the \mathbb{T}^3-action:

$$\mathbb{T}^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda_1 t_1, \lambda_2 t_2) .$$

Let $\mathcal{M} = \mathbb{L}/\mathbb{T}^3$, z_1, z_2, \ldots be local coordinates of \mathcal{M}.

- $T^0\mathcal{M} \subset T\mathcal{M}$: subbundle spanned by the image of $a_0 \partial_{a_0} =: \theta$.
- Hermitian metric on $T^0\mathcal{M}$:

$$\langle \theta, \theta \rangle = \int_{\mathcal{C}_a} \nabla_\theta \omega \wedge \overline{\nabla_\theta \omega} =: G_{0\bar{0}}$$

($\partial_i := \partial_{z_i}$)

$$\overline{\partial_i} F^{(g)}_0 = \frac{\langle \partial_i, \theta; \theta \rangle}{2 G_{0\bar{0}}^2} \left(F^{(g-1)}_2 + \sum_{r=1}^{g-1} F^{(r)}_1 F^{(g-r)}_1 \right)$$

$$F^{(g)}_{n+1} := (\theta - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}}) F^{(g)}_n$$
Holomorphic anomaly eq. for Local B-model

For local B-model, we propose the following. We consider the quotient family of curves by the T^3-action:

$$T^3 \ni \lambda : F_a(t_1, t_2) \mapsto \lambda_0 F_a(\lambda t_1, \lambda t_2).$$

Let $\mathcal{M} = \mathbb{L}/T^3$, z_1, z_2, \ldots be local coordinates of \mathcal{M}.

- $T^0 \mathcal{M} \subset T\mathcal{M}$: subbundle spanned by the image of $a_0 \partial_a =: \theta$.
- Hermitian metric on $T^0 \mathcal{M}$:

$$(\theta, \theta) = \int_{C_a} \nabla_\theta \omega \wedge \overline{\nabla_\theta \omega} =: G_{0\bar{0}}$$

$(\partial_i := \partial_{z_i})$

$$\overline{\partial_i} F_0^{(g)} = \frac{\langle \partial_i, \theta; \theta \rangle}{2 G_{0\bar{0}}^2} (F_2^{(g-1)} + \sum_{r=1}^{g-1} F_1^{(r)} F_1^{(g-r)})$$

$$F_{n+1}^{(g)} := (\theta - n \frac{\theta G_{0\bar{0}}}{G_{0\bar{0}}}) F_n^{(g)}$$
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghhiat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].

- needs no Kähler potential;

- Only the one dimensional subbundle $T^0 M$ of TM matters. Similar to the one-parameter model.

- This can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghihat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].

- needs no Kähler potential;
 - Only the one dimensional subbundle $T^{0}M$ of TM matters. Similar to the one-parameter model.

- This can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghihat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].

 - needs no Kähler potential;
 - Only the one dimensional subbundle $T^0 \mathcal{M}$ of $T\mathcal{M}$ matters. Similar to the one-parameter model.

- This can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.
Remarks

- This holo. anomaly eq. is consistent with the following observations made previously by several authors [Klemm–Zaslow, Hosono, Haghihat–Klemm–Rauch, Aganagic–Bouchard–Klemm, Alim–Länge–Mayr].

 - needs no Kähler potential;
 - Only the one dimensional subbundle $T^0 M$ of TM matters. Similar to the one-parameter model.

- This can be solved by using the Feynman diagrams (with only one propagator) and also by Yamaguchi–Yau’s method.