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Abstract

In this note a kind of new grading functions is introduced, the
definition of N-th order normal form is given and some sufficient con-
ditions for the uniqueness of normal forms are derived. A special case
of the unsolved problem in Baider and Sanders paper for the unique
normal form of Bogdanov-Takens singularities is solved.
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1 Introduction

Normal forms are basic and powerful tools in bifurcation theory of vector
fields. But classical normal form theory, known as Poincaré’s normal form
(see, e.g., Arnold [Ar]), may not give the simplest form since only linear
parts are used for simplifying the nonlinear terms, and hence one can not
apply Poincaré normal form theory to vector fields whose linear parts are
identically zero. On the other hand, classical normal forms are not unique
in general. In order to get unique normal forms so that formal classification
could be made, further reduction of the classical normal forms is necessary
and the concept of normal forms should be refined.

Many authors have discussed the further reduction of normal forms and
some of them have discussed uniqueness of normal forms, see, e.g., [SM] and
references therein. Ushiki [Us| introduced a systematic method by which
nonlinear parts are also used to simplify higher order terms. By classical
method of normal form theory, only one Lie bracket is used to simplify the
higher order terms. Ushiki’s method allows more Lie brackets for the simpli-
fication [CK]. They obtained unique normal forms (simplest normal forms)
up to some degree for some given vector fields. Wang [Wa] gave a method
to calculate coefficients of normal forms, which needs more parameters in
the transformations due to the non-uniqueness of transformations and hence
may give simplest normal forms (up to some finite order) by suitably choosing
parameters. In fact nonlinear terms play also role in the reduction. Baider
introduced special form [Ba], which is in fact unique normal form, in an
abstract sense. Baider and Sanders [BS1] introduced new grading functions
to get further reduction of normal forms. They introduced the concept of
n-th order normal form related with the n-th grading function and give the
definition of infinite order normal forms (which is unique). They gave unique
normal forms for some nilpotent Hamiltonians. Then they got unique nor-
mal forms for some cases of Bogdanov-Takens singularities ([BS2]). But some
cases are still unsolved. Results concerning uniqueness of normal forms for
some other cases can be found in [BC2] and [SM].

In this paper we first introduce the concept of linear grading function
in section 2, and we give a systematic method to define some new grading
functions. Then in section 3 we define n-th order normal forms, in which
we combine Ushiki’s method and Baider and Sanders’ method. In fact we
need only one grading function. But the n-th order normal forms related



to n Lie brackets in the computation. In section 4 we define infinite order
normal form and prove that the infinite order normal form must be unique.
In section 5 we give a sufficient condition for unique normal forms. Finally
in section 6 we prove the uniqueness of first order normal form of the special
case i = 2,v = 1 of Bogdanov-Takens singularities which is a special case of
the unsolved problem in [BS2].

2 Linear grading function

Let H be the linear space of all n dimensional real or complex formal vector
fields. We define a bilinear operator [-,+] : HXH — H by [u,v] = Du-v—Dv-u
for any u,v € H. Then {H,[, |} forms a Lie algebra. Now let us define a
“grading function” such that {H,[, |} is a graded Lie algebra.

For the purpose of computing normal forms of formal vector fields, the
“grading function” should satisfy the following properties:

(1) The degree of any monomial is defined to be an integer. The dimension
of the linear space Hj, spanned by all monomials of degree k is finite
for any integer k (in the case when there is no monomials of degree k
for some integer k we define H;, = {0});

(2) [Hp, H,) C H,,y,, for any integers m, n;
(3) The grading function should be bounded below.
Let
D, = {H :132"6]' | ;e Zt z; e R (or C),1,5 = 1,...771},
i=1

where ¢; is the j-th standard unit vector in R” (or C*). Consider the function

0: D, — 7Z defined by

J (H fﬂ?ey’) =Y ali+d;, (1)
=1 1=1

where a,;, d; € Z, 1,7 = 1,...,n. From the definition of 4, it is obvious that
condition 1. for a grading function is satisfied. Now we look for conditions
such that the function é defined by (1) satisfies all other conditions of grading
functions.



Lemma 2.1 The function 6 defined by (1) is bounded below if and only if
all {a;;} are nonnegative integers.

Lemma 2.2 Let the function § be defined by (1) with all coefficients {a;;}
and {d;} nonnegative and Hy, be the linear space spanned by all monomials
in 6 1(k). Then dim(H}) is finite(or zero) for any integer k if and only if
all {a;;} are natural numbers.

Lemma 2.3 Let the function 6 be defined by (1) and Hy be defined as in
Lemma 2.2. Then [H,,, H,| C Hyy, if and only if

a1 = ... = @y, = —d; for anyi=1,...,n.
Proof. Letu= ][ :ciiej,v = TII $i~;ek and 6(u) = m,§(v) = n. Then
i=1 i=1

[u,v] = Du-v—Dv-u
l T l l’v T l, n ]
— Kk i, _ 3 i i
= o il;Il T, ry il;ll T, il;Il ziep @
o [_k n lt+li o i n l;+li
T ,.1;11 Ty €T il;Il T; ‘ep.

We first assume that a;; = a0 = ... = a;,, = —d;,2,7 = 1,---,n. Then

n l’L ll n
) <i ];[1 x, - ’ej> = 1'21 aij(l; + 1) — arj + d;

= <E aijli + dj> + (E airli + dk> =m+mn,
=1 =1

) (% H xi'i+l;ek) = 21 alk(l% + l;) — ajp + dy,
= (Z aikli+dk> + (E aijl;+dj> =n+m.
i=1 =1

Hence, from(2), we have [u,v] € H,,1,. Note that the operator [-, ] is bilin-
ear. Therefore [H,,, H,] C H,in.

Conversely, we suppose that [H,,, H,]| C H,,+, holds for any integer m, n.
For any k € N, we fix a v € H,, with [, > 0. Then from (2) we have

Z ai]'(li —+ li) — a,k]' —+ d]‘ = (Z a,i]»li + d7> —+ (Z aikl,; —+ dk) .
=1

=1 =1
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Hence

n

> (ain — aij)l; + di + a; = 0,
=1

n

dp + ap; = Z(au‘ — aik)lz-

i=1
[, 1=k
[ ? ?
If we take [; = { 0, ik where [ € N, then
di + ap;
Ay — Qpk = % (3)

Letting | — 400, we have ay; = a. Note that j is arbitrary. Therefore
g1 = ... = Qg = ... = Qgy, and hence from (3), d, = —ay; follows.

Definition 2.4 Let

D, = {H;v,lli"ej | l; €ZT,2; €R (or C),4,j = 1,...,n},

=1

where e; is the j-th standard unit vector in R™ (or C*). Then the function
0: D, — 7Z defined by

) <H xffe]) = Z aili — (Z]', (4)
=1 =1

where a;, € N, ¢ =1,...,n, is called a linear grading function.

Remark 2.5 1)Suppose that & is a linear grading function defined by a set
of natural numbers {a;}. If {a;} has a common factor ¢, then the function %5
15 also a linear grading function. So we will always assume that any linear
grading function is defined by a set of coprime natural numbers {a;}.

2)Any linear grading function § satisfies
O(ze;) =0 forall i=1,...,n.

Hence for any grading function 4, min §(p) < 0.
17

3)If the linear grading function 6 is defined by a set of successive natural
numbers {aq, ..., a, }, then for Vk > 1 — n, dimH;, > 1.

6



Example 2.6 If ¢ (ﬁ :1::’;"6]'> = i l;,—1,4e ay=..=a, =1, then ¢ is
i=1 i=1

a linear grading function. Note that the classical definition of the degree of

ﬁ xi e; 1s i l; and hence the grading function defined above shifts by 1 w.r.t
i=1 i1
the classical grading.

2
Example 2.7 In D, = {H azi-iej, j= 1,2}, define
i=1

20 +3l,—2, j=1
Ll ) — 1 2 y J )
5($1$2€J) { 2 +3ly—3, j=2.
Then §(xqoer) = §(x2ey) = 1. Note that maey is a linear term and zie; is a
nonlinear term in the classical sense.

3 N-th order normal forms

Let 6 be a linear grading function and Hj be the linear space spanned by
all monomials of degree k. Consider a formal vector field V' defined by the
following formal series

X:X’u+Xp_|_1+...+X”_|_k+..., (5)

where X, € Hy, k> pand X, # 0. We call (5) a zeroth order normal form
and denote it as

() :‘/N(U) + X1+ X + (6)

We may assume that X, is already in some simple or satisfactory form(e.g.
X, may have been changed to simpler form by classical normal theory).

Let Y, € Hj, and ®y, be its time one mapping given by the flow CI)’%C
generated from the vector field corresponding to the equation & = Y (z), = €
R™. Then the transformation y = ®y, (z), which is a near identity change of
variables, brings (5) to

Py, X = exp(adYy)X
= X+ (adV)X + ... + L(adV})"X + ..,



where (adY;)X = [V}, X] and (adY;)" = (adYi)" ™' - (adYi), n =2,3,....
For any k € N, define an operator

L}cl) : Hk — H’quk : YVk = [Y/mvp(o)] (7)

It is obvious that LS) is linear. Note that L}cl) depends on VN(O) and can be
denoted by L\ = L;‘,,l)[V;L(O)].

Definition 3.1
V - VP + V,u_t,_l + ...+ Vp—l—k + ..

1s called a first order normal form, if
‘/[-I,-I—k € N +]\7 k = 1,27 ceey

where N\ +,‘ is a complement subspace to ImL( in Hyyp, and L;ﬁl) = L?[VH].

It is easy to see that there is a sequence of near tdentity formal transfor-
mations such that (5) is transformed into a first order normal form which is
called the first order normal form of (5) and can be denoted by

vO =y 4y v (8)

Note that VIV = V0.

o

In order to make further reduction of a first order normal form, we define
a sequence of linear operators Lg"'), m,k=1,2,3,--- as follows. Let

V:VM+VM+1+VM+2+'”+Vu+k+'”

be a formal series, where V,, € H,, for each m > p. Then we define

L = LWV, by (7) for any k € N if L™ = LUV, Viar, -+, Vieponei]
is defined already for an m > 1 and any k£ € N, then we define L(m+1

m+1)
L;M + [VH7VH+1’ 9 p«l»'m] by

Lgn—l—l) : KeTLém) X Hm—l—k — H/l,—‘,—m,—&-k . ((Yk7Yk+17 "'7Y}\4+7n—1)7y}\7+771,) —
[Yka ‘/;I,—I—m] + ...+ D/k—‘,—m,—ly ‘/;H—l] + [Yk+m7 ‘/;1]



Remark 3.2 By definition, it is obvious that

KerD\™ = {(Yi,Yiq1, o, Yiemo1) € Hy X ... X Hym_1 |
[Y}m ‘//1] = 07
[Y}\?+17 ‘/;1] + [Yk7 ‘/;I,-I—l] = 07

[Y}\7+771,—17 ‘/;;] + ...+ [Yvk, ‘/;H-m,—l] = O} .

Definition 3.3 A formal vector field

where V,,, € H,, for each m > u, 1s called an N -th order normal form, if

Vi €NV (1<i <N —1),
and
N) .
VN+.7 € N/g—‘r; (.7 > N))
where Nl(ji,i 1s a complement to the image of L;JZ),,LH[V,“VN+17 o Virme]

in H, 1y for eachm >1 and k > 1.

Theorem 3.4 For any N € N, any formal vector field can be changed by
a sequence of near identity formal transformations to an N -th order normal
form.

Proof.  Consider a formal vector field(a zero-th order normal form)
VO =VO L X0+ o+ X + (9)
Define linear operator L") = L{V [VH(O)] and let
Hyr = ImLY) & N,

Then there is a polynomial Y'! = Yl(l) € H; such that (9) is converted to

v = e$p(adY1)V(O) = ‘/If()) + Vp(i)l + X,Sﬂg + e (10)



where V,(i)l e N /(,21. Then we define linear operator L(12) = L [V(U v, +1]
and let
H,io= ImL @N,+2

Then there is a polynomial Y? = Yl(z) + YQ“ , Where Y1(2) € Ker L(ll) and
Yy?' € Hy such that (10) is converted to

V3 = exp(adY? )V = VH(D) + Vp+1 + Vﬁo + Xl(tﬁg +- (11)
where V% ure € N(+2 Then step by step, for each m = 2,3,---, N, we define
a linear operator L(m) = L(lm) [VH Vu(rml 1] and then find a polynomial
ym =y .. +Y,™) where (Yl( LY e KerL!" ™V and Y™ e H,
such that

V(’I!L) — ea}p(adY'ln)V('lnfl)
= V,u([)) ©t+ V(Tln + X}:::n«l»l + e )
where V:+I. € N:H for k = 1,---,m, and where N:_?k is a complement to
I mL(1 Vin H s+ Furthermore for V() (denoted also as VWD) and for each
k =2,3,---, we consider linear operator L(N [V ... ’fle)l] and
find YNk = y™M 4. +Y,‘+N71 where (Y} ,---,YHNQ) € KerLk Y and
Y(_IJ_\R, 1 € Hj1n—_1 such that
YWk — ea:p(adYNk)V (N,(k=1))
O 4 N) ) N) (12)
=V A VAN F Vi e VH-H—N 1 +hot.

where V& + N 4+ EN, Ui}\, +; for each j > 1 and where N ot N +; 1s a complement

to ]mLHl in H,,ny;. Now the sequence of time one mappings defined by

the sequence of polynomial vector fields Y, ... YN (= YV Y N2 ... change
the given vector fields to an N-th order normal form. g
In what follows, we may always assume that all linear operators L(m) are

defined by the same sequence of homogeneous polynomials V,,, V41,

Lemma 3.5

(07}/k+1’ ”"Yvk’+m*1) € K(:’TL;JH) — (Yvk'+17 "'7Yk+mfl) S KeTL;jjlle)

10



Lemma 3.6
ImL{™ < ImL{™Y ) Wk,ym > 1.

Proof.  Note that

ImLI(:)l = {X/H-m-l—k | .
EI(Yvk+17 "'7Yk+mfl) € KBTLI(:ZI )
and Yy, € Hyyy such that
[Y}\7+17 ‘/;H—m—l] + ...+ [n+7n7 V[-l] = X/l,—|—7n+k} .

Taking Y}, = 0. From Lemma 3.5, if such that
[Yk-l—h ‘/lt-l-m—l] + ...+ [Yk+7n, VN] = X,u-‘rm-l—k,
then (0, Yk+l, vy Yk+m71) c Ke’l“L;!n) and

[07 V;H»m] + [Y}\f+17 Vu«l»mfl] + ...+ [Yk+m7 V,u]
= [Y}w*+17 Vu«l»mfl] + ...+ [Yk+m7 V,u]
= pt+m+k-

Hence X, 1,41 € [ngnH). O

Corollary 3.7

dim N < dim N7, Vkme N

Remark 3.8 It is reasonable to set

N}(ijzlt&n - N,(;Tl)ﬁ»m) Vk7 m e N

Remark 3.9 [t is obvious that for a given formal vector field its N -th order
normal form is simpler than its m-th order normal form if m < N.

11



4 Unique normal forms

Definition 4.1
V - VP + V,u_t,_l + ...+ Vp—l—m + ..

m

is called an infinite order normal form, iof V4., € ng +7)n for Ym € N, where

N;(]_I'_L,)n is a complementary subspace to ]mL:(lm) in H,4,, and where L(ll'") =

LY [V, Visty ooy Va1 for ¥Ym € N,

Though in general we have infinitely many choices for the complementary
space to the image of Lﬁ’") in H,.,, in what follows, we assume that the

choice of the complementary space N }j’;ﬂn to [ mL(lm) is fixed.
Theorem 4.2 Let
V - VP + V,u_t,_l + ...+ Vp—l—m + ..

and

W - ‘/;1, + VV,UI-‘rl + + VI//I,—I—m, +

be both infinite order normal forms. If there exists a formal series Y =
Yi+Yo+ ...+ Y, +... withY,, € H, (Vm € N) such that (®y),.V =W, then

Vp,+m = WM+7!L vm S N

Proof. Suppose it would not be the case. Then there exists an m € N
such that

Vit = Wy (I1<k<m—1), Viem # Wpm-
Recalling
W = exp(adY)V
= VAWV gV 4 Y V] 4

we have

1 1
Wy =V, + [Y, V]k + E[Y, [Y, V]]L + ...+ E[Y, cers [Y, V]]L + ...,

12



where [V, V], = [Y,V] N Hj. Similarly for [Y,...,[Y,V]...]s. Notice that
this infinite sum has in fact finitely many nontrivial terms, and hence the
summation is well-defined. Therefore we have

Y, V] + %[Y, Y,V + o + %[Y, V] e4 =0 (13)

for p+1 <k < p+m—1. It is easy to see that if [Y, V] # 0 and if the lowest
degree of terms in [Y, V] is [, then the lowest degree of terms in [Y ..., [Y, V]..]
with n-fold bracket operations is [ + n — 1. Hence from (13), we have

[Y7 V]M+1 = 07

1
[Y7 V]N+2 + _[Y> [Y7 V]]N+2 =0,
21

1 1
Y, V]ptm—1+ 2—'[Y, Y, V]]tm—1+ - + %[Y, e Y, Ve pgme1 = 0.

By induction, we have
[Ya V]p-l—l - [Ya V];L—&—Z — e = [Y7 V],LA+771—1 - 0:
and therefore

[Y% Vu] + [Yh VH+1] =0,

[Y,,,L,]_, Vu] + I:Y‘VHL727 V;H»l] + ...+ [Yb Vu«l»me] — 07
namely, from Remark 3.2,
(Y1,Ya, ..., Yin1) € Ker L™V,

Thus
WM+'I!L = Vu+m + [Yv V]M+7n'

Note that
[Y, V],u+m = [Y17 V;H»mfl] + ...+ [Y;n) V1]7

This means [Y, V],4m € ImL:(lm).

13



On the other hand, V,,,, and W, are both in the same complementary
space N(+,,L to ImL(m) Therefore

Wit — Vagm = [V, V]psem € N0 Im L™ = {0},

ptm

and hence W,,, = V,,,,. This contradiction shows that the conclusion of
the theorem is true. O

Corollary 4.3 If

v =y O Ly v+ R+

and
W™ =vO L w® 4w+ W+

are both N -th order normal form of (5), then

k) k)
‘/:U(-‘rk:W;E,-Fk? kzl,

N.

°9

5 A special case

In this section we assume that all linear operators L,(;m) are based one the

same sequence of polynomials V,,, V11, .

Proposition 5.1 If there exists an N € N such that

holds, then

KerL{™ = {0} x ... x {0} xKerL{)),, Vk,meN (14)
and
Im LY = fm LT vk e N (15)

14



Proof. By assumption, (14) with m = 1 apparently holds. Suppose we

have X, 1rinvs1 € ImL,(CNH), namely, there exists (Y}, ..., Yiiny1) satisfying

(Yis ooy Yian) € KQTLEA,NH), Yigns1 € Hypnias
Yi, Vignsa) + oo + Yignva1, Vil = Xpgrg v

From assumption, Y}, = 0 and (Yi11, ..., Yiin) € KerLg)N. Hence
Wi, Virn] + oo + Yy, Vil = X v

This implies that X, 1 n+1 € Ingfl) and hence ]mL,gVH) C ]mLﬁTl).

. N+1 .
Conversely, if we assume X, 1in41 € [ mLé +f ), namely, there exists

(Y41, --r Yipn41) satisfying

(Yeg1s o Yarn) € KerLEA,J-\&[-)la Yient1 € Hipng,

Yirt, Virn] + oo+ Vv, Vil = Xy nvgr
Then taking Y;, = 0, it holds that (Yy,...,Yiini1) € KerLchH) and appar-
ently

Yo Vir vt + Yart, Vieen] + oo+ Vi1, Vil = X v
This implies X, ;i ny1 € ]mLLNH), and hence [nglﬂ) - [mLéNH).
Therefore
ImL{ = Im DY,

namely (15) holds for m = 1.
Suppose (14) and (15) hold for a fixed m > 1. Let (Y, ..., Vienim) €

K erLg,NﬁnH). Then
[ka V:u+N+m] + ...+ [Yk+N+ma V:u] =0. (16)

Note that (Y, ..., Yeanim-1) € KBTL,(‘:Ner). By induction hypothesis, Y; =
0,y Yerm—1 = 0and(Yiam, -, Yerman—1) € KeTLan. Hence from (16),

L](\;Jij;tl)(yk+m7 sy Yk+N+7n) = 07

or in other words,

N+1
(Yigms s Yy nm) € Ker LY,

15



By assumption, Yii, = 0 and (Yigmi1y ooy Yermin) € KerLHm+1 Hence

KerL ™ < {0} x ... x {0} xKerLYY), .1, VkeN.

m—+1

Conversely, take Y, = 0,...,Yi1mm = 0 and (Yiima1, oy Yirmin) € Ker

LI(\{VHnJrl Then
L;CN+771+1) (1/]” o Yk+m+N)
= [Y}w*+171+1) V:u+N71] + ...+ [Y}w*+171+N7 Vp]
= 0,
namely,

{O} X X {O} XK€7’L +m+1 - Ke L;JN+7"1+1)‘

m+1

Therefore (14) holds for m + 1 and for any k& € N. In a similar way, (15) can
be proved as in the case m = 1. O

Corollary 5.2 If there exists an N such that
KerL,iNH {0} x KerLéJrl, Vk € N,
then an (N +1)-th order normal form must be an infinite order normal form.

Proof.  From Proposition 5.1, we have

Im LY = pn LY Ykmoe N

Hence we may set
N(N—I—m—l—l) o N(N+1')
pt+k+N+m — *Vpt+k+N+m

as complementary subspaces to [ mLiNJFmH) for Vk,m € N. Thus, for any

m>N +1,
(m) (N+(m—N-1)+1)
N,u+m - N/J—I—l-l—N-I—(’Hl N— 1)

which implies that, if V N+1 e N NJX;I), then Vlfﬁ:l eN Tm for any m >

N + 1. The conclusion thus follows. O

16



Corollary 5.3 If there exists an N € N such that ['mL,(\:Ner) = [mL}fRn for
any k,m € N, then the N-th order normal form is an infinite order normal
form.

Example 5.4 If KerL,(i,l) = {0}, Vk € N, then a first order normal form is
also an infinite order normal form, and hence it is unique normal form of
the original equation.

6 The Bogdanov-Takens normal form: the
case =2,v=1

Baider and Sanders [BS2] gave unique normal forms for cases u < 2v and
i > 2v of Bogdanov-Takens singularities. But the case pu = 2v is still
unsolved. In this section we consider a special case, i.e., p = 2, = 1. By
using our method introduced above we give the unique normal form for this
case.

We consider the following equation:

& = y+anzy+ apy®+ 0(3),

. 1
g = azy+ Bz’ +bpey’ + O0(3), 17)
where o, 3 # 0.
Define 6 : Dy — Z by
5<xy >:m—|—2n—1, 5( ,,,E],,L>:m+2n—2.
0 Y
Then ¢ is a linear grading function with
¥\ 0 _ 0\ z? _
5(0)_5(xy)_5(x3)_1, anch( ’ >_1.
Let
0) _ Y
= < ary + By )
Then the equation (17) can be written as
VO = v v v g (18)
where VO € HS  m =1,2,---.

17



Lemma 6.1 The following vectors form a basis of the space H,,:
For m =2k + 1,

0 0 0 0
$2k+3 ) ka-l—ly PR xSyk ’ xyk-l—l )
le2k+2 ZUZky l’2yk yk+1 ‘

0 3 0 Yooy 0 ) 0 )

For m = 2k + 2,

0 0 0 0
x2k+4 9 x2k+2y PRI 372yk+1 ’ yk+2 9
$2k+3y x2k+1y LUSyk $yk+1

0 s 0 sy 0 R 0 .

In particular, dim H,, = m + 3.

Lemma 6.2

0 (0) _;vmyn
$n1y71 7V1 = mwmflyn{»l + (7’L _ 1)awm+lyn + nﬂxm{»?)ynfl )
$n1y71 V(U) B mwmflyn{»l + na$7n+1yn + nﬂxm{»?)ynfl

0 s V1 - —Oéll?my7l+1 _ 3ﬂ$m+2yn .

Lemma 6.3 Let

k+1 0 k+1 x2k+2—21’y7i
Yore1 = ) 4 ( p2hH3=2igi > +>_bi ( 0 > :
i=0

=0

Then
0 hil 0 . .
i=—1
+(Z + 2)ai+2[3 - bia — 3b2+16}
k x2k+1—2%ﬁ+1 . '
+ > ( 0 ) {(2k +2 — 20)b; + (i + 1)b; 1
i=—1

+(2 + 2)b; 20 — ait1},

where a; =0, b; =0 of1,5 <0 ori,j>k+2.
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Lemma 6.4 Let

k42 0 k+1 x2k+3—21’y7i
Yopso = D a; ( p2hA=2igi > +> b ( 0 ) :
i=0

=0

Then

k+1

0 . .

[Yart2, Vl(o)] = < L2320y ) {(2k + 4 — 20)a; + ia;, 10
i=—1

+(Z + 2)ai+2[3 - bia — 3b2+16}
k+1 ( x2k+1—2iyi+1

+> 0

1=—1
+(i 4+ 2)biy2ff — aig1},

) {(2k + 3 = 20)b; + (i + 1)bj1 @

where a; = 0, b; =0 1fi,5 <0 ori,j>k+2.

Using these results, we have a matrix representation for the adjoint opera-
tor ad(Vl(O)),i.e.,Lg). Note that LY : H,, — Hypq: Yo = Yo, Vl(o)]. Hence
the matrix representation L of L{!) is given by an (m + 4) x (m + 3)-matrix.
Let

(L1 L2
(b 2)
Then the submatrix L3 is such that — L3 is the identity matrix of the size

[ = {%] + 2, where [¢] stands for the integer part of ¢; The other three

submatrices are (almost) tri-diagonal matrices. More specifically, they are
given as follows:

For m =2k + 1,
—a I6] 0
%+3 0 28 0
2k+1 o 30
Ll = ' B )
(k+1)8
3 ko
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—343

—a —303
—a —303
Ly = . .
0 G 0
2k+2 o 28
2k 2a 3P
L4 - .. .
For m = 2k + 2,
—« I6] 0
2k +4 0 20
2k+2 «
Ly =
—38
—a —3p
—a —3p
L= . .

2k 2o

20

o 3P

—x




0 B0

%+3 o 28 0
2%k+1 2a 38
Ly = o
. (k+1)8
0 1 (k+1)a

Remark 6.5 In order to simplify the expression, we may assume that o = 1
since we may make a suitable linear change of variables x,y,t in the equation
(17) such that the coefficient of zy is changed to 1 and the coefficient of z°
is changed to 3/a? accordingly.

Lemma 6.6 For both m = 2k + 1 and m = 2k + 2, the first k + 3 rows of
matriz L can be reduced to the form

(0 1)
by a suitable row transformation. Here the matrix
M=(Mj) (-1<i<k+1;0<j<k+1)

be given, using o = 1, as follows:
[Case I] For m =2k +1,

M,y = (2k + 3 — 26)(2k + 4 — 2i) (i=1,...,k+1)
M;; = (4k + 5 — 41)i — 1 (i=0,...,k+1)
M1 = i(i+1)+{(4i +6)k — (4i + 3)i}p (i=-1,...,k)

and the other entries are all zero.

[Case II] For m = 2k + 2,

M1 = (2k+4—-20)(2k+5—-2i) (i=1,...,k+1)

M;; = (dk+7—4i)i—1 (i=0,....,k+1)
Miiy1 = ti+1)+{(4i4+2)k— (4> +3:—9)}5 (i=-1,....k)
M;ir2 = 20+ 1)1 4+2)8 (i=-1,...,k—1)
Miiy3 = (i+2)(i+3)5% (i=-1,....,k—2)

and the other entries are all zero.
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For convenience, we denote M, ;1 = a;, M;; = bj, M; ;41 = c;+d;,3, M ;40 =
ei3,mi ;3 = fi3* for both cases.

Lemma 6.7 If 3 is not an algebraic number, then
KerL® = {0}, Vm e N.
To show the lemma, it is sufficient to show that
det M # 0

where M = (M;j)g<; j<).y, 18 @ submatrix of M.
First we consider the case II.

Lemma 6.8 In the case II, we have
det M|g—y # 0
Proof.  Let D, be the following subdeterminant:
Dy = det (Mijlo=0)1<; j<i -
Then it is easy to see that
det(M|p—0) = (=1) - Diy1.
By induction we can show

(I +1)1(2k + 1)!
(2k+1—20)1 ~

D =

In fact, it is true for [ = 1 and 2. Since M=, takes a tri-diagonal form, we
have
Diyv =bip1 - Dy — qagpq - Dy

Therefore, using
biyn = (Ak+3—-40)(+1) -1,
a1 = (2k+2—-20)(2k + 3 —21),
g = l(l + 1),
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we have
I+ D12k + 1)

(2k + 1 — 2!

N2k + 1)
(2k + 3 —2)!

Dy = {(4k+3—-4)(l+1) -1}

—I(1+ 1) (2k +2 — 20)(2k + 3 — 21)

(I + D12k + )N

{(4k 4+ 3 — A1)l + (4k +2 — 41) — [(2k +2 — 21)}

(2k + 1 — 2011
(1 + 1)!(2k + )N ‘ ‘
@k+1_mﬂ!-a+n@k+1—y)

{(l+1)+1}(2k+ 1!
{2k+1=2(l+ 1)1

The conclusion is thus obtained.
It follows that

det(M]p_o) = —Dyy1 = —(k + 2)/(2k + 1)1 £ 0,

and hence the lemma is proved. d

Next we consider the case I. We introduce the same subdeterminant

Dy = det (Myj]p=0)

1<i i<l

for this case as well. Again, by induction, we can show

Lemma 6.9 For the case I, we have

(I + 1)12k!!

D=~
T2k — 20

From the lemma, we have
det(M]p-0) = —=Dy+1 = 0,

and hence we cannot conclude det M # 0 immediately. We therefore differ-
entiate det M with respect to # and will show that

0
% det M|/3:(l # 0.
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Let M be the matrix given by differentiating the I-th column of the
matrix M with respect to 3. It thus takes the following form:

0 6k 4 0 0
a b o
M(U)|,6’:0 — ;
Cr,
O Ap+1 bk+1
-1 0 0

ap by ¢

! a1 b1 ,
MO = 0 0 d g ’

ar41 bl+1 Cl+1

ar4+1 bk—&-l
ay bl (&1
MO, = 0
O Qay. bk CL,

The determinants of these matrices are given as follows:
det (M©]p—g) = (—a1) {6kd) — 4azdys},
det (M(l)|/j:0) = Dia(—a){didk1 — ar0eib 11}, 1<1<k+1,

where
O = det (Mij|ﬁ3:0)k+2—m§7:,jgze+17 l<m<k—1,
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and

50 - 6_1 - 5_2 - ]_
By induction, we can show:
Lemma 6.10
(2m — 1)NK!

5777, - (k—m)! bl

1<m<k-1
From these formulas, we shall compute

0
85 — det M/j 0 = (—al) {6]{35]\ — 4a25k,1}

Z —ai1Di {d15k 1 — Qry2€10, 1 1}
I=
+(— ak+1Dk 1)dj.

First we compute the second term. Since

e 112F k! 2Rt
T @k +2-20 T (k10 (k4+1—1)
5 (2k—1-20UKI 2k —1-20W! _ (2k— 20K
bt Il N2k=1-1(k — 1 — D)1 — 2k=1[1(k — )V’
5 (2k —3 -2kl (2k—3—20)lk!
et (+1)  (+ D220k —2—1)
o (2k—2— 20!
S+ DY (k-1 -1V
we have

22-1(k1)2(2k — 21)!
(k+1—0)(k— )12~

diDi—10k—1 — @261 D1—104—1—1 = —(2k — 5l)

Hence

2A-L(k1)2(2k + 2 — 21)!

—a1 D11 (dibp—1 — ary2e165—1-1) = (2k — 5l) e+ 1=k —D12F
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We need to compute

"l 22412k + 2 —20)! (k)2
2k — 51 : :
Z; 5hk+1—nxk—0! 2k

Lett =k+1—1and
. (27’)‘ . :—1
Api) = o 47 p=1,2,3
for simplicity of notation. Then [ = k 4+ 1 — 7 and

Pk 220 (K BR5)R)E, L 5(k?
k+1-Di(k—10 20— okt (i) +

(2k — 51)

Therefore we need to compute
k
D AyE) for p=1,2.
=2
Lemma 6.11 (1) Ay(i + 1) — A (1) = 1A,(2)
(2) As(i+ 1) — A7) =
(3) As(t+1) — As(i) =

A1(3) + 340(9)
Ag() + 241 (i) + A0(2)

NICT DI

Proof. A simple computation shows

Ap@-%1)—-Apu)::(2”{ﬂFi-{(i+—%)(i+-np—1—ip}.

ole!

For p =1,2,3, we get

1 1
G+§>@+n11—ﬂ=§&

1 3 1
Q+§>u+921—ﬂ:§ﬂ+§ﬂ

1 5 1
Q+§)@+U31—ﬁ:§ﬂ+2ﬂ+§&

and hence the lemma follows.

26




Summing them up from ¢ = 2 to k, we have

éAl(z) _ g{Ag(lﬁ-1)—A2(2)—A1(k+1)+A1(2)}
- g{(k +(2f);(fz: 0 k(k: - _3'4k_1};
éAQ(Z) - %{Ag(k:—I—1)—%Ag(k—i—l)—i—%Al(k—i—l)—Ag(Q)}
e taco
- %{(k ff)!?/fﬁ I e 1i(k+ 2 5'4“}'

From these expressions, we have

3k+5 (k1)? & 5k'2k L (2k+ 1)
PRS0+ G Dl = O 2t e
Therefore we finally obtain

0 (2k + 1)1k(2k + 3)

8ﬁ det Mﬁ 0= oh 1 > 0,

and hence we conclude det M # 0.

Theorem 6.12 If 3/a” is not an algebraic number, then the first order nor-
mal form of Eqn.(17) with respective to the grading function § is unique,
which s

T =y,
y — Cqu‘i‘ﬁﬂ?g‘i‘E?,::AlamiUm- (19)

Proof.  The uniqueness of the first order normal form follows from Corol-
lary 5.2, Example 5.4 and Lemma 6.7. A simple calculation shows that
spanz™ 30y is a complement to Im LV for each m € N. Then the first order
normal form (19) is obtained.
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