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Abstract

An inclination-flip homoclinic orbit of weak type on IR? is a homo-
clinic orbit given as intersection of a special one-dimensional C%-weak
stable manifold and the one-dimensional unstable manifold of a hyper-
bolic singularity with three real eigenvalues. In this paper, we show that
in a generic unfolding of such a homoclinic orbit, there appear curves in
the parameter space that correspond to ordinary inclination-flip homo-
clinic orbit of order N for any integer N. As a consequence, there exist
infinitely many homoclinic doubling bifurcation curves emanating from
the codimension three degenerate point corresponding to the inclination-
flip homoclinic orbit of weak type.
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1 Introduction

It has been known that, under some conditions, an orbit homoclinic to a hyper-
bolic singularity can undergo a homoclinic doubling bifurcation like the well-
known period doubling bifurcation for periodic orbits. Namely, it is a change
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of a homoclinic orbit into twice rounding one in a neighborhood of the origi-
nal homoclinic orbit. The first such results have been obtained by [5] for the
case of complex principal eigenvalues, and by [18] for the case of real principal
eigenvalues.

In fact the homoclinic and period doubling bifurcations have some simi-
larity for three-dimensional vector fields, because both of them are for a loop
orbit which becomes doubled after the bifurcations. It has been discovered by
Feigenbaum [6] and Coullet-Tresser [3] that the period doubling bifurcations
can occur for a 2"-periodic orbit giving rise to a 2"t!-periodic orbit for any n
successively, and the cascade of the period doubling bifurcations can accumu-
late with a geometric convergence rate at an onset of complicated dynamics,
which is now known as the period-doubling route to chaos. The main discovery
of Feigenbaum and Coullet-Tresser is that the way of accumulation is universal
in the sense that the convergence rate does not depend on the choice of families
of dynamical systems in which the cascade of period doubling bifurcations occur
but just depends on the local geometry at the bifurcation point.

A natural question would then be asking if similar doubling bifurcations can
occur infinitely many times for homoclinic orbits as well. Namely it is the bifur-
cation where a 2"-homoclinic orbit turns to a 2"*!'-homoclinic orbit for any n
successively, and the cascade of the homoclinic doubling bifurcations accumulate
to an onset of complicated dynamics, analogously to the Feigenbaum-Coullet-
Tresser phenomenon for the period doubling bifurcations. In fact, according to
numerical experiments for a family of piecewise-linear vector fields, cascade of
homoclinic doubling bifurcations can occur and does accumulate with a geomet-
ric convergence rate. See [9] for the details of the numerical experiments. This
paper is a first attempt toward answering this question theoretically. Since the
complex eigenvalue case seems to be rather well-understood and is not likely to
have such accumulation of successive homoclinic doubling bifurcations in a way
similar to the Feigenbaum-Coullet-Tresser case, here we focus on real eigenvalue
case.

In the real eigenvalue case, several mechanisms for homoclinic doubling
bifurcations have been known by [18], [2], [9], and [16]. All these homoclinic
doubling bifurcations occur in a codimension 2 manner: we need two parameters
to have such bifurcations. Furthermore, if we want to find successive homoclinic
doubling bifurcations, we must trace the bifurcation branches globally in the 2-
parameter space, which is in general a very difficult task. In order to get around
this difficulty, we consider a similar problem in a local situation. Namely, we put
the problem into a more degenerate situation that involves three parameters,
and try to find homoclinic doubling bifurcations locally in a neighborhood of the
degenerate point of codimension 3. To be more precise, we consider what is called



the inclination-flip homoclinic orbit, a codimension 2 homoclinic orbit through
which one type of homoclinic doubling bifurcation may undergo. We take, as a
codimension 3 point, a degenerate version of inclination-flip homoclinic orbit,
called that of weak type, and study bifurcations occurring in a neighborhood
of this degenerate homoclinic orbit. In this paper, we shall show the existence
of inclination-flip homoclinic orbits of order N for every integer N, namely,
an inclination-flip homoclinic orbit rounding N times in a neighborhood of the
original homoclinic orbit, which bifurcates from the inclination-flip homoclinic
orbit of weak type.

We shall recall some definitions in order to state our main result. Let X
be a smooth vector field on IR?, O being a singularity of saddle type such that
dXo, the linearized vector field at the singularity, satisfies d Xy = )\UZU% —
)\ssya% — )\Sza%, where —\;, < —A, < 0 < A,. Put a = A\ /A, and 5 = A/ A,.
The stable (resp. unstable) manifold of the saddle is of dimension 2 (resp. 1),
which we denote by W*** (resp. W"). Also, there exists the one-dimensional
strong stable manifold W*®, which is a part of W**°, whose tangent space at O
is spanned by the eigenvector associated with —A,.

There also exists an extended unstable manifold W*?: it is an invariant
manifold whose tangent space at O is spanned by the eigenspaces associated
with —)\, and ),. In general, this manifold is not unique and is only of C'!, but
its tangent space along the unstable manifold do not depend on the choice of
W™*. See [7] for the proof of existence and uniqueness of these manifolds.

Throughout we shall assume that X is of at least C'® uniformly linearizable.
More precisely, for any unfolding X, of X, v € IR?, there exists a neighborhood
Wo of the singularity and a C? diffeomorphism g, depending on the parameter
in C® manner, such that for all v near 0, ¢(X,) = d(X,)o holds on Wy. This
property can be obtained if we consider some non-resonance conditions for the
eigenvalues at the singularity. See [1], [15] for more details.

Under this condition, and under the eigenvalue condition 1/2 < f < a < 1
which we assume throughout the paper, there exists a unique C? weak stable
manifold, which is an invariant one dimensional manifold tangent at O to the
eigenspace associated with —A,. This manifold is given as follows: Using the
local linearizing coordinates, any one dimensional invariant manifold in the
local stable manifold, except the strong stable manifold, has the form: z = cy%
for some constant c. Since a/f < 2 from the assumption, such a manifold can
not be C? except in the case where ¢ = 0, which is precisely the desired weak
stable manifold, and hence the uniqueness of such a C? invariant manifold is
guaranteed. See [13] for more details. We denote this manifold by W?*.



Definition 1.1. We say that I' is an inclination-flip homoclinic orbit if it sat-
isfies the following properties:

1. T' is a homoclinic orbit;
2. W=NTI =0
3. W#% is tangent to W** along I'.

Under the eigenvalue condition 1/2 < § < a < 1, we also say that I' is an
inclination-flip homoclinic orbit of weak type if moreover I' N W* #£ §.

Definition 1.2. Let X, v € IR?, be a smooth family of vector fields. We assume
that, at v = 0, the vector field X, has a homoclinic orbit I'. We say that I'y is
a homoclinic orbit of order N bifurcating from I' if for a sufficiently small disc
¥ through which T' passes transversely, there exists a neighborhood Vi C IR?
of 0 such that the vector field X, for some 7 in V5 possesses a homoclinic orbit
['y with the property that I'y N X consists of NV points.

Note that this definition does not depend on the choice of ¥. Now, we state the
main result of this paper.

Theorem 1.3. Let X be a smooth vector field on IR®, O being a singularity of
saddle type such that the eigenvalues —A,;, —A;, A, at the singularity satisfy
1/2 < B = A/ A < a = Agy/Au < 1. Moreover, we assume that X possesses
an inclination-flip homoclinic orbit of weak type. Let X,, v € R? (d > 3),
be a smooth generic unfolding of X. Then, for any integer N, there exists an
inclination-flip homoclinic orbit 'y of order N bifurcating from I'.

Let us now recall some results concerning bifurcations from inclination-
flip homoclinic orbits. Kisaka, Kokubu and Oka [9] studied unfoldings of an
inclination-flip homoclinic orbit in the case where 1/2 < § < 1 < a, proving
the existence of the homoclinic doubling bifurcation. Deng [4] observed that an
inclination-flip homoclinic orbit can give rise to chaotic dynamics under some
condition of eigenvalues. Homburg, Kokubu and Krupa [8] then proved the
existence of suspension of the Smale’s horseshoe in unfoldings of an inclination-
flip homoclinic orbit with 8 < 1/2, 28 < a and with quadratic tangency of
W#** and W*. They described completely how homoclinic orbits of order N
are created and destroyed in the unfolding. Sandstede [17] showed the existence
of a shift dynamics in the unfolding of an inclination-flip homoclinic orbit with
a < 1, a < 20 using Lin’s methods [11].



Recently, the existence of Hénon-like strange attractors was proved in [14],
using a result of Mora and Viana [12], in the case where 1 < a4+ 3, § <
1/2, Kf < a with some large enough K (in fact K = 3 is enough, see [13]).
Moreover, Hénon-like attractors also appear in the unfolding of an inclination-
flip homoclinic orbit of weak type when the eigenvalues at the singularity satisfy
l<a+pf, a<28<1.

It was proved in [13] that an inclination-flip homoclinic orbit of weak type
with a < 20 < 1 can be generically unfolded in a codimension 3 manner, and
that suspension of the Smale’s horseshoe appears in the unfolding of such a
homoclinic orbit. Note that the mechanism of creating the suspended horseshoe
is different from that in [17].

Sandstede also obtained various results concerning so-called the orbit-flip
homoclinic orbit, another codimension 2 homoclinic orbit undergoing the homo-
clinic doubling bifurcation which is given as a connection between the strong
stable manifold W** and the unstable manifold W*". See [16] as well as [10].

This paper is organized as follows. In Section 2, we prepare some definition
and notation for later use, and in Section 3, we prove the main theorem. Finally,
we make some remarks concerning the successive homoclinic doubling bifurca-
tions and accumulation of infinitely many homoclinic doublings in Section 4.

2 Preliminaries

Let X be a smooth vector field that possesses an inclination-flip homoclinic
orbit I' of weak type, let X, v € R? (d > 3), be a smooth generic unfolding of
X, Xo = X, and let Wy, be a neighborhood of O where X, is C?-linearizable.

Up to some smooth change of coordinates, we may suppose that for all v:
W (y) N Wy C {(z,y,2) € R*| z =0},
Wy )NWo C {(z,y9,2) e R* | y =0, = =0},
W*(y)NWo C {(z,y,2) e R*|y =0, z =0},
W\ NnWy C {(z,y,2) €IR® | y =0}
We define the following two cross sections, which are transverse to I,
Y = {(z,y,2) e Wo | 2z =1},

St = {(z,y,2) EWo |z >0, 2=1}.



Let f, : ST — ¥ (z,9,1) = (1, fy,fz) and h, : ¥ — ST; (1,Y,Z) —
(hy, hy, 1) be the local and global maps whose composition defines the Poincaré
map along I' associated to X,. As X, is locally linear in Wy, we have fy = yz®
and f; = . Moreover, we have the following expressions for hy:

he = €(v)+a(Y +p(1)Z + Q.(Y, Z), (2.1)
hy = w(y) +c(MY +d(7)Z + Qy(Y, Z), (2.2)

where €(0) = ¢(0) = w(0) =0, and Q., @, are higher order terms. The family
X, unfolds an inclination-flip homoclinic orbit of weak type if the map v €
R? — (€, pyw) € IR? is a submersion at 0. The parameter ¢ breaks the saddle
connection, and u, the tangency between W** and W***. Both parameters
hence unfold the inclination-flip homoclinic orbit, and that of the “weak” type
is obtained when (¢, y,w) = 0. From now on, we may consider without loss of
generality v = (¢, 4, w). Moreover, as the Poincaré return map needs to preserve
the orientation, we have a(0) - d(0) < 0. Note also that both @), and @, consist
of higher order terms, hence at least quadratic.

Definition 2.1. For any integer n > 1, we define h,
(ho(Y, Z), hyyy(Y, Z)), such that:

L% = St h, (Y, Z) =

LY

hl,’r = h’y: hn+1,7 = h’y 0 f 0 hn,qﬂ

Define also:

ahu,w
07z

En('Y) = hn,ax(ov 0)7 M71(7) = (07 0)7 wn(V) = hn,y(ov O)'

We will use the following notation for the matrix H,, associated to Dh,,(0,0):

G Hn
H, = ( d‘n) . (2.3)

Cn

All the entries depend on the parameter and may not be bounded as one of
the parameters tends to 0. With these definitions, we can say that X, has an
inclination-flip homoclinic orbit of order n if and only if

en(7) =0 and p,(y) = 0.



3 Proof of Main Theorem

For any integer n, we shall find a curve of inclination-flip homoclinic orbit of
order n (abbrev. IF,) in the (e, u, w)-space with the form:

w= M,(e) - eP w= Qu(e) - 77, (3.1)
where both M,,(¢) and ©,,(¢) are continuous functions and:

lim M,,(¢) < 0, liII(l) Q,(e) # 0. (3.2)
€E—

e—0

We will assume that there exist functions M, (¢) and ,,(¢) satisfying (3.2)
such that if both p and w satisfy (3.1), we have ¢, = p,, = 0 and ¢; # 0, p; # 0

for all 0 < ¢ < n. More precisely if we define A,, and B,, as smooth functions on
M,  and € by

€n = A(M,Q,€) - ¢, p, = B, (M,Q,€) - p, (3.3)
by introducing new auxiliary parameters M and () as
p=M-F w=0Q. 7 (3.4)
We intend to find a parametric expression (M,,(¢), 2, (¢€)) satisfying
An(M,(€),Qn(€),€) = By (M,(€),2,(€),¢) = 0 for Ve > 0,

and
1in% A (M, (€),2n(€),€) >0, 1in% Bi(M,(€),.(€),€) > 0, (3.5)
€— e—

forall 0 < ¢ < n.

Lemma 3.1. If the auziliary parameter Q lies in a region given by |Q] =
lwe*™t| > K > 0 for some constant K, then w,, = w{l + O(¢**~1)}.

Proof. By definition, we know that w, = h,,,(0,0). Assume this holds up to
an integer k, and show it for k£ + 1. We have w41 = hy o f o h,(0,0) and
hi(0,0) = (eg,wy). Using (2.2), it follows that

Wep1 = w4 ¢ fwy +d - € + Qy(€erwi, €r).

As @), and @, are at least quadratic, it follows that for all (Y, Z) near (0,0),
there exists a constant C' > 0 such that

19.(Y 2), Q,(Y, Z)|| < C|IY, Z|)%,
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where ||Y, Z|| = sup{|Y], |Z]|}. So, as a > 3, we have:
Qu(ewr, )] < O (36)
(This inequality holds also for @,.) Using (3.3) and (3.4), we obtain

’wk+1—w’ <

c B d ot C o
| g e + H Aglerttl g | [Auprents,

As wy, = w{l + O(eQﬁ_l)} and as 1/2 < f < a < 1, it follows that

’L“ — w’ <O,
w

Here we have used that || is bounded away from 0. This ends the proof of the
lemma.

Proposition 3.2. Let M and Q) be the auxiliary parameters given by (3.4) with
1] > K for some K > 0, and define A, and B,, by (3.3), then there exists a
continuous function f, (M, €) such that

Appr =14 aQAY + MAP + £,(M,Q, )

This equality will be used to obtain the first condition for IF,,;, namely
An+l = 0.

Proof. We know that h,11,(0,0) = hy o f o h,,(0,0). Using (2.1), it follows
that
€En+l1 = hn+1,x(07 0) =€+ aej‘fwn + Meﬁ + Qw(ezwﬂ7 Gg)

From (3.4) and Lemma 3.1, we have

toy1 = €+ aAQe(1+O0( 1)) + MA%e + Q. (P w,, )

n

1
_ . {1 FaATQ + MA? + 2 Q. (e, eﬁ)} .
€

n

Using an estimate similar to (3.6), we finally obtain:
s = {1+ aA20 + M A+ O()},

which is the desired expression.

We consider the situation at ¢ = 0 and introduce the functions



©n - 1R+ — IR? L,OH(.I') — An(_wv —33570),

¢n : ]R’+ _> ]R“+7 ¢n($) - ajso’lb(aj)ﬂ?

B (a—p %71 .. .
where ky = = (—) . Note that from Proposition 3.2, the function ¢,,(z)

satisfies the functional equation as follows:

Pri1(z) = 1+ kotou(2) T — (@) = a(Pn(2)). (3.7)
Lemma 3.3. There exists an increasing sequence {z,, },>2 satisfying
pulin) =0, @) () = 0
Un(@n) =0, ¥y (zn) =0
on(z) >0, ¢ (z) >0 for z>uz,

Yn(z) >0, ¥, (z) >0 for >,

Proof. We prove it by induction on n. It is easy to see that z, = a"Tﬂ satisfies
a(za) = @h(z2) = 0 and ¢4(x) > 0 for & > z5. From the definition of 5(x),
we also have ¥s(z3) = ¥4(z2) = 0 and ¢3(z) > 0 for z > z,. Recalling that
On+1(z) = pa(ty(x)) from (3.7), the desired solution z, (n > 3) is given as
a solution to ¥, 1(z,) = zs = afﬁ. This gives an increasing sequence, since
Y -1(x,-1) = 0 and ,,_1(z) is a strictly increasing function for > =, ; from
the induction hypothesis. This sequence satisfies the conclusion, because

n(Tn) = P2(Yn-1(20)) = pa(z2) = 0,
@) = Oh(z2), 1 (2,) = 0,

@n(@) = P3(Yn-1(2))¥;, 1 () > 0 for z >z,
Here the last inequality follows since %, _1(z) > v, 1(z,) = x2 and hence
05 (¢p—1(x)) > 0. Similar inequalities hold for ¥,,(x) as well. This completes the
proof.

Remark 3.4. We can even show that the sequence {x, } converges. See §4.2.

Now, we shall derive a recursive formula for B,, ;1. First, we need to estimate
a part of the matrix H,, given by (2.3) for all n. Recall that we want to find
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IF, 1, knowing the existence of IF,, for some values M,, and €2,,. Let y,, denote
ko 5

;m;f from here on.

Lemma 3.5. For M near —x,, and ) near vy, d, is bounded away from 0.

Proof. We prove the lemma by induction on n, and so we suppose that there
exists n > 0 such that d,, is bounded away from 0 as € tends to 0 and show
that d,,4+1 remains bounded as well, assuming (3.3)-(3.4) and (3.5) with all
0 < i< m+ 1. We denote by E(¢) the matrix associated to Dh,(f o h,(0,0)).
As h,(0,0) = (€,,w,), we have f o h,(0,0) = (ew,, €), and then, we get

E(M,Q,E):(a—l_gl M+92)’

C—|—93 d—|—94

where each 0; = 0;(M, §, €) consists of higher order terms in F coming from Q,
and @,. Using (3.4), we have

0;] < O(¢”)
for any 5. Now, we compute
aez_lwu €
H1L+1 =K. ( /665_1 0) . Hn-
A straightforward computation shows that
iy = (@ 0) (@€ ot + dc) + B+ B, (3.8)
dypr = (c+03) (e wppty + due®) 4 B(d 4 04) e (3.9)

It follows from this together with (3.3)-(3.4) and Lemma 3.1 that
diyi = (c+03){adAi e w(l + O(* ™)) By + d, A
+8(d + 04) AP 1B ue’ 1,
Using (3.4), we finally have
dojr = (c+05){aA> Bl + O(* Y))p + d, A%
+0(d+ 04) Al B, M.

Therefore, since M near —z,, 1 and § near y,,,1, in which case A,,(M,Q,¢) >0
for z,,41 > =,, we conclude that d,,;; is bounded. This ends the proof of the
lemma.
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Next we have a recursive formula for B,, as in the following proposition.

Proposition 3.6. Let M be near —zx, and 2 be near y,, and define A, and
B,, by (3.3) for each n, then there exists a continuous function g,(M,Q,€) such
that:

B
Bun =" {0aQAS + BMAL + g,(M,Q, €)1}

This will give us another condition for 1F,, ;.

Proof. Using (3.8) we know that
pnr = (a+ Or)(aen™ wppn + duey) + B+ 02) el
From (3.3), (3.4), and Lemma 3.1, it follows that:
pner = (@ + 00){aAT Q1L+ O(7 1)) un + duATe™} + B(p + 02 A1

Moreover, as || < O(€%P), it follows that there exists a continuous function
0 = 0(M,Q, ¢), such that p+ 60 = p(1 + 6), where

3] < ’%‘ O(21),

Also, we have
pnd, A% (a + 0,)

d, Are 01) = — .
€ (a+01) B
Using Lemma 3.5, we finally obtain
Bn
1 = A—u{aaAj:Q + BMAP + h, (M, Q,¢)} (3.10)

where

ho (M, Q,€) = 0 + d, A% a + 6y).

B, M
We claim that h, (M, Q,€) = e2°~1g,(M,Q, €) for some continuous function

9n(M,Q, €). First we consider the part aaA, (M, Q,€)*Q + BMA, (M, Q, €)P.
Let M = —z, Q = %.r? and € = 0, then

aaAQ) + BMAP = B <

(3



We can thus conclude that

aa A% 4 BM AP >0 (3.11)

PRN-Y
M:—z,Q:TOzﬁ e=0 —

if and only if

Yy (x) > 20 = =

or equivalently z > x,, 1. (3.12)

Next we shall prove, by induction, the following two assertions, both for M

near —x,, {2 near y, = %Oazg, and € small enough:
i) B, is bounded away from 0;
(i), y ,
(ii),, h,(M,Q,€) = €219, (M, Q, €) for some g,(M,Q,¢).

Since By = 1, the assertion (i), follows trivially. Then the assertion (ii), is
also true, since

1
ho(M, 9, €) = O(¥~1) + Mdlea+ﬁ_1(a +61).

As induction hypotheses, we assume (i), and (ii),, and consider the case for
n + 1. From (3.10) and (ii),,, we have

B,
Bui = {0aQAS + BMAL + g,(M, Q, €)1}
Noting that now M is near —z,,,2 and {2 is near y,,, 2, since we are considering
the case for n + 1. It then follows from the equivalence of (3.11) and (3.12) that
By, is bounded away from 0, and hence the assertion (i), ., is proven. The

assertion (ii), ,, now easily follows from (i), , ,, since
1
huea(M,9,6) = O(EY) + —1—d, 4%, 4(a + O(e).
Bn—l—lM

We have completed the induction, and therefore the proof of Proposition 3.6.

Completion of the proof of Theorem 1.3: We have obtained the increasing

sequence {z,} given by ¥, 1(z,) = z2. Let y,, = %Occf, then from Lemma 3.3,
they satisfy

A7z(_$n,7yn70) - Qpn(mn) =0

and
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Ai(—20, Yn, 0) = pi(z,) > 0 for 0 < i < n.

Furthermore, from the proof of Proposition 3.6, they also satisfy
Bn(_xna Yn, 0) - 0

and
Bi(=y,yn,0) > 0 for 0 < i < n.

Therefore (M, ) = (—x,,y,) satisfies the condition of IF, when ¢ = 0. Now
we use the implicit function theorem to

A,(M,Q,¢) =0and B,(M,Q,¢) =0
around (M, Q, €) = (—z,, Yn, 0) as follows: A straightforward computation gives

det (a(An"rl? Bn+1)

8(M, Q) ) ‘(M,Q,E)_(—ﬂ?n+1wyn+1w0)

0A, +aQ 8An)

oM o0 (M, Q,6)=(—2n+1,4n+1,0)
= {pu(ar2) + A2u10h(@ne1)} (@ — B)a By AT

= (a — fB)aB, A*+P=2 <An + BM

(M,Q,6)=(—ni1,Yns1,0)

From Lemma 3.3, we know that ¢,(x,.1) and ¢! (z,,1) are positive, and

hence that det (%ﬁm)’(M,Q,e):(—wnﬂ,ynﬁ,o) > 0. We thus obtain a solu-

tion (M, (¢), Q. (€), €) with
(M,(0), €2,,(0),0) = (=, Yn, 0).

This gives a desired parametric expression (3.1) for IF,,. The proof of Theorem
1.3 is thus completed.

4 Remarks

4.1 First Two Successive Homoclinic Doublings

In this subsection, we shall compute the first two successive homoclinic dou-
bling bifurcations emanating from an inclination-flip homoclinic orbit of weak
type. To be more precise, in the three dimensional parameter space of (e, u, w)
which generically unfolds an inclination-flip homoclinic orbit of weak type, we
locate two curves of homoclinic doubling bifurcations corresponding to IF; and
IF; that connect the bifurcation surfaces for 1-homoclinic, 2-homoclinic and
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4-homoclinic orbits. This result together with the main theorem of this paper
suggests the existence of cascade of infinitely many homoclinic doubling bifurca-
tions from inclination-flip homoclinic orbits of weak type, which will be studied
in more detail in a forthcoming paper. See also [10]. Here we only show simple
calculations for the first two homoclinic doublings.

We consider a family of vector fields which satisfies all the properties given
in Section 2. In particular, when (¢, 1, w) = (0,0, 0), it has an inclination-flip ho-
moclinic orbit of weak type associated with the saddle singularity O. Moreover,
when € = 0, the vector field possesses a homoclinic orbit and it is of non-twisted
(resp. twisted) if and only if ©1 > 0 (resp. u < 0). We start from this bifurcation
surface Hom; = {(¢, u,w) | € = 0} of homoclinic orbit, which we regard as
1-homoclinic orbits, and we shall trace successive homoclinic doubling bifurca-
tions. The inclination-flip homoclinic orbits in Hom; appear when ¢ = p = 0,
hence giving IF; = {(¢, yu,w) | € = p = 0}, from which 2-homoclinic orbits bi-
furcate. Let us first compute the bifurcation surface Homs for the 2-homoclinic
orbits.

In order to compute Hom,, we use notations introduced in Section 3,

namely,
hg = h (6] f (6] h = (hgﬁw, hg,y)

for the local map f(z,y) = (z“y,2”) and the global map h(Y,Z) along the
1-homoclinic orbit. Define

ahQ,w
0Z

€y = hg_’x(o, 0), M2 = (O, 0), Wy = h27y(0, O),

then Hom, and IF, are given by
H0m2 = {(€7ILL7W) | €2 = 0}

and
IF2 = {(67 Ky W) | €2 = b2 = 0}

From the results in Section 3, we have
g = Ao(M,Q,€)e = (1 +aQ + M + O(¢¥71))e

and
po = Ba(M,Q, )p = (aaQ + BM + O(¥ )M - 77,

where p = Mel=# and w = Qe!=*. Here we assume a > 0 (inward twisted case),
the other case being treated similarly. Then the surface Homs, given by the
equation

p=—awe P — P L hot
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becomes as in Figure 4.1. In particular, 2-homoclinic orbits bifurcating from
IF; are twisted because py < 0 if they are near the bifurcation. The curve IF,
is given by solving

1+aQ+M+0(7Y) =0, M(aaQ+ M)+ O(#71) =0,

and hence 5
a—ﬁ’_a—ﬁ> or (—1,0).

These two solutions correspond to semi-curves IF3 in Hom, emanating from
the origin as indicated in Figure 4.1, and the 2-homoclinic orbits in the region
in Hom, bounded by IFF are non-twisted, since g > 0. From these two curves
IF; there must bifurcate 4-homoclinic orbits, and the bifurcation surface Homy,
can be computed in a similar way. We, however, stop the computation here, since
it is more tedious to go further. We need a more systematic way of computing
these curves if we want to show the successive homoclinic doubling bifurcations
IF;., but this will be a subject of our future work.

(a2, M) ~ (

IFy”
Homy IF1
/ 1F,*
[~
w
€
Homy

Figure 4.1: Bifurcation sets for Hom, and IF; (1 = 1,2).

4.2 Convergence of Curves of IF,,

Now we are concerned with the convergence of the leading term of exponential
expressions of curves M, (¢) and €, (¢). In order to be complete, we really need

15



to show that, for a given ¢, close enough to 0, the sequences M, (¢) and Q,(¢)
converge for all 0 < € < ¢). Our goal here is to show that the sequence z,, con-
verges as n tends to co, which then implies that the sequence y,, also does. This
result gives us a hope that the curves of IF,, converge to some universal curve
IF, in the parameter space that corresponds to accumulation of inclination-
flip homoclinic doubling bifurcations, where we may expect to have a sort of
universality as that in the accumulation of period doubling bifurcations.

Proposition 4.1. The sequence {z,} converges.

Recall that the sequence {x, } is given by
a
a—pf
Since the sequence {z,} is increasing, it suffices to show that it is bounded. It

is easy to see that ¢, has a fixed point p given by ¢o(p) = 1. This is also a fixed
point of ¢, for all n, since inductively we have

¢nfl(l’u) = Ty =

en(p) = p2(¥n-1(p)) = p2(p) = 1.

From Lemma 3.3, we know that v, is an increasing function on (z,,, o0), and
¥ (x,) = 0. Proposition 4.1 follows from the next lemma.

Lemma 4.2.
p>wx, forall n>2.

Proof. First we show p > x5. Indeed, since

a_q
o« 1 —_— 8
p?*1 = — where ky = é <a ﬁ)
o

ko (67

it suffices to show

aq
oy 1 a1 : AN
pi t=—>ua) " orequivalently k, < ( - ﬁ)

ko

which is trivially true as a > 3. Suppose there exists an integer n with z,, > p,
then, since 1, 1 is increasing,

,L)b'n—l(xn) = T2 Z 'L;bn—l(p) =D,

which is absurd. Therefore we have p > z,, for all n > 2, and this proves the
convergence of the sequence {z,}.
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Figure caption

Figure 4.1: Bifurcation sets for Hom; and IF; (1 = 1,2)

19




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


