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1. Introduction and statement of results

The theory of one-dimensional dynamical systems has seen huge growth over the last

couple of decades and is undoubtedly one of the most subtle and sophisticated current

areas of research. The last few years have seen the resolution of some of the main

classical problems in the area, such as the hyperbolicity conjecture [11]. The fact

remains, however, that the deepest results are also generally the most abstract ones,

often providing existence or genericity results of little use when studying a specific

system or when trying to obtain explicit quantitative information. The aim of this paper

is to establish some computational methods to obtain rigorous and explicit numerical

bounds for certain dynamical quantities of great relevance and importance in the theory

of one-dimensional dynamics. The key idea of our approach is to convert the problem

into the computation of some quantities for a weighted directed graph constructed from

a given family of dynamical systems, for which various graph algorithms work very

effectively.

1.1. Lyapunov exponents

A key property of interest in many arguments in the dynamical systems theory is that

of hyperbolicity, or non-zero Lyapunov exponents [4]. In dimension one the Lyapunov

exponent at a point x is simply defined as

λ(x) = lim inf
n→∞

log |Dfn(x)|1/n.

There is an extensive literature on computational methods for estimating Lyapunov

exponents, ranging from basic derivative calculations to relatively sophisticated

arguments, but the asymptotic nature of the Lyapunov exponent makes it intrinsically

difficult, if not in many cases impossible, to estimate it accurately by computational

methods. This is the case, for example, if the orbit of x accumulates onto a critical point

(or, in the higher-dimensional case, if the map f exhibits tangencies between stable and

unstable manifolds) as then even the sign of the Lyapunov exponent is impossible to

establish within a finite number of iterations.

It turns out, however, that as long as we exclude this case, we can obtain some

rigorous numerical estimates. We consider the following setting. Let I be an interval

and ∆ ⊂ I a finite union of open subintervals having disjoint closures and containing all

the critical points of f . We suppose that f : I \ ∆ → I is a C1 map. We are interested

in obtaining some uniform expansivity estimates for pieces of orbits outside ∆ in the

following form:

Statement 1 There exist constants C, λ > 0 such that for every x and for every n such

that f i(x) /∈ ∆ for all i = 0, . . . , n − 1 we have

|Dfn(x)| ≥ Ceλn. (1)

This statement is always true under the assumptions that the map f is at least

C2 with all periodic orbits hyperbolic repelling, and that ∆ is a neighbourhood of the
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critical points [15, 16, 17]. This result has had huge applicability and scope in the

“abstract” theory of one-dimensional dynamics; see e.g. [16] and references therein. It

should be noted, however, that the assumption of all hyperbolic periodic points being

repelling is non-trivial and in practice unverifiable for specific maps. In addition to this,

the theorem itself does not give any indication of the actual values of the constants

λ and C and their relationship to the size of the critical neighbourhood ∆ (although,

remarkably, in certain cases it can be shown that the exponent λ is independent of the

size of ∆ [19]).

In this paper we are interested in proving Statement 1 for some specific maps

f and specific choices of critical neighbourhoods ∆, and in obtaining rigorous explicit

numerical bounds for the constants C and λ. Our work is in part motivated by [12] where

this kind of estimate appears, and one of our goals is to contribute to the development

of a computational version of Jacobson-Benedicks-Carleson type theorem [5, 9] in the

future. Therefore, we are also interested in the following statement closely related to

Statement 1:

Statement 2 There exists a constant λ0 > 0 such that for every x and every n such

that f i(x) /∈ ∆ for all i = 0, . . . , n − 1 and either x ∈ f(∆) and/or fn(x) ∈ ∆ we have

|Dfn(x)| ≥ eλ0n. (2)

The difference between Statements 1 and 2 is that in Statement 2 we have some

additional information about the piece of orbit under consideration in the form of the

location of either its initial or its final point. The conclusion is a significantly stronger

expansivity estimate without the (possibly small) multiplicative constant C.

Before discussing the details of our strategy and methodology, we mention some

recent related work on the subject of the verification of hyperbolicity. In particular,

computational methods have been used by Tucker [25] as part of his groundbreaking

work on the verification of hyperbolicity for the return map of the Lorenz attractor, by

Arai [1, 2] and by Hruska [8] for the real and complex Hénon map family. Interestingly,

all these approaches are very different, with [1, 2] using ideas from the Conley index

theory, while [8] and [25] in different ways more or less explicitly constructing a family

of invariant conefields. It is not completely clear to us to what extent these methods

actually give explicit bounds for the hyperbolicity constants and it would certainly be

interesting to see if some combinations of the methods given there with ours might lead

to some results in this direction.

1.2. Rigorous hyperbolicity computations

The main result of this paper is the development of a combination of procedures for

the explicit verification of Statements 1 and 2 for arbitrary maps. More specifically, we

develop a fully fledged computer-run algorithm with the following input and output.

Input: The map f : I → I and the region ∆ ⊂ I. In detail:

• the bounded interval I ⊂ R,
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• the region ∆ ⊂ I defined as a finite union of open intervals,

• a method for computing, for each interval J ⊂ I, a (possibly small) interval which

covers f(J),

• a method for computing, for each pair of intervals J ⊂ I \ ∆, K ⊂ I, a (possibly

tight) lower estimate for log |f ′(x)| valid for all x ∈ J such that f(x) ∈ K.

There are also several other “auxiliary” parameters related to the level of precision

of the computations which can be thought of as part of the input, too. The computations

can therefore be run either in “simple” mode in which these additional parameters are

set to some default values, or in “advanced” mode in which they can be modified to

increase the efficiency of the calculations taking into account specific features of the map

under consideration.

Output: The constants C, λ, λ0 with which Statements 1 and 2 hold true, or “fail”

if these statements cannot be verified. More precisely, the algorithm returns the largest

possible constant λ ∈ R for which it is able to verify that for every x ∈ I and for every

n > 0 such that f i(x) /∈ ∆ for all i = 0, . . . , n− 1 the inequality (1) holds true for some

C > 0 which is also computed explicitly. If the constant λ returned by this algorithm is

not positive then this situation is called “failure”, because Statement 1 requires λ > 0.

The same explanation applies to the computation of λ0 for Statement 2.

We emphasize the simplicity of applying our computational procedure (the non-

trivial mathematics and computer algorithms can all remain in the background and fully

hidden from view for the user) as well as the wide scope of its applicability. Indeed, we

have no particular assumptions on f except that it should be C1 outside ∆. Obvious

classes of maps to which we could therefore apply our computations are polynomial

maps, including the well known quadratic family, but also maps with discontinuities

and/or unbounded derivatives. The maps in Figure 1 are all related to return maps for

Figure 1. Interval maps with critical points, discontinuities and/or unbounded
derivatives.

smooth flows and have all been studied in the context of parameter exclusion arguments

[13, 14, 20, 21]. Statements 1 and 2 are verified there analytically in certain quite

specific parameter regions and play a crucial role in the arguments. The computational

techniques given here could be useful in extending these arguments to other parameter
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regions and in obtaining some more explicit estimates for the measure of the good

parameter set in a similar way to [12].

In this paper we limit ourselves to some applications to the quadratic family since,

as discussed above, applications to other maps are conceptually no more difficult. Thus

we compute the constants C and λ for several thousand parameters of the well known

quadratic family. We discuss the results at length in Section 5; to give a feeling for the

kind of numbers we rigorously obtain, we give here just a small sample.

Theorem 1 Let fa(x) = x2 − a and let ∆ = (−δ, δ) denote a neighbourhood of the

critical point c = 0. Then Statements 1 and 2 hold true for the following parameters a

with the following values of δ, C, λ, λ0:

a δ C λ λ0

1.7 0.1 0.1358 0.3864 0.3864

2 0.1 0.1004 0.6889 0.6886

2 0.01 0.0113 0.5643 0.5643

2 0.001 0.0015 0.2358 0.2358

[1.99, 2] 0.1 0.1061 0.6331 0.6330

The values of a and δ in this theorem should be understood as computer representations

of the decimal numbers listed in the table. The computed numbers C, λ and λ0 were

slightly higher than the ones listed in the table, and have been rounded down to make

sure that the statements hold true for the actual decimal numbers provided.

We have included three different calculations for the parameter value a = 2

to highlight the effect of choosing increasingly smaller critical neighbourhoods on

the computed values of λ and λ0. Moreover, we remark that for a = 2 we can

actually calculate the values of these constants analytically and it turns out that

λ = λ0 = ln 2 = 0.6931 . . . independent of δ. The computations give quite a good

approximation to this value for δ = 0.1 and increasingly bad as δ is chosen smaller. As

it will be discussed in Section 5 below, this is just due to working with a fixed level of

accuracy (more precisely, a fixed number of partition elements) and the achieved values

can be made to approximate ln 2 arbitrarily well by increasing this accuracy. In the

last line of the table, we show constants which are valid for all a ∈ [1.99, 2]. It is a

remarkable fact that this result was obtained in just one run of the algorithm, which

was possible thanks to the use of interval arithmetic (see Section 4.1).

We emphasize that these results do not depend in any way on the classical existence

proofs for the constants C, λ and thus, in particular, do not involve the verification of any

assumptions used in those arguments, but follow instead by direct rigorous computation.

1.3. Overview of the paper and additional remarks

The computations we carry out are fundamentally based on a set of graph optimization

algorithms. In Section 2 we explain how to encode certain features of the dynamics in

a weighted digraph and how the problem of finding a lower bound for the expansion
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exponent can be reformulated in terms of a problem of calculating mean weights of

certain paths in the graph. In Section 3 we discuss in detail the algorithms and

techniques used to estimate these quantities. In Section 4 we discuss the more strictly

computational part of the procedure and explain how the computer code is programmed

in order to carry out the required calculations. Finally, in Section 5 we discuss the result

of applying these computations to various parameters in the quadratic family.

The source code of the software introduced in Section 4, as well as detailed

results of the computations referred to in Section 5 are available at the website

http://www.pawelpilarczyk.com/unifexp/.

2. Derivatives and weighted digraphs

The basic idea of our approach is to reduce the problem to one of bounding the mean

weights of paths in certain weighted digraphs (directed graphs) related to the map f

under consideration. In this section we introduce some notation related to graphs, define

what it means to represent a map by a graph, and reformulate the problem of expansion

in the language of graphs.

2.1. Weighted digraphs

We start with some definitions and notation. Throughout this paper G = (V,E,w) will

denote a weighted finite digraph, where V denotes the finite set of vertices, E ⊂ V × V

is the set of edges, and w: E → R is the weight function.

The set of paths in G is denoted by P(G), where a path is a nonempty finite sequence

of edges

Γ = (e1, . . . , en) such that ej = (v0
j , v

1
j ) ∈ E and v1

j = v0
j+1.

The vertex v0
1 is called the starting vertex of Γ, and v1

n is called the ending vertex of Γ.

The length of the path Γ is n, the number of edges in the sequence, and denoted by |Γ|.
A path Γ′ is called a subpath of Γ if Γ′ is a subsequence of Γ which consists of consecutive

edges, that is, Γ′ = (ek, . . . , el) for some k, l such that 1 ≤ k ≤ l ≤ n. We say that the

subpath Γ′ of Γ is proper if |Γ′| < |Γ|. The path Γ is called a cycle if v0
1 = v1

|Γ|. A path

is called simple if it does not contain a subpath which is a cycle (in particular, no cycle

is a simple path). A cycle is called simple if it does not contain any proper subpath

which is a cycle. The set of cycles, simple paths, and simple cycles in G will be denoted

by C(G), S(G), and SC(G), respectively.

It is an elementary fact that every path can be decomposed into a simple path

and a finite number of simple cycles, as illustrated in Figure 2. More precisely, if

Γ = (e1, . . . , en) is a path then there exists either a simple path Γ0 = (ej(0,1), . . . , ej(0,k0))

(if Γ is not a cycle) or Γ0 = ∅ (if Γ is a cycle) and a finite number of simple cycles

Γi = (ej(i,1), . . . , ej(i,ki)), where i = 1, . . . , k for some k (possibly k = 0), such that

each Γi is a subsequence of Γ and each index {1, . . . , n} appears exactly once in all the

sequences of indices (j(i, l))l=1,...,ki
over i = 0, . . . , k.
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Figure 2. The decomposition of the path Γ = (e1, . . . , e17) into the simple path
Γ0 = (e1, e6, e17) and simple cycles Γ1 = (e2, e3, e4, e5), Γ2 = (e7, e8, e9, e10, e16), and
Γ3 = (e11, e12, e13, e14, e15). Note that e10 = e15.

The weight and mean weight of a path Γ = (e1, . . . , en) ∈ P(G) are defined by

W (Γ) =
n∑

j=1

w(ej) and W (Γ) =
W (Γ)

n
,

respectively.

2.2. Graph representation of f

Recall that we are assuming that f : I \ ∆ → I is a C1 map, where I ⊂ R is an interval

and ∆ is a finite union of open subintervals of I having disjoint closures and containing

Crit(f), the set of all critical points of f .

A finite collection of closed intervals I = {Ij | j = 1, . . . , K} is an f -admissible

cover of I \∆ if int(Ii ∩ Ij) = ∅ for i 6= j, Ij ∩Crit(f) = ∅ for all j, and I \∆ ⊆
∪K

j=1 Ij.

Given an f -admissible cover I of I \∆, we call the weighted digraph G = (V,E,w)

a representation of f on I \ ∆ provided that:

(a) V = I ∪ {cl∆};
(b) {e = (I1, I2) ∈ I × V | f(I1) ∩ I2 6= ∅} ⊂ E

(c) For each e = (I1, I2) ∈ E,

w(e) ≤ inf { log |Df(x)| : x ∈ I1 ∩ f−1(I2)}
Representing the map f on I \ ∆ by a weighted digraph G allows us to reduce the

problem of estimating the minimum accumulated derivatives to computing the weights

of certain paths in G. Observe the following straightforward relationship between the

weight of a path and the derivative along points whose orbit is described by the path.

Given a point x ∈ I \ ∆ and a path Γ = (e1, . . . , en) ∈ P(G) such that ej = (Ij−1, Ij)

and f j(x) ∈ Ij for all j = 0, . . . , n, we have

log |Dfn(x)| =
n−1∑
j=0

log |Df(f j(x))| ≥ W (Γ). (3)
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Throughout this paper, we will make use of the following quantity. The minimum

mean weight over all cycles in G = (V,E,w) is

µ(G) :=

{
min {W (Γ) : Γ ∈ C(G)} if C(G) 6= ∅

+∞ if C(G) = ∅

=

{
min {W (Γ) : Γ ∈ SC(G)} if C(G) 6= ∅

+∞ if C(G) = ∅

Note that since G is a finite graph, SC(G) is a finite set, and therefore, the minimum

is attained if C(G) 6= ∅. For our studies, µ(G) < ∞ for any graph representation of the

map f under consideration.

We say that a path Γ = (e1, . . . , en), where ei = (I0
i , I1

i ), begins in ∆ or ends in ∆

if f(∆)∩I0
1 6= ∅ or I1

n = cl∆, respectively. Let P∆(G) denote the set of paths that begin

or end in ∆. Define

µ∆(G) := inf {W (Γ) : Γ ∈ P∆(G)}.

2.3. Estimating derivatives using graphs

For given λ ∈ R and G = (V,E,w), define

κ(λ,G) := exp
(

min {W (Γ) − |Γ|λ : Γ ∈ S(G)}
)
.

Proposition 1 Let G be a weighted finite digraph that is a representation of f on I \∆.

If λ ≤ µ(G) and C ≤ κ(λ,G), then

|Dfn(x)| ≥ Ceλn

for any n > 0 and x ∈ I such that f i(x) /∈ ∆ for all i = 0, . . . , n − 1.

Proof. The assumptions on C and λ can be restated as follows:

W (Γs) − |Γs|λ ≥ log(C) for all Γs ∈ S(G)

and

W (Γc) − |Γc|λ ≥ 0 for all Γc ∈ C(G).

Given a path Γ ∈ P(G), consider the decomposition of Γ into Γs ∈ S(G) ∪ {∅}
and Γi

c ∈ SC(G), i = 1, . . . , k for some k ≥ 0, as explained in Section 2.1. Obviously,

|Γ| = |Γs| +
∑k

i=1 |Γi
c|, where |∅| := 0 and W (∅) := 0. Therefore,

W (Γ) = W (Γs) +
∑k

i=1 W (Γi
c) = (W (Γs) − |Γs|λ)+

+
∑k

i=1 (W (Γi
c) − |Γi

c|λ) + |Γ|λ ≥ log(C) + |Γ|λ.
(4)

Finally, consider a point x ∈ I \∆ such that f i(x) 6∈ ∆ for all i = 1, . . . , n−1. Then

there exists a path Γ = (e1, . . . , en) ∈ P(G) where ej = (Ij−1, Ij) such that f j(x) ∈ Ij.

The result follows from (3) and (4). ¤
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Proposition 2 Let G be a weighted digraph that is a representation of f on I \ ∆. If

λ0 ≤ µ∆(G), then

|Dfn(x)| ≥ eλ0n

for any n > 0 and x ∈ I such that f i(x) /∈ ∆ for all i = 0, . . . , n − 1, and x ∈ f(∆) or

fn(x) ∈ ∆.

Proof. Given x ∈ I \ ∆ such that f i(x) /∈ ∆ for all i = 0, . . . , n − 1, and x ∈ f(∆)

or fn(x) ∈ ∆, there exists a path Γ = (e1, . . . , en) ∈ P∆ where ej = (Ij−1, Ij) such that

f j(x) ∈ Ij. By (3),

log |Dfn(x)| ≥ W (Γ) = W (Γ) |Γ| ≥ µ∆(G) |Γ| ≥ λ0|Γ| = λ0n,

which proves the Proposition. ¤

2.4. Refining the representation of f

Let G = (V,E,w) and G′ = (V ′, E ′, w′) be representations of f on I \ ∆. We say

that G′ is a refinement of G if there exists a function π: V ′ → V such that J ⊂ π(J)

for all J ∈ V ′, and for every e′ = (I ′
1, I

′
2) ∈ E ′ we have e := (π(I ′

1), π(I ′
2)) ∈ E and

w′(e′) ≥ w(e).

Proposition 3 Let G and G′ be representations of f on I \∆. If G′ is a refinement of

G then µ(G′) ≥ µ(G).

Proof. For each cycle Γ′ = (e′1, e
′
2, . . . , e

′
n) in G′, the path π(Γ′) :=

(π(e′1), π(e′2), . . . , π(e′n)) is a cycle in G with W (Γ′) ≥ W (π(Γ′)). Therefore,

µ(G′) = min {W (Γ′) : Γ′ ∈ C(G′)} ≥ min {W (π(Γ′)) : Γ′ ∈ C(G′)} ≥
≥ min {W (Γ) : Γ ∈ C(G)} = µ(G),

which ends the proof. ¤
It is reasonable to expect that if one applies the procedure described in Section 4

for the construction of a representation G of f on I \ ∆ with an f -admissible cover I,

and another representation G′ using a refinement I ′ of I, then G′ should be a refinement

of G, and Proposition 3 says that in that case the expansion exponent computed for G′

will be better than the one computed for G.

3. Mean weight algorithms

The results of Section 2.3 reduce the problem of determining expansion estimates to the

computation of mean weights of certain paths. More precisely, given a weighted digraph

G = (V,E,w) which is a representation of some f on I \ ∆ (as defined in Section 2.2),

we need to be able to compute µ(G), µ∆(G), and κ(λ,G). In this section, we describe

the algorithms that we use to determine these quantities. We also provide a measure of

the complexity of each algorithm by giving the associated running time.



Hyperbolicity estimates in one-dimensional dynamics 10

The running time measures the order of the number of required primitive operations

(such as addition and multiplication) as a function of the size of the input, here given

by |V |, the size of the vertex set, and |E|, the size of the edge set. We use the

notation O(Ψ(|V |, |E|)) to indicate that there exist constants c, n0 > 0 such that for

any graph G = (V,E,w) for which |V |, |E| ≥ n0, the number of operations Φ(G) of

the algorithm applied to the graph G satisfies the inequality Φ(G) ≤ cΨ(|V |, |E|). This

gives an asymptotic upper bound for the worst case running time. For a more detailed

explanation of this notation and of running time in general, the reader is referred to [6,

§3.1]. For our computations, |V | is fixed using a computational parameter K specifying

a partition size, and |E| depends on the size of V and on the expansion of the map

f relative to the partition giving V . This will be described in more detail in the next

section.

3.1. Computation of µ(G)

The constant µ(G) is obtained by a straightforward application of Karp’s Algorithm

[10] which computes the minimum mean weight of any cycle in a weighted digraph. Its

running time is O(max{|V | |E|, |V |2}).

3.2. Computation of κ(λ,G)

The Floyd-Warshall Algorithm [6, §25.2] and Johnson’s Algorithm [6, §25.3] both find

the minimum weights of paths between all pairs of vertices in a weighted digraph, and

thus, applied to the graph G′ = (V,E,w′) where w′(e) = w(e) − λ, provide a number

that does not exceed κ(λ,G). They have different running times, O(|V |3) for Floyd-

Warshall and O(|V |2 log |V |+ |V | |E|) for Johnson and thus may be more or less efficient

depending on the specific situation. Johnson’s Algorithm is generally more efficient for

sparse graphs, which is the case in our applications. Note that both these algorithms

require that G does not have any cycle whose weight is negative.

3.3. Computation of µ∆(G)

The specific computation required for µ∆(G) is less standard. Following the idea of

Karp’s Algorithm, we formulate an algorithm which computes the minimum mean

weight µ1(G, V0) of paths of length up to |V | − 1 whose starting vertex belongs to

the given set V0 ⊂ V . To compute the minimum mean weight µ2(G, V0) of paths of

length up to |V |− 1 whose ending vertex belongs to V0, one can apply this algorithm to

the transposed graph GT which is obtained from G by reversing the direction of edges.

First of all, we compute the functions Fk(v) for each v ∈ V and k = 1, . . . , |V | − 1,

which are defined as the minimum weight of any path of length k whose starting vertex

belongs to V0 and ending vertex equals v, or we set Fk(v) := ∞ if no such path exists.

These functions are computed using the recursive formula

Fk(v) = min
(u,v)∈E

(Fk−1(u) + w(u, v))
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for k = 1, . . . , |V |, with the initial condition F0(v) = ∞ for v ∈ V \ V0, and F0(v) = 0

for v ∈ V0. More precisely, we have the following

Algorithm 1

for all v ∈ V , k = 0, . . . , |V | − 1 do Fk(v) := ∞;

for all v ∈ V0 do F0(v) := 0;

for k := 1 to |V | − 1 do

for all (u, v) ∈ E do

Fk(v) := min (Fk(v), Fk−1(u) + w(u, v));

return min{Fk(v)/k such that v ∈ V and k = 1, . . . , |V | − 1}.

As it can be clearly seen from counting the arguments of the “for” loops, as well

as the number of elements in the set whose minimum is computed in the last line, the

running time of Algorithm 1 is O(max{|V | |E|, |V |2}).
We use this algorithm to compute µ1(G, V0), where V0 ⊂ I is some set of intervals

whose union covers f(cl∆), and to compute µ2(G, {cl∆}). Together with µ(G), these

two numbers suffice to find a lower estimate for µ∆(G), as it is claimed in the following

Proposition 4 Let V0 ⊂ I be as defined above. Then

min {µ(G), µ1(G, V0), µ2(G, {cl∆})} ≤ µ∆(G). (5)

Proof. Let Γ be any path in P(G) which begins in ∆ or ends in ∆. Since the

union of V0 covers cl∆, the starting vertex of Γ belongs to V0 (in the former case) or

its ending vertex equals cl∆ (in the latter case). Consider the decomposition of Γ into

a simple path Γs (possibly Γs = ∅) and simple cycles Γi
c, i = 1, . . . , k for some k ≥ 0.

If Γs 6= ∅ then the starting vertex of Γs belongs to V0 or the ending vertex of Γs equals

cl∆. Moreover, |Γs| ≤ |V | − 1, and thus

W (Γs) ≥ min {µ1(G, V0), µ2(G, {cl∆})}.

where W (Γs) := +∞ if Γs = ∅. As for the simple cycles, W (Γi
c) ≥ µ(G). Obviously,

W (Γ) ≥ min {W (Γs),W (Γi
c), i = 1, . . . , k}.

This proves (5) and thus Proposition 4. ¤

4. Computations

For the sake of clarity, in this section we provide an outline for the principle procedures

and tools employed in our computations. We purposely provide an outline as opposed

to specific details for the following reason: While we believe the strategy to be problem

independent, the optimal numerical methods do depend on the particular family of

nonlinear functions being studied. In particular, we cover the following topics:

(1) the use of interval arithmetic to ensure the mathematical validity of our

computations;

(2) a procedure for defining an admissible cover I of I \ ∆;
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(3) a procedure for constructing a weighted directed graph;

(4) the computation of the constants λ, C, and λ0, and a proof that Statements 1 and

2 are satisfied for these constants;

(5) an interface for running series of computations in a concurrent way on multiple

machines.

The software developed for the computations described in this section has

been programmed in the object-oriented C++ programming language for optimal

performance and expandability. We outline its features and capabilities in the

subsections below.

4.1. Interval arithmetic

The software does rigorous computations using interval arithmetic (see [18] for a

comprehensive introduction). Since computers can only store limited precision rational

numbers, the idea of interval arithmetic is to represent any real number by an

interval with the computer-representable rational ends that contains the real number in

question. We then replace arithmetic operations on real numbers with the corresponding

operations on intervals whose result is an interval which contains all possible results of

the operation on any arguments from the argument intervals, e.g.,

{x + y : x ∈ [a, b], y ∈ [c, d]} ⊂ [a, b] 〈+〉 [c, d].

Interval arithmetic is used to compute the images of intervals by the map f , as well as

in the graph algorithms to compute rigorous lower estimates for the mean weights of

paths. Note that in the graph algorithms, usually only one end of the interval needs

to be computed, which simplifies the computations to using the arithmetic operators

with controlled direction of rounding (upwards or downwards). Also, the comparison

of intervals with the “<” and “>” operators must be done by comparing their lower or

upper ends only, depending on whether we compute the minimum or the maximum of

weights.

4.2. Defining an admissible cover

Recall that I ⊂ R is an interval and ∆ is defined as a finite union of open subintervals of

I. Assume that the values of the endpoints of ∆ lie in the set of representable numbers

used in the above mentioned interval arithmetic. For simplicity, in the software which

accompanies this paper, ∆ is defined as
∪k

i=1(ci− δ, ci + δ), where Crit(f) = {c1, . . . , ck}
and δ > 0, but this form of ∆ is not required by the theory. Moreover, the actual

endpoints of the intervals which define ∆ taken for the computations are rounded to

some possibly close representable numbers.

In principle, an admissible cover I can be chosen to be any finite cover of I \ ∆

where the endpoints of the intervals are representable numbers. In practice, the simplest

way to define I is to fix some number K of elements and partition I \ ∆ into K
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essentially equal subintervals. We use this partition for the computations described

in Section 5. However, we note that for certain particular maps estimates can be

significantly improved by having a non-uniform partition.

4.3. Constructing a weighted digraph

We now describe how to construct a graph representation G = (V,E,w) for a

parameterized family of maps, f : I × Ω → I, where Ω is a closed interval and

f ∈ C1((I \∆)×Ω) with Crit(fa) ⊂ ∆ for all a ∈ Ω. Note that here we assume that ∆ is

independent of the parameter a ∈ Ω. In practice, this is a reasonable assumption if we

choose the parameter interval small enough so that the critical points of f do not go out

of the fixed ∆. For a larger parameter interval, we may decompose it into small enough

parameter subintervals which satisfy this assumption, and repeat the computations for

each of these parameter subintervals.

4.3.1. The vertices We suppose an f -admissible cover I := {I1, . . . , Ik} of I \ ∆ has

been fixed. These intervals together with cl∆ serve as the vertices in G, that is, we

define

V := I ∪ {cl∆}.

4.3.2. The edges For each Ii ∈ I we use a combination of analytic bounds and interval

arithmetic to compute an interval denoted by F (Ii) which is an outer estimate for fa(Ii)

for all a ∈ Ω, that is,

f(Ii, Ω) ⊂ F (Ii). (6)

Define

E := {(Ii, J) ∈ I × V | F (Ii) ∩ J 6= ∅}.

4.3.3. The weights For e = (Ii, J) ∈ E, choose a closed interval L(e) ⊂ Ii such that

{x ∈ Ii | f(x, Ω) ∩ J 6= ∅} ⊂ L(e) (note that L(e) = Ii is an admissible choice). Using

a combination of analytic bounds and interval arithmetic, we compute a representable

number b(L(e)) such that

b(L(e)) ≤ min { log |Dxf(x, a)| : x ∈ L(e), a ∈ Ω} (7)

Then we define

w(e) := b(L(e)).

4.4. Computing the Constants

Having constructed G = (V,E,w), we run Karp’s Algorithm (Section 3.1) in interval

arithmetic to obtain a lower bound µ≈ for µ(G). Define

λ := µ≈. (8)
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We now construct a new weighted digraph G′ = (V,E,w′) where w′(e) is computed

as the largest representable number not exceeding w(e)−λ. Define log C to be the output

of running either the Floyd-Warshall Algorithm or Johnson’s Algorithm (Section 3.2)

on G′ in interval arithmetic.

Define λ0 to be the minimum of the number λ and the numbers µ1(G, V0) and

µ2(G, {cl∆}) computed with Algorithm 1 applied to G = (V,E,w) in interval arithmetic.

Theorem 2 Let a ∈ Ω, and define fa := f(·, a): I \ ∆ → I. Then Statements 1 and 2

are satisfied for fa using the constants λ, C, and λ0.

Proof. As indicated in Section 4.2, we have constructed an admissible cover of I \∆

for fa. Following the procedures of Sections 4.3.1, 4.3.2, and 4.3.3, we have computed

G = (V,E,w) which is a representation of f on I\∆; indeed, the inclusion (6) implies (b)

in the definition of a representation, and the inequality (7) implies (c) in that definition.

Since λ ≤ µ(G) and C ≤ κ(λ,G), Statement 1 follows from Proposition 1. Similarly,

λ0 ≤ µ∆(G), and hence Statement 2 follows from Proposition 2. ¤
Remark. In practice, the numbers w′(e) computed for e ∈ E by the computer

as w(e) − µ≈ with downwards rounding to the nearest representable number might

be so small that negative-weight cycles might occur in the graph G′ (especially since

the weights of paths are also computed as sums of weights of edges with the rounding

direction set to “downwards”), which causes both the Floyd-Warshall Algorithm and

Johnson’s Algorithm to fail. Therefore, in order to ensure successful computation of

C, instead of taking the constant λ defined by (8), λ is defined as µ≈ decreased by

0.000000001% of its absolute value, that is, λ := µ≈ − 10−11|µ≈|. This tiny decrease

turns out to be large enough for our computations to alleviate the problem of spurious

negative cycles, but it cannot be ruled out that for some other cases a slightly larger

decrease of λ might be necessary.

4.5. Running the software on multiple machines

In order to accomodate the need for running the computations for many parameter

intervals Ω 3 a for the family fa, the software uses an elementary network

communication interface based on the TCP/IP sockets in order to allow one to spread the

computations over several machines (a local network or a computer cluster, for example).

A centralized model of concurrent computations is used, with one process designated

as a coordinator who iterates the interval of parameters, and all the other processes

designated as workers who do the computations for each specific value or subinterval of

the parameter a obtained from the coordinator. The task of the coordinator is also to

store the results of computations obtained from workers.
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5. Applications and Discussion

As an example application of the algorithms introduced in this paper, we consider the

well-known family of unimodal maps fa: I → I given by

fa(x) = x2 − a,

where I = [−2, 2], a ∈ [1.7, 2], and ∆ = (−δ, δ) for some small δ > 0. First we fix the

parameter value a = 2 and carry out several computations and comparisons by varying

δ, the size of ∆, and K, the number of subdivisions of I \ ∆. Then we fix δ and K

and carry out the computations for a few thousand equally spaced (up to the rounding

precision) parameter intervals which fill the parameter range under consideration.

Note that for the map fa, the interval L(Ii, J) in (7) can be taken as f−1
a (J) ∩ Ii

easily computed in interval arithmetic, which gives a nearly optimal weight function w.

We would like to state at this point that applying our method to other maps as

described in Section 1.2 is no more difficult than to the quadratic family. Therefore,

we believe that discussing the well known family of maps would allow the reader to

confront our results with the results established in the literature, and also to expose both

the power and the weaknesses of our approach. The variety of dynamical behaviours

observed for the interval of parameters which we consider (from a stable periodic orbit

to a strange attractor) allows for a comprehensive test of our method.

5.1. The parameter value a = 2

The map fa for the parameter value a = 2 is a particular example of a Chebyshev

polynomial and as such is smoothly conjugate to a piecewise affine expanding map

(see, for example, [12]). This property was exploited by Ulam and von Neumann [26]

proving that f2 exhibits stochastic-like behaviour; indeed, this was the first case of such

dynamical behaviour being proven in the quadratic family. The special conjugacy can

also be used to prove Statements 1 and 2 analytically with λ = λ0 = ln 2 = 0.6931 . . .

for any δ > 0. We now check how close our methods get to this expected value.

5.1.1. Computation of λ for various sizes of ∆ Figure 3 shows the computed values

of λ for a few thousand different sizes of the critical neighbourhood ∆ = (−δ, δ) and

a uniform admissible cover I constructed by dividing I \ ∆ into K essentially equal

subintervals with K = 5000. The actual lengths of the subintervals may slightly differ

because of rounding their endpoints to representable numbers.

The estimated value of λ decreases monotonically with decreasing δ (although we

emphasize that the horizontal axis is a logarithmic scale) even though the theoretical

value of λ does not. This is naturally to be expected as both the number and size

of the partition elements giving rise to the graph remain constant. Increasing the

“resolution” of the calculations by increasing the number of partition elements, and

thus also descreasing their size, gives improved estimates as shown below.
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Figure 3. Computed values of λ for the map fa with a = 2, K = 5000, and various
values of δ > 0. The horizontal scale represents − log δ.

5.1.2. Computation of λ for various values of K We now consider a fixed critical

neighbourhood ∆ = (−δ, δ) with δ = 0.01, and compute λ with a uniform admissible

cover I with K elements for different values of K (see Figure 4).

As it should be expected, the results improve with larger K. Values of K between

4,000 and 6,000 already give relatively good estimates, and choosing K near 8,000

provides values of λ already close to the true value of ln 2.

For a fixed value of K, the computed values of λ can be improved significantly

by using a non-uniform partition which has more and smaller elements of I in the

large derivative regions, i.e., close to the extreme points of the domain I, and which

has relatively larger and fewer elements near the critical region ∆. Figure 5 shows a

comparison between the values of λ computed using these two partitions.

Although at first sight this may appear counter-intuitive, it is easy to see that it

is actually natural to have smaller partition elements where the derivative is large and

not where the derivative is small. Indeed, this approximates better the real dynamics

and thus picks up more of the expansion which in the real map is essentially dominated

by the time that orbits spend in the regions of large derivative.

Another strategy for defining a non-uniform partition might be to have smaller

intervals close to a fixed number of initial iterates of the critical point. This strategy

is justified by the expectation that the derivative should gain exponential growth along

the critical orbit, and keeping intervals small prevents from losing it.
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Figure 4. Computed values of λ for the map fa with a = 2.0, δ = 0.01, and several
different values of K.
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Figure 5. Computed values of λ with the uniform partition (lower curve) and a
non-uniform partition (upper curve).
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The question remains, however, how to determine the proportions between the sizes

of intervals in the regions where they should be small and where they should be wide.

Our experiments with the quadratic map at different values of a indicate that there

is no simple answer to this question, and finding an optimal strategy appears to be

problem-specific.
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Figure 6. Time (in seconds) required to compute the constant C for different values of
K using Johnson’s Algorithm (lower curve) and the Floyd-Warshall Algorithm (upper
curve).

5.1.3. The time of computation of the constant C Figure 6 shows a graph of the

computer processor time required to compute the constant C using Johnson’s Algorithm

and Floyd-Warshall Algorithm. For large values of K, Johnson’s Algorithm performs

significantly better due to its better asymptotic time complexity. Although it cannot

be seen from the picture, the opposite is true for small values of K, such as K = 400.

5.2. Global parameter estimates

We now want to take advantage of the power of multiple computers to compute

lower bounds for λ and λ0 for several thousand parameter intervals of essentially the

same length (up to rounding their endpoints to representable numbers) which fill the

parameter interval [1.7, 2]. As discussed above, the estimates improve with the number

K of intervals in I, and for the purpose of this calculation we fix the value K = 5000.
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Figure 7. The values of − log δ as a function of a, where δ > 0 is the minimum radius
of ∆ for which the value λ computed for fa on I \ ∆ with K = 5000 is positive.

5.2.1. Choosing δ The first thing we need to do when dealing with such a large range

of parameter values is to think about the appropriate choice of δ. For general parameter

values other than a = 2, it is no longer true that the value of λ is independent of δ.

Indeed, for an open and dense set of parameter values with periodic attractors, λ will

be positive only if δ is sufficiently large. Therefore, we first use our algorithms to obtain

some estimate δ(a) of the minimum value of δ which gives a positive value of λ. These

values of δ = δ(a) are thus the natural choices for the computation of the exponent

λ = λ(a). Figure 7 shows the resulting values of − log δ(a) computed with the bisection

method applied until the accuracy in − log δ(a) of about 0.06 has been reached (the

actual accuracy is determined heuristically in the algorithm, based on the initial guess

for δ(a)).

Remark. It is interesting to note that, although we have not checked this on a

systematic basis, the variation of λ with respect to δ in the cases in which δ(a) is positive,

i.e., for parameters which have periodic attractors, seems to be a function which has

a jump-type discontinuity at δ(a). For many parameter values, the computations give

λ < 0 for δ < δ(a) and λ strictly positive (sometimes quite large) for δ ≥ δ(a). In fact,

it does not appear that the estimate for λ improves significantly by taking δ moderately

larger than δ(a). Intuitively, one can speculate that we have the following picture: For

a given parameter a, the map fa may have a periodic attractor. By general theory, the

immediate basin of attraction of this periodic attractor will contain a neighbourhood of
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the critical point. However, any orbit which lies in the complement of this immediate

basin is hyperbolic repelling with some multiplier which may be uniformly strictly

bounded away from zero.
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Figure 8. Computed values of λ for a ∈ [1.7, 2.0], K = 5000 and δ = 0.01.

5.2.2. Computing λ for different parameter values Finally, Figures 8 and 9 show values

of λ computed for Statement 1 for several thousand parameter intervals which fill

[1.7, 2.0], and a fixed choice of K = 5000. The analogous graphs for the values of λ0

computed for Statement 2 are very similar, so we do not plot them in separate pictures

(they can be found at the website whose address was indicated in the Introduction).

The graph in Figure 8 corresponds to a fixed choice δ = 0.01. In this case, as

discussed above, λ can be negative and this indicates failure in proving the exponential

expansion for the corresponding value of a. Figure 9 reflects choosing δ = δ(a) as

above. Notice that in general this gives significantly lower values for λ. This should be

expected, as in most cases we have δ(a) < 0.01 and therefore we are computing λ for

a much smaller critical neighbourhood. However, by increasing the number of partition

elements (for better results, combined with using a non-uniform partition, as discussed

in Section 5.1.2), we might expect to be able to recover the (positive) values of λ from

the graph depicted in Figure 8 even for the choices of δ as in Figure 9, although we have

not done such an experiment.



Hyperbolicity estimates in one-dimensional dynamics 21

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1.7  1.75  1.8  1.85  1.9  1.95  2

Figure 9. Computed values of λ for a ∈ [1.7, 2.0], K = 5000 and δ = δ(a).

5.2.3. Comparison with non-rigorous approach It is interesting to compare the results

and methods described above with the more standard, albeit non-rigorous, Lyapunov

exponent calculations. These generally consist of picking some more or less arbitrary

initial condition x and directly computing the value of

1

n
log |Dfn(x)| =

1

n

n−1∑
i=0

log |Df(f i(x))| (9)

for some large value of n chosen in such a way that the final iterate is close to the

initial point and that estimates obtained using some substantially different large values

of n are in agreement, e.g., for n1 < n2 < n3 with n1 ≈ 0.5 n3 and n2 ≈ 0.75 n3. The

Lyapunov exponent λ(x) at the point x is variously defined as the liminf or limsup, or

limit if it exists, of (9) as n → ∞. It should be noted straight away that by virtue of its

definition as a limit, the value of λ(x) cannot generally be rigorously estimated just by

direct calculation of (9) no matter how large n is chosen, without additional theoretical

considerations (however, see [7, 23, 24] for interesting discussions and approaches to

this issue). Also, in principle the value of λ(x) depends on x and thus specific choice

of initial condition can play a role in the value that is obtained. Nevertheless, it turns

out empirically that such calculations can be quite useful and give some reasonable idea

of the actual values to be expected, at least in part because it turns out that in many

situation the value of λ(x) is actually constant Lebesgue-almost everywhere. Figure 10

gives the graph of the Lyapunov exponents calculated via (9) for various parameters in



Hyperbolicity estimates in one-dimensional dynamics 22

the quadratic family.

Figure 10. Non-rigorous calculations of the Lyapunov exponents in the quadratic
family.

A comparison with the results of analogous computations illustrated in Figure 8

makes one notice that both graphs are very similar, except the direct computation of

(9) yields consistently higher values of the Lyapunov exponent than the graph theoretic

computations. This may appear unexpected in view of the fact that the computations

shown in Figure 8 refer to orbits which never enter a certain neighbourhood, in this

case (−0.01, 0.01) of the critical point, whereas the computations in Figure 10 allow

orbits in principle to come arbitrarily close to the critical point, thus in possibly picking

up arbitrarily small derivatives. It seems necessary therefore to address this apparent

contradiction. We explain it as follows.

First of all, we recall some non-trivial theoretical results from one-dimensional

dynamics. The first is that by [3] for the quadratic family almost all parameters either

have an attracting periodic orbit, and thus negative Lyapunov exponent, or satisfy

the so-called Collet-Eckmann condition (positive Lyapunov exponent along the critical

orbit). Moreover, by [22] the Collet-Eckmann condition implies that all Lyapunov

exponents (of all invariant measures) are positive and uniformly bounded away from

0. In particular, this means that the values of λ and λ0 as defined above in relation

to the uniform expansion exponent outside some critical neighbourhood, do not depend

on the size of the critical neighbourhood. This remarkable result can be understood

intuitively by noticing that points very close to the critical point, shadow the orbit of
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the critical point for a relatively long time during which they exhibit an exponential

derivative growth (from the Collet-Eckmann condition assumption). It turns out that

this period of derivative growth is actually sufficient to compensate the small derivative

near the critical point, giving an overall exponential growth at a uniform rate, i.e., points

which are very close to the critical point shadow its orbit for a longer time so that in

the end the average rate of growth is uniformly bounded from below.

The conclusion from the observations in the previous paragraph is that the

computed value of the Lyapunov exponents should not depend very much on whether

we allow or not entries to some critical neighbourhood and thus in theory the values

computed in Figures 8 and 10 should be comparable, rather than one being smaller

than the other, as might at first have been thought to be the case. The discrepancy is

therefore down to the computational methods used in the graph-theoretic approach, and

more precisely to the intrinsic limitation of using a fixed “finite-resolution” implicitly

defined by our choice of partition. Indeed, in regions of high derivative, such as near

an expanding fixed or periodic point, small partition elements are strongly expanded

and thus mapped across other partition elements. In the graph-theoretic encoding we

need to consider the worst case scenario which means that we need to assume that

points in such a partition element are mapped outside this region to other regions with

possibly small derivative, whereas in reality points may spend a very large number of

iterates close to such an expanding fixed or period point, and thus picking up much

more expansion. This explains why our approach generally yields lower values for the

expansion than those computed using (9). The only exception from this rule can be

observed for the thin “spikes” that go down in Figure 10, as in those few cases the

orbits gain strong contraction while coming close to the critical point, which is ruled

out in our case illustrated in Figure 8.

Fortunately, the limitations of the graph-theoretic approach are not a real

obstruction to achieveing optimal estimates, as improved bounds can be obtained either

by more cleverly constructed partitions or simply finer partitions, as discussed above.

The most constructive point of view is then perhaps to see the direct non-rigorous

calculations as providing a very useful benchmark for the expected values and as a

guide to how fine a partition one should use in order to achieve rigorous bounds which

are as close as possible to the expected ones.
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Astérisque, (261):xiii, 201–237, 2000. Géométrie complexe et systèmes dynamiques (Orsay,
1995).
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[20] M. J. Paćıfico, A. Rovella and M. Viana. Infinite-modal maps with global chaotic behavior. Ann.

of Math. (2), 148(2):441–484, 1998.
[21] A. Rovella. The dynamics of perturbations of the contracting Lorenz attractor. Bol. Soc. Brasil.

Mat. (N.S.), 24(2):233–259, 1993.
[22] D. Sands and T. Nowicki. Quasisymmetric invariance of the Collet-Eckmann condition. Ergodic

Theory Dynam. Systems, 18(3):703–715, 1998.
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