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Abstract

We study a slowly varying planar Hamiltonian system modeling shallow water slosh-
ing. Using the Conley index theory for fast-slow systems of ODEs, we prove the exis-
tence of complicated dynamics in the system which is described in terms of symbolic
sequences of integers. This includes the solutions proven by Hastings and McLeod as
well as those conjectured by them.
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1 Introduction

Slowly varying Hamiltonian systems model various kinds of physical phenomena, which
sometimes exhibit very complicated behaviors (e.g. [15, 3, 4, 2]). The purpose of this
paper is to show that such systems can have rich variety of solutions whose behaviors
are described in terms of a certain type of symbolic coding.

The equation that we consider is a slowly varying planar Hamiltonian system with
a higher order perturbation given as follows:

d
d_?tt = JVH (u,ct) + e*h(u,et,g), uecR? (1.1)
0 114y, . .
where J = 10 )" the standard symplectic structure on the plane and ¢ > 0 is

taken to be small enough. The Hamiltonian function H and the perturbation term h
are assumed to be sufficiently smooth (HOW SMOOTH?) One can rewrite this system
into the form of a multi-time scale vector field on R? in the following way:

@ = JVH(u,\) +e*h(u,\e), (1.2)
A= e

For the study of chaotic dynamics for time-dependent Hamiltonian systems, one
often assumes that the Hamiltonian is time periodic, thereby reducing it to the study
of the Poincaré map associated to the time period. This approach is not possible
here since the Hamiltonian is not necessarily time periodic but has merely a kind of
oscillatory character, which will be made precise later.

We make the following two hypotheses for the system (1.1):

HyPOTHESIS

(H1) For e = 0, the system (1.2) reduces to a one-parameter family of 2-dimensional
Hamiltonian systems

d
d—?; = JVH (u, \). (1.4)

We suppose that, for each A, the Hamiltonian system (1.4) has two equilibrium
points A(A) and B()) which depend C' in A, and that B(\) is hyperbolic with a

homoclinic orbit that enclose, in u-plane, the other equilibrium point A(X).

We denote A = {A(A)} and B = {B(\)}, respectively. Notice that the curve B is a
normally hyperbolic invariant manifold whose stable and unstable manifolds close up
and form a surface of homoclinic orbits.

(H2) Let S(A) denote the area surrounded by the homoclinic orbit in the u-plane
for each A. We assume that the function S(X) is C'' and its derivative S’(}) is
infinitely oscillating, in the sense that there exists a positive constant s and a
sequence of disjoint closed intervals A; = [A;, AF] such that A} < Aip S'(A5) =
so, S'(Af;) = —so and S'(A\5;,,) = —s0, S'(Af;;) = so forall i € Z.



Notice that if H(u, A) is periodic in A and if S(A) is not a constant function, then S’(X)
is always infinitely oscillating.

Definition 1.1 A solution u(t), A(t)) of the equations (1.2, 1.3) is said to oscillate
k times over an interval A = [A7,AT], if the winding number of the solution with
respect to the curve A over A is equal to k. Here the winding number is defined as
the homotopy class of the following closed loop [ in the fundamental group of R®\ A
which is isomorphic to Z:

1= (Unweat (), AEDIUBOY) U (Unieannl® BOVE) -

Now we are ready to state the main theorem of this paper.

Main Theorem Assume the hypotheses (H1) and (H2) are satisfied, and hence there
exists a sequence of disjoint closed intervals {A;} as in (H2). Suppose the length of A;
is bounded from below by a positive constant. Then, for a given integer K > 0, there
exists € > 0 such that for any 0 < € < € and for any sequence of integers {o;}icy with
the property that

09; €40,..., K}, and o941 € {0,1},

there exists a solution of (1.2)-(1.3) which oscillates o; times over A;.

This theorem asserts that under these hypotheses, there exists a set of solutions
which have certain number of oscillations over the given intervals A; which are pre-
scribed in terms of symbolic sequences of integers, and therefore one may say that the
system has some kind of complicated or “chaotic” dynamics. Even if (H2) fails and the
function S’(A) oscillates only finitely many times, one can still have similar conclusion
if one replaces the infinite sequence of integers by a finite sequence of integers.

This work is motivated by a result of Hastings and McLeod [3], in which they
studied some complicated dynamics in a problem of shallow water sloshing. We will
discuss this example in Section 2. The proof of the main theorem is given in Section 3.
The proof uses the Conley index theory and in particular, recently developed method
adapted for singularly perturbed ODEs, which are summarized in Appendix A. Section
4 is devoted for discussions on related results and concluding remarks.

Acknowledgement During preparation of this paper, the first, second and fourth
authors visited Georgia Institute of Technology several times. We are grateful for its
warm hospitality and support.

2 Example: shallow water sloshing

H. Ockendon, J. R. Ockendon and A. D. Johnson studied the problem of shallow water
sloshing [10]. This is a two-dimensional irrotational fluid motion in a rectangular tank
of inviscid fluid with horizontal oscillatory forcing. Assuming that forcing is time
periodic, they obtained a partial differential equation model for this problem. They



also derived a fourth order ordinary differential equation, as a first order approximation
of the PDE model, which is as follows:

SR — (p— W) f10) ~ 30 f(0) = sint, (21)

where the leading term of the velocity potential is given as f(t — x) + f(t + z), if the
amplitude of the oscillation is very small with respect to the horizontal length of the
rectangular tank, and the constants k and p are determined from the size of the tank
as well as the amplitude of the forcing. In particular, we are interested in the case the
constant s is small. Note that in the papers of [10] and [3] the constant A is used in
place of p above. We used different notation in order to avoid confusion as A is used
as the slow variable.

S. P. Hastings and J. B. McLeod ([3]) studied this ODE model when the constant
p= 3K
reduce the ODE to the following second order equation:

. In this case one can integrate the equation once and, by putting g = f/,

1

3
2 1

- 1) =
3’{9()

2
Zg()? = Zcost +C
5917 =~ 7
where (' is an integration constant, or equivalently, it can be written as a fast-slow

system of the form:

r =y
y = a’—1—c—cos(et)

after appropriate rescaling of variables. Notice that this is a slowly varying time-
periodic planar Hamiltonian system, and if ¢ > 0, it satisfies the hypothesis (H1) given
in Section 1.

Using what they call “simple shooting method”, Hastings and McLeod noticed
that any solution z(t) of this equation cannot have a minimum value in the range
—/c < x < /c, and hence relative minima of the solution are sharply distinguished as
positive (larger than /c) or negative (less than —./c). This allows them to introduce a
symbolic coding of solutions in terms of the number of successive positive minima and
negative minima. Using this idea, they have proved, among other things, the existence
of solutions which are coded by arbitrary sequence of symbols 1’s (negative minima)
and 0’s (positive minima). Moreover these solutions have minima corresponding to
the symbols in each 27-interval of A = ¢t. There also proven to exist “subharmonic”
solutions which have more negative minima with one or no positive minima in each
2m-interval of A.

Numerically, Hastings and McLeod seemed to have observed the existence of more
complicated solutions whose existence is not proven in [3]. In fact, they conclude the
paper by the following concluding remark:

. It seems likely that these are infinite families of subharmonics with n
spikes near even multiples of 7 and zero or one spike near odd multiples of
Ty e



Using the main theorem of this paper, one can in fact prove the existence of such
families of solutions. In order to apply the theorem to the system, one has to verify
another hypothesis (H2). From a simple calculation, the area funstion of the planar
Hamiltonian system is given by

242

5 (14 C—I—COS/\)3/47

S(A)
and hence it is not a constant function and its derivative S’(A) is infinitely oscillating,
as it is a periodic function of A. Observe that the zeroes of S/(\) are multiples of 7, and
hence one can take the intervals Ay; as a compact neighborhood of an even multiple
of m, whereas Ag;11 a compact neighborhood of an odd multiple of 7. Therefore, from
Main Theorem, we conclude that, given an arbitrary sequence of integers {o;} with
the property that o9, = 0,1, ..., K for some K and 09,41 = 0,1, there exists a solution
which oscillates og; times in a neighborhood of an even multiple of 7 and 09,11 times
in a neighborhood of an odd multiple of 7 in a prescribed manner. This assertion is
exactly what is conjectured at the end of [3].

In fact, the same analysis can be applied to the original equation (2.1) derived by
[10]. Integrating (2.1) once and rewriting it as in the form of the system

y = =z
. 3 2
i = §y2—|— (p—Hy+c— ;COS(Gt)

where y(t) = f'(et) and € is a small constant proportional to k, one again has a family
of slowly varying planar Hamiltonian systems which satisfies the assumptions (H1) and
(H2). The Hamiltonian function for this system is given by

1, 1

1 2
H(y, 2\ = 52" = 5y” = 5(p— )y — ey + —ycos A

for each fixed A. Straightforward calculation shows that the area function S(A) is given

. 8 2 5/4
S(/\):E{(p62)2—6<c—;603/\)} ,

and hence the derivative S’(A) has a zero at A being an integer multiple of 7, and is
decreasing if A is an odd multiple of 7, whereas increasing if A is an even multiple of .
Therefore we basically have the same conclusion about the existence of solutions that
behave according to symbolic sequences of {o;} as before.

Furthermore, it is not necessary to assume that the forcing term is exactly periodic
in time. Therefore even if the original forcing term is not exactly periodic but is merely
oscillating in such a way that it satisfies the condition (H2), one can still apply the
Main Theorem to this problem. This may be a more realistic formulation of the original
problem of sloshing.

Hasting and McLeod studied similar problems in [4] and [2], to which the main
theorem of this paper is equally applicable. We will discuss more about the difference
between our approach and those taken by Hasting et al., or by Wiggins in Section 4.



3 Proof of Main Theorem

3.1 Splitting of homoclinic surfaces

Consider

i = JVH(u,\)+e*h(u,\,e)

A=«
As assumed in (H1), this system has a surface of homoclinic orbits when ¢ = 0. Since
the curve B consisting of equilibrium points B(A) for all A € R is normally hyperbolic,
the stable and unstable manifolds W#(B) and W*"(B) persist for non-zero but small .
One can then see how these maniflds intersect by measuring the splitting distance as
follows. Take a transverse section to the surface of homoclinic orbits for ¢ = 0. This
remains to be a section to W*(B) and W*(B) if £ > 0 is small enough. Let d(X,¢) be

the signed distance measured from W*(B) to W*(B) in the intersection of the cross
section and the plane given by each A.

Theorem 3.1 ([12, 15, 14, 11]) The signed distance d(A, ) of W*(B) and W?*(B)
defined above satisfies the following asymptotic expression:

d(Ae) me(S'(A) + O()).

In particular, if S'(\) takes non-zero values with different sign at A\t and \~, then, for
sufficiently small ¢ > 0, W*(B) and W?(B) intersect topologically transversely over
the interval between A\~ and AT,

Note that the formula
d(X €) ~ e(S’(/\) + O(e))

is true but the constants depend on the choice of cross sections where the distance is
measured. In particular, the term O(e€) is proportional to some constant which depends
on the location of the section, and therefore, if the cross section is taken too close to the
hyperbolic saddle B, the constant may be very large so that the second term dominates
the first term for small but non-zero ¢. Even in such a case, the formula remains true
if one chooses smaller value of e.

This is a version of so-called Melnikov-type theorems. The idea of Melnikov integrals
was for the first time applied to slowly varying ODEs by Robinson [12], and then further
developed in [15], [14], [11], and others. This particular formulation as well as its proof
can be found in [11].

3.2 Existence of infinitely many connecting orbits

Suppose there exist A~ < AT such that the function S’()) takes non-zero values with
different sign. Take an open interval A in the A-axis containing [A~, AT] and let g())
be a smooth function which vanishes at A* with ¢/(A~) > 0 and ¢'(A*) < 0 and which
does not vanish elsewhere in A.



Consider a modified equation as follows:

@ = JVH+e*h— 385 (\VH,
A= eg(N).

Note that, from the above conditions of ¢, the points on B with A = A=, AT are hyper-
bolic equilibrium points. 65’ (A)VH is an artificial dissipation term; this is introduced
in order to make the splitting distance of W*(B) and W?*(B) even bigger.

We are interested in finding orbits connecting the equilibria B* in B at A = AT,
Since we only look for topologically distinguishable connecting orbits, we will measure
the winding number with respect to the curve A, defined in §1. Below we only consider
the case S/(A7) > 0 and S/(AT) < 0i for simplicity, as the other case is given by
reversing the time and the A-axes if we are allowed to make £ < 0. Instead we need to
take into account of positive and negative e.

Theorem 3.2 ([6]) (1) For sufficiently small ¢ > 0, there exist at least 2 but finitely
many connecting orbits with distinct winding numbers;

(2) For sufficiently small ¢ < 0, there exist infinitely many connecting orbits with
distinct winding numbers.

Proof of this theorem goes as follows: First we take an isolating neighborhood
which is homeomorphic to a 3-disk and which contains the whole surface of homoclinic
orbits over the interval A, and remove a tubular neighborhood of the curve A. It then
becomes homeomorphic to a fattened cylinder, or the product of an annulus and an
interval, whose universal covering space is homeomorphic to a 3-disk. In this covering
space, there are infinitely many lifts of the piece of the curve B over the interval A. Let
B; be those lifts. For each lift B;, there are also the corresponding lift of the equilibria
ch. From the construction, the flow lifted on the covering space is monotone in such a
way that an orbit passing near some B; may pass near B; with 7 > 4, but never do so
with j < 7. This comes from the assumption that the orbits in the base space rotates
in one direction with respect to the curve A. Therefore we look for connecting orbits
from B; to B]‘J' with 7 > 2 for € > 0, and those from B;" to B} for e < 0.

The difference between the two assertions of the theorem for positive and negative
€ is completely topological. Intuitively, readers can easily be convinced by the figures
in [6]. Noticing this, in order to find those connecting orbits, we use the Conley index
theory, and in particular the theory of transition matrices. The transition matrix is
a matrix whose non-zero (i, j)-entry shows the existence of the connecting orbit from
ch to B]_?E. The essential part of the proof is very simple: one computes the transition
matrix of the covering space for € < 0, using the information of the flow on the base
space. It turns out that its non-zero (7, j) entries are such that the positive integers
j — 2 are only finitely many. Notice that the integer j — ¢ is nothing but the winding
number of the connecting orbit once it is projected down to the base space. On the
other hand, it is known that the transition matrix for € > 0 is given by taking the
inverse of that for ¢ < 0. This implies that in this case one must have infinitely many
integers j — ¢ from non-zero entries of the transition matrix for € > 0. For the detail
of the argument, see [6].



One of the important consequences of the proof is that each connecting orbit found
by the above argument must have its isolating neighborhood, since it is detected by
the Conley index theory which is based on isolated invariant sets and their isolating
neighborhoods. Moreover, the transition matrix is viewed as a linear map acting on
the sum of the homology group of the individual Morse components (the equilibria ch
in our case) to itself, and therefore if a connecting orbit from ch to B]_jc exists, the
transition matrix carries the generator of the homology Conley index of ch to that of
B]_jc non-trivially. It is this information we will make use of later in order to construct
the symbolic dynamics. Notice that since this is a purely topological information, it
does not depend on the choice of the funtion g. One can hence choose ¢ so that it is
identically equal to 1 on an open interval slightly smaller than [A~, AT].

3.3 Concatenation of connecting orbits

Let us go back to our original problem (1.2)-(1.3). Recall from the assumption (H2)
that there are intervals A; = [A7, Af] such that S'(A7) > 0 and S'(Af) < 0. Those
intervals are disjoint. Main partof the proof is to show that, given a finite sequence

o) = {o_j,...,07} of admissible symbols, namely, the symbols satisfying o9, €
{0,1}, o9; € {0, ..., K}, there exists an orbit which behaves over the intervals A; with
1= —J,...,J according to the finite symbol sequence.

Consider the equation

@ = JVH+e*h— 685 (\VH,
A= egr(N),

where gy vanishes at A~; and AT with ¢/(AZ;) > 0 and ¢’(AT) < 0, and g = 1
everywhere in a slightly small open interval of [AZ;, /\}'] Similarly to the previous
subsection, we can lift this equation onto an appropriate covering space.

If one furthermore modify the equation as in the previous subsection so that the
points on the curve B corresponding to the boundary points of each A;, one can find
a connecting orbit which oscillates o; times over A;. Moreover, the connecting orbit
carries a homology generator of the fast dynamics at A to that at A} in a non-trivial
manner, and this correspondence of the generators is given by a non-zero entry of the
transition matrix. Since the generators of the fast dynamics can be defined without
creating virtual equilibria on B at /\;'E7 the homology information about the orbits that
oscillate o; times over the interval A; is retained.

This argument shows that for each A; one can construct a o;-fold covering space in
which the transition matrix has a non-zero entry corresponding to orbits oscillating A;
times over A;. This part of the covering space satisfies the definition of the box defined
in Appendix as well as a sufficiently small tubular neighborhood of a lift of the curve
B which connects an exit part of the box over A; and the entrance side of the next
box A;4q satisfies the tube also defined in Appendix. Therefore we have a collection
of boxes and tubes which are compatible in the sense of Definition A.4. If we take an
isolating neighborhood of the (artificially created) hyperbolic equilibrium point on B
at AZ; and at /\}'7 respectively, they satisfy the condition of caps, one being a repelling



cap and another an attracting cap, and hence we have constructed a tube-box-cap
collection.

We apply the TBC collection theorem in Appendix and conclude the existence of a
connecting orbit (us(t), As(t)) that oscillates according to the finite symbolic sequence
a’.

Theorem 3.3 ([1]) (1) The union Nj consisting of the tubes, boxes and caps is an
isolating neighborhood for sufficiently small € > 0.

(2) (InvC'(R), InvC'(A)) is an attractor-repeller pair for InvINj.

(3) If the composition of the transition maps Tyjo---oT_; # 0, then there exists a
connecting orbit (uy(t), Aj(t)) from InvC'(R) to InvC'(A).

In our case, all T; are the non-zero entries of the transition matrix on each A;, and
therefore we have proven that there exists a connecting orbit.
It remains to remove the artificial dissipation term given by 4.

Key Lemma Let N be an isolating neighborhood for the connecting orbit (uy(t), \;(t))
for some 6 > 0. Then it is so for any é € [0, 0].

Proof. Suppose Nj fails to be an isolating neighborhood for some § > 0. Since the
only invariant set inside N is either the hyperbolic equilibrium in the caps or possibly
a connecting orbit between them, this supposition means that there exists a connecting
orbit (us(t), As(t)) which has an inner tangency at a point of the boundary of Nj.
From [13], the flow inside a tube is ("'-linearizable. Since the size of the tube is of
O(1), orbits staying entirely in a tube and its adjacent box are of O(e~'/¢)-close to the
unstable manifold of the normally hyperbolic curve B when they leave the tube. In
fact, under the C'l-linearizing coordinates, the flow in the tube can simply be written

as
. -1 0 .
u_(o 1)u, A= &

One can also obtain the same conclusion at the first hitting point of the same orbit at
the cross section of the unperturbed homoclinic surface on which the splitting distance
of W*(B) and W?*(B) is measured. This claim follows from the fact that it takes only
of O(1) amount of time (namely the O(e) length along the A-axis) from the end of
the tube to the first hitting point of the cross section. The standard Gronwall type
estimate then proves the assertion.

From the construction of the neighborhood Nj, after a finitely many turns around
the curve A, the connecting orbit must come back to a tubular neighborhood of the
curve B and stays there for O(1) amount of time. Applying the same argument to the
time reversed flow, the orbit is O(e~/)-close to W*(B) at the landing time, and hence
at the hitting point of the cross section. Therefore the distance between W*(B) and
W#(B) in the cross section must be of O(e~'/%). However, we know that the splitting
distance is of O(e), which is a contradiction. Therefore we conclude that no orbit in
Ny has a point of inner tangency at the boundary, and hence it remains to be isolated.
O

10



Remark 3.4 The isolating neighborhood was chosen in such a way that the homoclinic
surface at ¢ = 0,6 = 0 is O(1) away from its top and bottom boundaries. Therefore the
only way to lose isolation is at the side boundary.

The Key Lemma enables us to compute the Conley homology index of Nj with
6 = 0 and £ > 0, which implies the existence of a connecting orbit in Nj even for
6=0.

Let ¢ = {0;}icz be an admissible infinite sequence, and let 6/ = {o_z,..., 05} be
its finite truncation from o_j to oy.

3.4 Final step

Let (ug(t), Aj(t)) be a connecting orbit which behaves accordingly to ¢”. Choosing
a subsequence, if necessary, one obtains a convergent sequence (uj(t), As(¢)) and its
limit (u(t), A(t)) is a desired solution.

This completes the proof of Main Theorem.

J

4 Discussion

Our main result shows the existence of conjectured symbolic sequences of Hastings and
McLeod [3]. Also it can be applied to other examples discussed in [4, 2].

Hastings and McLeod approach is based on a shooting method using information of
solutions. Their method is elementary, but requires good guess for the expected struc-
ture of solutions. Therefore it may not be systematically applied to various examples.

Standard Melnikov method can also be applied to the sloshing problem. See similar
discussion in [5] about the Melnikov approach to slowly varying pendulum studied in
[3]. However, in order to conclude the existence of complicated dynamics in terms
of symbolic sequences, one may need transverse intersection of stable and unstable
manifolds, as well as time periodicity. The latter is required in order to reduce the ODE
problem to a problem for diffeomorphisms so that one can apply the Poincaré-Birkhoff-
Smale theorem about the existence of horseshoes near a transeverse homoclinic point.
Our method does not need the transversality nor the periodicity. It can be applied
to slowly varyinf systems with not necessarily time periodic (but merely oscillatory)
forcing.

A Conley index theory for fast-slow systems
Consider the family of differential equations on R"™ X R given by

& = f(z, )

. Al
A= eg(z,N) (A1)

where f(z,1):R" xR — R” and g(2,A) : R* x R — R are C'! functions and ¢ > 0. In
this paper, we only consider the case where ¢g(z, A) > 0. A more general case is treated

11



in [1]. The solutions to this equation generate a flow
P RxR"XxR—=R"xR.

In the special case e = 0, (A.1) has a simpler form since A is a constant. We can view
A as a parameter for the flows on R”, and for each [ we define a flow %, on R" by

(¥a(t,2),A) = @7t 2, A). (A.2)

If we fix a range of values of A, i.e., A € A = [Ag, A{], one can define a parameterized

flow
PV RXRP XA SR XA

by ¢A(t7 Z, /\) = (¢A(t7 $), /\)
Consider for the moment an arbitrary flow + defined on a locally compact metric
space X, a compact set N C X is an isolating neighborhood if

Inv(N,v)={2z € X | y(R,2) C N} C IntN.

If S = Inv(N,v) for some isolating neighborhood N, then S is referred to as an iso-
lated invariant set. The Conley index is an index of isolating neighborhoods with the
property that if Inv(N,~) = Inv(N’,v) then the Conley index of N equals the Conley
index of N'. In this way one may, also, view the Conley index as an index of isolated
invariant sets. We shall make use of the cohomological Conley index which is denoted
by CH*(S) and is an Alexander-Spanier cohomology group.

As was mentioned earlier, given an isolating neighborhood its Conley index can be
used to describe the dynamics of the associated isolated invariant set. In our case we
will present theorems which can be used to prove the existence of heteroclinic orbits.

The first step is to find the appropriate isolating neighborhoods. This is done by
choosing compact neighborhoods of the connecting orbits and segments of the branches
of equilibria. Observe, however, that this cannot produce an isolating neighborhood
under the singular flow ©°. On the other hand, our interest is in the dynamics for
¢ > 0. Therefore, it is only important that the constructed neighborhood isolate under
©° when € > 0.

The second step is to compute the Conley index of the isolating neighborhood for
€ > 0. For that purpose, we will define building blocks for constructing an isolating
neighborhood. The segments around the branches of equilibria are the simplest to

define. Let ¢y be as in (A.2).

Definition A.1 7 C R* x R is a tube if:

(1) There exists an interval [a,b] such that 7 C R" x [a,b] and T is an isolating
neighborhood for

YT RXR™ X [a,b] — R"x [a,b],
(t,$,/\) = (¢A(t7$)7A)'

(2) There exists §(7) = +1 such that for all (z,A) € T we have §(7)g(z,A) > 0.

12



We now turn to the neighborhoods of the connecting orbits and the non-trivial
problem of how to relate the index information between the various tubes. The Conley
index theory provides a variety of techniques for proving the existence of heteroclinic
connections. We shall use the following. Recall that a Morse decomposition

M(S)={M(p) |pe (P, >)}

of an isolated invariant set S is a finite collection of disjoint compact invariant subsets
M (p), called Morse sets, indexed by a partially ordered set (P, >), with the property
that; if z € S\ U,ep M(p), then there exist ¢ > p such that the alpha limit set of z is
contained in M (q) and the omega limit set of z is contained in M(p).

In the context of a parametrized flow ¢* : R x X x A = X X A, a Morse decom-

position is said to continue over A if there is an isolated invariant set S = Inv(N, ¢A)
with a Morse decomposition M (S) = {M(p) | p € (P, >)}. Observe that if one defines

Sy =5 (R x {\}),

then S, is an isolated invariant set for . Similarly, {M\(p) | p € (P,>)} is a
Morse decomposition for ). Since Morse sets are isolated invariant sets, CH*(M\(p))
is defined. Furthermore, the index of each Morse set remains constant over A. Let
Ao, A1 € A and assume that

Sxo=J My (p), i=0,1.
peP

Then, there exists a lower triangular (with respect to the order >) degree 0 isomorphism

T s @ CHA(My, (p) — €D CH* (M, ()
pEP peP

called a topological transition matriz (see [7, 8]). Roughly, if the p, ¢ off diagonal entry
of T is non-zero, then for some parameter value [ € (lo, ;) there exists a connecting
orbit between M;(p) and M;(q). As will become clear later, these off diagonal entries
play a crucial role in the desired computation of the Conley index.

In order to insure the existence of topological transition matrices in the abstract
setting of the fast-slow systems, we introduce the following neighborhoods of the con-
necting orbits.

Definition A.2 A set BCR"” x Ris a boz if:

(1) There exists an interval [c,d] such that B C R” X [¢,d] and B is an isolating
neighborhood for the parameterized flow 1% defined by

PP IR XR" x [e,d] — R"x[e,d],
(t,$,/\) = (¢A(t7$)7A)'

(2) Let S(B) :=Inv(B,¥5). There exists a Morse decomposition

M(S(B)) :={M(p,B)|p=1,...,Ps},

13



with the usual ordering on the integers as the admissible ordering. Let By =
BN (R x {A}), S\(B) := Inv(By, ) and let {M\(p,B) | p=1,...,Ps} be the
corresponding Morse decomposition of Sy(B). Then

Py Py
Se(B) == | Me(p.B) and  S4(B) := | ] Ma(p, B).

(3) There are isolating neighborhoods V' (p, B) for M (p, B) such that
Vip,ByCcB and V(p,B)NnV(q,B)=10
for p # ¢ and for every A € [¢, d]
Vi(p, B) C Int(B)).
Furthermore, there are 6(p, B) = £1, p=1,..., Py, such that
5(p,B)g(xz,A) >0 for all (z,A) € V(p, B).

Notice that Definition A.2(2) implies that there are no connecting orbits between
the Morse sets at the parameter values ¢ and d, and by the construction, the sets S.(5)
and Sq(B) are related by continuation.

If one is attempting to prove the existence of heteroclinic orbits, an additional
type of neighborhood which surrounds the critical points for the perturbed system is
necessary.

Definition A.3 A set C(R) (C(A)) is a repelling (attracting) cap if:
(1) There exists an interval [e, f] such that C C R” x [e, f] and C is an isolating
neighborhood for
PCIRXR x[e, f] — R"x[e, f]
(tv Z, /\) = (¢A(t7 $), /\)

(2)
z € C.(R) =  g(z,e)<0
reCs(R) = gz, f)>0
z €C.(A) = g(z,e) >0
relCr(4) = gz, f)<0,

where C\(R) :=C(R)N{A} and C\(A4) :=C(A) N {A}.

Finally, in order to construct a global isolating neighborhood, these boxes, tubes,
and caps must be related in a consistent manner. The primary requirement is that the
tubes and boxes overlap at the appropriate Morse sets. To simplify the notation we

let P, = Pg, and M(p,i):= M (p, B(7)).

14



Definition A.4 A tubes, boxes and caps collection (TBC collection) is a collection of
tubes {7(¢)|e=1,...,1+1}, boxes {B(z)|i=1,...,1}, and caps C(R) and C(A) such
that:

(1) fori=1,...,1,
(a) T(t)N (R x [¢;,d;]) C V(1,B(¢)) and T (2) N B(7) isolates M (1,1).
(b) TGE+1)NRX [, d]) CV(F,B(t)) and T (i + 1) N B(7) isolates M (F;,1).
(2) fori=1,...,1I, either
5(T(i+ 1)) > 0 and §(F;, B(7)) > 0 in which case b;4; = d;
or
(T (i+ 1)) <0 and §(F;, B(i)) < 0in which case a;41 = ¢;
where a, b, ¢, and d are as in Definitions A.1 and A.2.
(3) fore=1,...,1I, either
8(7(#)) > 0 and §(1,B(:)) > 0 in which case a; = ¢;
or
8(7T(¢)) < 0 and §(1,B(i)) < 0 in which case b; = d;
where a, b, ¢, and d are as in Definitions A.1 and A.2.
(4) If i # j, then B(i) N B(j) = 0.
(5) C(R)NT(IT+1)#0and C(A)NT (1) # 0. Furthermore,
CR)NTU+1)N (R X (A} £D = Co(R) =TI +1),
CANTMHNR*x{AN#£D = Ci(A) =T\(1).
Given a TBC collection, let

P,
@CH Md p, %@CH ci p7 )

p=1

denote the transition matrix associated with the box B(¢) and let
TP, 1) : CH*(My,(1,1)) — CH*(M..(P;,1)) (A.3)

denote its corresponding entry. Again, having fixed the TBC collection, we define a
map

0:=0(I) =T (P, 1) o T (P;_1,1) 0...0T?(Py, 1) o T (P, 1). (A4)

This definition makes sense since the continuation of the Conley index allows for a
natural identification between these spaces.

The following result can be used to find heteroclinic orbits. We begin with a concept
concerning the dynamics within the isolating neighborhood.

The simplest non-trivial Morse decomposition of an isolated invariant set S consists
of two Morse sets M (1) and M (0) with an admissible ordering 1 > 0. In this case,
M (0) is called an attractor in S and M (1) a repeller. Together, the pair (M (0), M(1))
is referred to as an attractor repeller pair decomposition of S.
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Theorem A.5 Let {T(¢)|i=1,...., 1+ 1}, {B()|i=1,...,1} and C(R),C(A) be a
TBC collection. Let

I I+1
N = U B(i) U U T())UC(R)UC(A).

=1

Then, for € > 0 sufficiently small,

(1) N is an isolating neighborhood for ¢;
(2) (Inv(C(R), ¢%),Inv(C(A), ¢%)) is an attractor-repeller pair for Inv(N, ¢);
(3) If © #0, then

CH*(Inv(N, ¢%)) 2 CH*(Inv(C(A), ¢%)) & CH*(Inv(C(R), ¥)).

In particular, for all sufficiently small € > 0, there is a connecting orbit from

Inv(C(R), ¢°) to Inv(C(A), ¢°) in N under the flow ¢*.
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