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Abstract

We consider a one-parameter family of two-dimensional ordinary
differential equations with a slow parameter drift. Our equation as-
sumes that when there is no parameter drift, there are two invariant
curves consisting of equilibria, one of which is normally hyperbolic and
whose stable and unstable manifolds intersect transversely. The slow
parameter drift is introduced in a way that it creates two hyperbolic
equilibria in the invariant normally hyperbolic curve that is persistent
under perturbation. In this situation, we prove that the number of
distinct orbits which connects these two equilibria changes from fi-
nite to infinite depending on the direction of the slow parameter drift.
The proof uses the Conley index theory. The relation to a singular
boundary value problem studied by W. Kath is, also, discussed.
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1 Introduction

In this paper, we consider a one-parameter family of two-dimensional ordi-
nary differential equations with a slow parameter drift, which is given by the
following form:

u = f(u7 )\7 €)7

: ueR? e€ IR, X e[-1,1], (1)
A = eg(N),

where g : [-1,1] — R is C' and satisfies
g(A) >0for —1 <A<, and g(£1) =0.

Such a family can be viewed as a singularly perturbed autonomous ordinary
differential equation (a vector field) or its time-rescaled version. The purpose
of this paper is to present a topological method which allows one to prove
existence of infinitely many connecting orbits in this type of equations under
some conditions that are detailed below. Before giving a precise statement
of the result, we shall explain some motivation and background of the study.

This work is stimulated by a paper due to Kath[6], who studied a slowly
varying singular boundary value problem of the form:

d2

Y fy,2) =0, yl@=+1)=0,

2
# dz?

where 1 > 0 is a small perturbation parameter and the slowly varying poten-
tial F(y,z) = /f(y, x)dy is assumed (as a typical case) to have one minimum

and one maximum when x = 0, so that the corresponding autonomous prob-
lem »
uzd;; +f(y,0) =0

possesses a center and a saddle with a homoclinic orbit in its phase plane.
Kath approached this problem from qualitative point of view by working
in the phase plane instead of using analytical techniques such as matched
asymptotic expansions, and he observed that, in some cases, the stable and
unstable manifolds of the saddle (which persist under the presence of slowly
varying variable z in the nonlinear term f(y,z)) can have infinitely many
(transverse) intersections in the phase plane. The existence of infinitely




many intersections that correspond to infinitely many distinct solutions to
the problem heavily depends on the mutual position of the stable and unsta-
ble manifolds of the saddle, which were measured by a Melnikov-like function
or the “energy difference” in [6] (notice that when x = 0 the problem gives
a Hamiltonian equation.) See [6] for more detail.

Unfortunately, the argument given in [6], although very interesting, did
not allow us to understand the essential mechanism for creating infinitely
many such different solutions to this problem. Motivated by [6], we shall try
to give a complete mathematical proof for this type of result. In this paper,
we consider an initial value problem instead of a boundary value problem, as
Kath essentially did the same by using the phase plane analysis, and hence
we view the parameter ;o in the above equation as one of the phase variables
and similarly @ = £oo as its equilibrium points. In this way, the problem
becomes one of finding infinitely many orbits that connect two equilibrium
points corresponding to 4 = £oo. Our idea is the use of the Conley index
theory which provides us with a topological method for detecting connecting
orbits. In order to focus only on the essential features of the problem and
since, as explained in [6], the mutual position of the stable and unstable
manifolds should be the most important feature in this problem, we shall
modify the equation by removing the slowly varying variable and replacing
it by a friction term which makes the manner of splitting of the stable and
unstable manifolds less degenerate. This modification can be justified by
using a result in [15].

A typical form of the problem could therefore be given by

T o=y,
y = /\y—.r(a:—a), x,y,A,a,eG]R, (2)
A= e(1-22),

where Ay is the friction term and the equilibrium points are transformed
to (z,y,A) = (0,0,£1). When € # 0, there are exactly four equilibria,
B* =(0,0,+1) and A* = (a,0,41). Our main result of this paper will show
that for € < 0 there exist exactly two distinct heteroclinic orbits Bt — B~
i.e. solutions (z(t),y(t), A(t)) to (2) such that

lim (z(t), y(1),A(t)) = (0,0,-1) = B~ 3
lim (2(1),y(8),A(t) = (0,0,1) = BT (3)



while for € > 0 there exists infinitely many distinct heteroclinic orbits B~ —
B™. To describe the assumptions and to state the results rigorously requires
some notation which we now introduce.

First, for technical reasons we wish to extend the set of parameter values
A at least to a set A = [-1 — p, 1 + p] for some arbitrary p > 0. In some
applications it is natural to assume that g(A) and f(-, A,-) are defined over
IR, and hence, A. However, in the case of singular boundary value problems
one is lead to consider equations of the form

/I:L - f(u7 57 6)7
£ = ¢
where it is assumed that

Sim (0,6, ¢) = F¥(u,e)

uc€R? ¢ €R, R, (4)

is well defined. In this case one can use the change of variables

2
A= Ztan 1¢
s

to transfer (4) to

o = f(u,tan g)\, €)

- 2
A = e— COSZ(E)\)
T 2
which is in the form of (1). Of course, in this case the natural values of A
are in the interval [—1, 1]. Thus, in this setting, to extend to A € A one can

define
Fr(uye) if1<A<14+p

flu,\je) =13 flu,Ae) if =1 <A <1
F(uye) if —1—p<A<—1
and choose g such that for A # +1, (1 — A?)g(A\) > 0. This results in the
system which will be studied

il’ - f(u7 >\7 6)7

. wc€IR?* AeRR, c€ IR, (5)
A = eg(N),



under the assumption that (1 — A?)g(A\) > 0 when X # +1.
Observe that when € = 0, the system reduces to a continuous 1-parameter
family of equations

= f(u,,0). (6)
Let ¢* : IR x IR* — IR? be the flow generated by (6). Let

®:RxR*xA—R*xA
be the parameterized flow over the parameter space A, i.e.
(t,u, \) = (@ (t,u), \).

Recall that a compact set N is an isolating neighborhood for a flow 1 if
the maximal invariant set of /V is contained in the interior of NV, i.e.,

Inv(N,v) :={u | ¥(R,u) C N} C intN.

We shall make the following assumptions.

A1 There exists an isolating neighborhood N of ® such that N is homeomor-
phic to [0,1]> and N* := N N (IR? x {\}) is homeomorphic to [0,1]% for all
A €A

As will be seen, N serves to define the region of phase space on which
the dynamics of interest occurs. In particular, any heteroclinic orbits of
®. : R x R* — IR?, the flow generated by (5), which do not lie entirely in
N will be ignored. In [10] it is shown that if N is an isolating neighborhood
for ® then there exists € > 0 such that for ¢ € [—€,€], N is an isolating
neighborhood of ®..

A2 There exists A € IR* and a continuous function B : A x [—¢,& — IR?
such that
f(A N\ e) =0, F(B(A€),A\e) =0

for all X\ € A and |e| < €. Furthermore, for each A\ € [—1,1], A and B(\,0)
are the only equilibria of ¢* in N>,

A3 Let o;(A) and Bi(N), i = 1,2, denote the eigenvalues of D f(A,\,0) and
Df(B(),0),X,0) respectively. For —1 < A <1,

Bi(A) <0< Ba(A), Ae[-1,1]
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ARea;(A) >0 for A==l

and
Ima;(A) #0 when Reo;(M) =0.

Observe that this forces B(), 0) to be a saddle point while A is a repelling
(attracting) fixed point for ¢* when A > 0 (X < 0). The assumptions A2 and
A3 are local in nature. The next two assumptions contain global information.

A4 Tnv(N*', ') consists of the critical points A and B(1,0) and a unique
heteroclinic orbit from A to B(1,0). Inv(N~' o~!') consists of the critical
points A and B(—1,0) and a unique heteroclinic orbit from B(—1,0) to A.

Let Bf = (B(1,¢),1) € N and B, = (B(—1,¢),—1) € N. Observe that
BZ are equilibria of ®.. Let the set of connecting orbits from B to B. in
N under ®. be denoted by C(BS,B_; N, ®.), i.e.,

C(BS,B7;N,®.) == {(u,\) € N | ®(R,u,\) C N,
Jim P (t,u,\) = B, lim ®.(t,u,\) = BI}.

C(B-,Br;N,®,) is defined similarly. Let #C(B., BX; N, ®.) denote the
number of components of C'(B., BI; N, ®,).

The following subset of N will be used to obtain a useful collection of
isolated connections. Let

D = N\({A} x [~1 -, 1+ 4.

Observe that {A} x [—1, 1] is an invariant set for ®.. Therefore if 7, denotes
a Bf — B connecting orbit, then 7. N {A} x [-1,1] = @ and v. C D.
Therefore, C(BF,B-; D, ®.) = C(BS,B; N, ®.).

By A1, D is homotopic to S', and hence 7;(D) =~ 71(S!) ~ Z where 7,
denotes the fundamental group. This suggests the following definition.

Definition 1.1 Let B. = U B(A\0U U B(xl,u). Let 7. denote

—1a<1 0<|ul<el
a B — B_ connecting orbit. Then 7. U B, generates an element of (D).
The winding number of v, is defined to be

0(v.) :=[v.UB.] € Z.



Using the notion of the winding number, we make the final assumption
as follows:

A5 Letw,, be a Bf — B_ connecting orbit with &, < 0 and 6(v.,) < 0. If
Ve, converges to a set I' in the Hausdorff topology on compact sets as e, — 0,
thenI' = B := B,.

This assumption can be verified by looking at the invariant set of the
parametrized flow. For instance, it is easy to see that the model equation
(2) satisfies A5. In fact, since the limit set I' is a connected invariant set
of the parametrized flow which contains BT and B~, it must consist of the
line segment B and, possibly, some of the homoclinic or periodic orbit of the
Hamiltonian flow

T =y,

y = —Zv(il? - CL),
in the plane given by A = 0. But if it contains a homoclinic or periodic
orbit, it must turn at least once around the set {A} x IR, and hence the
winding number cannot be less than or equal to 0, since all the periodic and
the homoclinic orbits rotate in the same direction.

The goal of this paper is to prove the following theorem.

Theorem 1.2 Given assumptions A1-A5 and |¢| < E:

(a) if € <0, then #C(BS, B, ; N, ®.) is bounded and > 2;

(b) if e >0, then #C(B.,Bf; N,®,) = oc.

Moreover, these connecting orbits are distinguished by the winding numbers.

Let us give a heuristic proof for the theorem in order to clarify the ge-
ometric idea behind it and to motivate the rigorous argument presented in
the subsequent sections. Our goal is to find connecting orbits between B
and B for sufficiently small ¢ # 0. Note that the set of equilibria B(),0)
for the fast dynamics forms an invariant curve in the parameterized flow and
from A3 it is normally hyperbolic, hence it has a stable and an unstable
manifold. The assumptions A3 and A4 imply that these manifolds wrap
around the line {A} x [-1 — g, 1 + ] and let us assume that they intersect
transversely as indicated in Figure 1. It then follows that there exists at least
one connection between B, and Bl besides the trivial connection.



Figure 1: The transverse intersection of the stable and unstable manifolds
for the curve of hyperbolic fixed points B(A,0).

For our purpose, it is easier to work on the universal covering space.
To be more precise, we consider the set IR* \ {A} x [-1 — u,1 + u] and
take its universal covering. The picture we obtain by lifting Figure 1 to the
universal covering becomes either like Figure 2 or like Figure 3, depending
on the direction of the slow flow which is determined by the sign of €. In
particular, B:n denotes the equilibria given by the lift of BF, respectively.
The direction of the flow is chosen in such a way that one turn around the
set {A} x [-1— p, 1+ p] in the base space corresponds to going one floor up
in the covering space. For instance, a connection from B to B in the base
space corresponds to a connection from B_j to Bik for some k£ > 0 in the
universal covering space. Note that the connection between B, and B,
for any k € Z indicates the lift of the invariant curve close to B(),0) for all
A€ [-1—p, 1+ py.

Let us first consider the case ¢ < 0 corresponding to Figure 2. In this
case, we are looking for B;O — B_, connections for £ > 0. Clearly there
exists one such connection since there exists at least one connection from
B} to B_ in the base dynamics due to the transverse intersection of the
stable and unstable manifolds. For simplicity we think of this connection
in the universal covering space as a B, — BZ; connection. By the deck
transformation, we also have a B;:k — B connection for each k € Z.



Figure 2: The intersections of the stable and unstable manifolds of the points
B* for £ < 0.
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Besides these connections as well as trivial B, — B_, connections, we hope
to convince the reader that there is no way of finding other connections in
Figure 2. Suppose there could exist a B, — B_, connection. It then must lie
in the unstable manifold of B."; and the stable manifold of B_,, and hence the
connecting orbit must go two floors up in the figure. However there already
exists a B;O — B_; connection. If the desired B;O — B., connection goes
lower than the B, — B, connection in the unstable manifold of B, then
it fails to get on and goes underneath the stable manifold of B, and hence
it cannot reach B_,. If on the other hand, the B, — B, connection goes
above the BY, — B connection, then it runs over the stable manifold of
B.; and hence it again cannot go across to B ,. Therefore in either case,
there could not exist B; 0o — Bos connections. Similarly one can imagine
that there also exist no B, — B, connections for any k > 2.

If the direction of the slow dyriamics changes, namely if ¢ > 0, then the
situation changes completely as indicated in Figure 3. In this case there exist
B, — Bik connections for any £ > 0. Indeed, if you go slightly higher than
the a priori existing By, — B;fl connection in the unstable manifold of B_,
then you first go underneath the stable manifold of B;l, cross the trivial
B, — B:“ , connection, and finally are able to get on the stable manifold
of B;z. Such a connection can clearly exist between B_, and B, for any
k > 2, and therefore, going back to the base space, we have infinitely many
connecting orbits as desired.

This argument is meant to give a geometric basis for Theorem 1.2. How-
ever, our proof is algebraic and makes use of the Conley index theory rather
than explicit assumptions concerning the transversal intersections of stable
and unstable manifolds. In particular, we compute the Conley indices of the
connecting orbits of . when ¢ < 0, directly, and then use this information to
compute the Conley index for the connecting orbits when ¢ > 0. It is worth
remarking that in the context of the Conley index theory this is a singular
transformation. Recall that the Conley index is defined for isolated invariant
sets. However, as one passes from ¢ < 0 to € > 0, one passes through the
parameterized flow ®( at which point all relevant isolation is lost. The key
to our being able to make this transformation involves a new result due to
C. McCord and the second author [9] which allows us to associate algebraic
properties to the transition matrices used in our computations. This result
and the relevant background for transition matrices is presented in the next
section.

11



Figure 3: The intersections of the stable and unstable manifolds of the points
BZ* for £ > 0.
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In Section 3, Theorem 1.2(a) is proven. This proof follows directly from
the algebraic properties of Conley’s connection matrix. Part (b) of Theo-
rem 1.2 is proven in Section 4 and makes use of the above mentioned result
concerning transition matrices.

2 Conley Index Theory

As was mentioned in the introduction our proof of Theorem 1.2 makes use of
the Conley index theory. Thus, we begin with a brief review of the relevent
portions of the theory. However, the primary purpose of this section is to
establish the notation and the reader is referred to [1, 3, 12, 14, 17, 18, 19]
for details.

Recall that a compact set N C X is an isolating neighborhood for a flow
Yp:Rx X — Xif

S =Inv(N,¢) :={z e N|¢¥(R,z) C N} CintN.

In this case the maximal invariant set S of N is called an isolated invariant
set.

Given an isolated invariant set S, one can find a pair of compact sets
(N, L) which form a regular index pair [18], in which case the (homological)
Conley index of S is given by

CH.(S) ~ H.(N, L).

Remark 2.1 To simplify the calculations we shall always use homology with
Z 5 coefficients, i.e.

CH.(S) ~ H,(N, L, Z,).

There are various ways of decomposing an isolated invariant set which
are natural with respect to the index theory. The most important of these
is the following. A pair of compact invariant subsets (A, R) of an isolated
invariant set, S, forms an attractor-repeller pair decomposition of S if

1. A is an attractor in S, i.e. there is a neighborhood U of A such that

w(UNS) = A.

2. R is the dual repeller to Ain S,ie. R= 5\ {z | w(z) C A}

13



where a and w denote the alpha and omega limit sets. The set of connections

from R to A within S is defined by
C(R,A;S)={x € 5| afz) C Ryw(z) C A}.
An obvious, but crucially important observation, is that
S=RUC(R,A;S)UA.

When there is no confusion concerning the invariant set S we shall simplify
the notation and merely write C'(R, A) to denote the set of connecting orbits.
The natural generalization of an attractor-repeller pair decomposition is
a Morse decomposition. To be precise, a Morse decomposition of an isolated
invariant set S is a collection of disjoint compact invariant subsets of S,

M(S) ={M(p) | p € P}

indexed by a finite set P, for which one can find a partial order > such
that if 2 & S U (U,ep M(p)), then there exists p,q € P such that p > g,
a(z) C M(p), and w(z) C M(q). Any partial order which satisfies the above
condition is admissible. These individual invariant subsets, M(p) are called
Morse sets, and the remaining portion, S\ UM(p), is referred to as the set of
connecting orbits. In particular, given two Morse sets M(p) and M(q), the
set of connecting orbits from M (p) to M(q) is denoted, as before, by

C(M(p), M(q); §) :={z € § | w(z) C M(q), afz) C M(p)}.

If M(S)={M(p)|p € P} is a Morse decomposition of S, then each
M(p) is an isolated invariant set. S contains other isolated invariant sets,
some of which can be produced by the partial order on P as follows. A subset
I C P is an intervalin P if » € I whenever p < r < ¢ and p,q € I. Disjoint
intervals are adjacent if I.J = I U J is also an interval (i.e. if no element of
P lies “between” I and J). If I is an interval, let

M(I) = (UI M(i)) U (’Ufc*(M(j),M(i))) .

A regular index triple for an attractor-repeller pair (A, R) in S is a triple
of compact spaces (N, N1, Ny) such that (N, Ny) is a regular index pair for

14



S, (N2, N1) is a regular index pair for R and (N7, Ny) is a regular index pair
for A. Since the Conley index of an isolated invariant set is defined in terms
of regular index pairs, regular index triples provides for the following relation
between the Conley indices of the invariant sets. The inclusion induced exact
sequence

ﬁ) Hn(NhNO) - Hn(NZ: NO) - H1L(N27N1) i n—l(NlNO) -

can be re-written as an exact sequence

a(R.A)

=" CH,(R)— CH,(S) — CH,(A)

9(R,A)
H

OHn_l(R) —

which is referred to as the homology attractor-repeller pair sequence. The
boundary map O(R, A) is called the connecting homomorphism, as (R, A) #
0 implies that connections between R and A exist.

Just as one can decompose isolated invariant sets, one can decompose sets
of connecting orbits. Given an attractor repeller pair decomposition (A, R)
of an isolated invariant set S and an indexing set J a separation of C(R, A)
is a collection {C;(R,A) | j € J} of open invariant subsets of C(R, A) such
that

C(R,A) = | Cj(R, A).
jeJ

It is easy to check that this forces J to be a finite set. Furthermore, if N
is an isolating neighborhood of S, then for each j € J there exists, N; C N
such that N, is an isolating neighborhood for A U RU C;(R, A). For this
reason, the sets C;(R, A) are called sets of isolated connections. Let

S; = InvNNj,

then (A, R) is an attractor repeller pair decomposition of S;. This of course,
implies that there is an associated index triple (N2, Nj1, Njo) and the corre-
sponding connection map (R, A; 7).

Theorem 2.2 (C. McCord, [7, Theorem 2.5]) For any separation of C(R, A),
(R, A) =) 0(R, A; 7).

jeJ

15



Connection matrices are the generalization of the connecting homomor-
phisms for an attractor-repeller pair to Morse decompositions. For our pur-
poses it is sufficient to recall that given a Morse decomposition, a corre-
sponding connection matriz is a linear map defined on the graded vector
spaces made up of the sum of the Conley indices of Morse sets in a Morse
decomposition, that is

A D CH(M(p)) — D CH.(M(p)).

peEP peEP

We shall write this as a matrix

A =[A(p,9)], ep

where

A(p,q) : CH.(M(q)) — CH.(M(p)).

Furthermore, connection matrices satisfy the following conditions.
1. They are upper triangular, i.e. if p # g then A(p, q) = 0.
2. They are boundary operators, i.e. they are degree —1 maps
A(p, q)CH,.(M(q)) C CH,1(M(p)),
and they square to zero, A o A = 0.

3. If p and ¢ are adjacent in the flow defined order then the connection
matrix entry A(p, q) equals the connecting homomorphism for the at-
tractor repeller pair (M(p), M(q)) of M(q,p), i.e.

A(p,q) = 9(M(q), M(p)).

4. Recall that for any interval I in P, the set M ([) is an isolated invariant
set, and hence, C H,(M(I)) is defined. The relation between the indices
of the Morse sets in M(I), and CH,(M(I)) is

M)~ g

where

A(L) = [A(p, 9, per -

16



The following theorem, due to Franzosa [3], is fundamental.

Theorem 2.3 Given a Morse decomposition, there exists at least one con-
nection matriz.

Returning now to the realm of differential equations, consider the 1-
parameter family of equations

&= F(z,\) zeR", A eR
which we assume generates a continuous family of flows
PR x R" — R".

Let A = [-1— p,1 + p]. The parameterized flow over A will be denoted by
U:R xIR" xA — IR" X A where

U(t, 2, \) = (W (t, ), \).

We will make the following assumptions on the parameterized flow.
H1 N s an isolating neighborhood for V.
H2 A Morse decomposition of K = Inv(N, V) is given by

M(K)={M(p)[p=1,..., P}
with an admissible ordering
P>P—-1>...>1.

Furthermore, for each p = 1,..., P, the homotopy Conley index of each
Morse set is
h(M(p)) ~ X™ for some m.

As before we shall adopt the notation that
N* = NN (R" x {\})

and

M (p) = M(p) N (R" x {A}).

17



H3 .
Kil — U Mil(p)
p=1

Observe that H3 implies that there are no connecting orbits between the
Morse sets under the flows *1.
Now consider a system of equations of the form

& = f(x,N),

. 7
A = eg(N), (7)

where g : IR — IR is continuous and satisfies (1 — A%)g()\) > 0 for X # +1.
Though, formally, equations (7) resemble those of (5) they are not the same
since the Morse decompositions at A = =+1 differ. In the application of
Theorem 2.4 (stated below) to the proof of Theorem 1.2 the equations (7)
are obtained by choosing a covering of the isolating neighborhood on which
(5) are defined.

We shall denote the flow generated by (7) by

\Ile ‘TR % IRn.+l N ]R'ILJrl.

Let K. = Inv(N,V,). Observe that under ¥, the Morse decomposition
consists of 2P Morse sets

M(K) ={M(p*)|p=1,... P} (8)

where M(p*) := M*Y(p) x {£1} C R" x A. As was shown in [16], for
0 < |e| < €, the connection matrix for the Morse decomposition M(K.) has
the form

(9)

The submatrix 7, will be called the singular transition matriz associated with
V.. Observe that:

Agzlo T]

0 0

if € < 0 then CH

)

!
P~

T
L

CH

I
P~

(M(p*)) — E_BICH*(M(p‘))
if € > 0 then (M(p)) — é CH.(M(p"))

T
I
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Hence, nonzero entries in the transition matrices correspond to M(q™) —
M(p~) or M(q~) — M(p") orbits for some p, g.

For the purpose of the following discussion let ¢ < 0 (the case ¢ > 0 is
analogous). Let

where

Tp,q) : CH(M(q")) — CH(M(p")).

Since connection matrices are degree —1 operators
Tp,q) : CHuai(M(q")) — CHW(M(p)).
However, by [16, Theorem 5.4], or [11, Theorem 2.10]
CHu1(M(q")) = Hupa(SR(M*(q))) = CH,(M'(q)) (10)

where YXh(M?'(q)) denotes the suspension of the homotopy Conley index of
M*(p) under the flow ¢! and

CHL(M™()) ~ CH.(M(q7).
We shall indicate these isomorphism by
Sulq") s CHW(M(q)) = CHuya(M(q")).

and

ou(q ) : CH,(M (q)) — CH,(M(q")).

Similarly if € > 0 then there exist isomorphisms

2.(q7) : CH (MY (q)) — CH,1(M(q™))

and
ou(q7) : CH,(M'(q)) — CH,(M(q")).
Let » » »
= @Z*Wi) : E_Bl(JH*(Mﬂ(Q)) — @CH*(M(qi))
and

0i =@ oue®) : B CH(M ) — 6_91 CH.(M(q*))

g=1 q=1

An important result which is proven in [9] is the following.
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Theorem 2.4
(0,) ol oYXl =(X,) o too].

*

Furthermore, as is, also, shown in [9] one can choose bases for all the
spaces such that on the level of matrices this equality can be written as

T =T

We shall from now on assume that this has been done.

3 &, for £ <0.

This section contains the proof of Theorem 1.2(a), i.e., that for ¢ <0
#C(B.,B.; N, ®.) > 2

and addresses the question of the structure of these connection orbits. For
le| < &, let S, :=Inv(N, ®,).

Lemma 3.1 For e <0,
M(Se) = {B;E?Ai}
15 @ Morse decomposition of S. with an admissible ordering
At >Bf>B > A"

Proof. The planes A = +1 are invariant under ¢, and the flows on these
planes are given by p*!. Since ¢ < 0 and (1 — A?)g()\) > 0

(Inv(N ' o 1), Inv(NY, oY)

forms an attractor-repeller pair decomposition of S.. Thus, by A4, { B¥, A*}
is a Morse decomposition of .. The admissibility of the ordering is guaran-

teed by A4, ¢ <0, and (1 — A%)g()) > 0. O

Let

A, : CH.(A )@ CH.(B. )& CHJ(BS) & CH.(AY)
— CHJA)® CH,(B.)® CH,(B) ® CH,(A")

denote a connection matrix for M(S.). Let A (Y, X): CH.(X) — CH.(Y)
denote the corresponding submatrix of A..
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Lemma 3.2 For —¢<e<0

0100
0 00O
Ae = 0 0 01
0 00O
Proof. Under the flow ®,, the Conley indices for the equilibria are as
follows:
CH.(A") = (Z,,0,0,...)
CH.B-) = (0,Z,,0,...)
CH.B) = (0,0,Z,,0,...)
CH,(AY) = (0,0,0,Z,,0,...).

Since connection matrices are degree —1 operators, the only possible non-
zero entries are A.(A~, B7), A.(B-,B) and A, (B, AT). By A4 and [16],
A(A7,B7)=1and A.(Bf,AT) =1. Since A, 0 A, =0, A,(B-,BF) =0.
O

The proof of Theorem 1.2(a) will follow from the fact that A (B-, B}) =

0. Let
L.(j) == {7 | 0(v.) =7}

Lemma 3.3 Fore € [-£,0), Bf UB- UT'.(j) is an isolated invariant set.

Proof.  Suppose that for some ¢ € [—£,0) and some j > 0, BXUBZ UI'.(5)
is not compact in D.

Let {7, | n =0,1,2,...} C I'.(j) and let 4, = BX U B- U~,. Since
e € [-£,0), N is an isolating neighborhood and hence %, C N. Since N
is compact, there exists a subsequence {%, } such that 7,, — v as ¢ — o
where ¥ C N but v ¢ D. The latter implies that yN{A} x [-1—p, 1 + p] #
0. However, since each ¥,, is a compact connected invariant set, so is 7.
Therefore v N {A} X [-1 — u, 1 + p] consists of At A~, or {A} x [-1,1].
Assume At € yN{A} X [-1 — u,1 4+ p]. Since ¢ < 0, BT € v, and 7 is
connected, there exists a connecting orbit from B* to A" which contradicts
A3. A similar argument implies that A~ ¢ {A} x [-1 — i, 1 + p]. Therefore
yN{A} x [-1 = p, 1 + ] = 0 which is a contradiction. 0
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Let D.(j) C D be an isolating neighborhood for ®, such that
Inv(D.(j)) = BX U BZ UT.(j).

and let (B, B.;j) denote the connecting homomorphism for the index
triple associated with the attractor-repeller pair (B, , B)) decomposition of
InvD. (7).

Since we are using Z, coefficients for the Conley index d(B), B, ;j) =0
or 1. A standard index theory result is the following.

Lemma 3.4 9(Bf,B.;j)=1< CH.(InvD.(j)) = 0=T.(j) # 0
BB ;j) =0« CH,(InvD.(j)) =~ CH.(B.) ® CH,.(B: )

Lemma 3.5 For ¢ € [—¢,0),
OB, B.;j) = 0(B', B 5 j)
i.€., it 18 independent of e.

Proof. By Lemma 3.4, 9(BF, B7;j) is determined by C'H.(InvD.(7)).
Clearly, the Conley index of InvD.(7) can change only if for some ¢ € [—£,0),
InvD,.(j) is not isolated. Since N is an isolating neighborhood for &,
e € [-£,0), InvD.(j) C intN. Since the orbits of I'.(j) and T'.(k) gener-
ate different homotopy classes in D, the only way InvD.(j) could cease to
be isolated would be for a connecting orbit to approach A x [—=1 — u, 1 + .
However, as was demonstrated in Lemma 3.3, this is impossible for ¢ < 0. O

Lemma 3.6 There exists a positive integer J such that if |j| > J, then
o(Bf,B-;j) =0.

Proof. By Lemma 3.4, if T'.(j) = @ then (B, B ;j) = 0. By Lemma 3.5,
it is sufficient to show that I'-(j) = 0. T'(j) is bounded away from A X [—1, 1],
hence if 7; denotes a Bf — B_ connecting orbit, then there exists a maximal
number of times that v, can wind around the line A X [—=1 + §,1 — §] for a
fixed 6 > 0. By choosing ¢ sufficiently small, we can approximate the orbit
of vz over the regions —1 < A < —1+dand 1 —6 < A <1 via the flow
o' and ¢! respectively. By A4, v: cannot wind around A in N*!. Thus,
the winding number of any ~: is bounded above. Therefore, for J sufficiently
large, if |j| > J then T'(j) = 0. 0
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Lemma 3.7 9(BX,B7;0) =1 for any ¢ € [—£,0).

Proof. By Lemma 3.5 it is sufficient to show that 9(BF, B.;0) = 1 for
some value of ¢ € [—Z,0). With this in mind, let @5 denote a §-neighborhood
of U B(A,0). By A3 and [10], there exists ¢ > 0 such that if

—1—p<A<14+p
0 < |e|] < € then Qs is an isolating neighborhood for ®.. Furthermore,
CH.(Inv(Qgs, ®.)) ~ 0. Observe that if I'.(0) C Qs then

CH.(Inv(Qs,®.)) = CH.(InvD.(0))

and hence by Lemma 3.4, 9(Bf, B7;0) = 1.
Thus, it remains to be shown that I'.(0) C Qs for ¢ sufficiently small. By
[16], in the Hausdorff metric

hmF (0)=T

where T' is a compact invariant set for ®,. Therefore, from A5, we have
I'=B(= U B(A0)), and hence I'.(0) C Qs for ¢ sufficiently small.

—1<1
Since 9(B,B_;0) = 1 is proven by the index computation as above, it
remains unchanged as long as the isolation of I'.(0) is preserved. Thus, from
Lemma 3.3, (B, B-;0) = 1 must hold for all € € [—¢,0). O

Proof of Theorem 1.2(a). By Lemma 3.2 and Theorem 2.2, we have

0=A/(B-,BY)= > 0(Br, B ;j),
jeZ

for any ¢ € [-¢£,0).

The assumption A5 implies that any BY — B_ connecting orbit with a
negative winding number cannot exist for sufficiently small €. Namely, there
exists a sequence of negative real numbers {g;} with &, — 0 such that for
any ¢ € [e;,0), no Bf — B~ connecting orbit v, with —k < 6(7.) < 0 exists.
Therefore for any ¢ € [g),0), we have

> (B, B;;j) Z (BI,B;j)+1+Y 0(Bf,B:;j).

jeZ =1
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Here we have used Lemma 3.7 as well. From Lemma 3.5, 8(B., B ;j) does
not depend on ¢ for ¢ € [—¢,0), and hence, the above formula in fact holds
for all ¢ € [—£,0). Since & does not depend on n, we conclude that

J
0=14> 0(Br,B;j). (11)

i=1

Therefore, there exists at least one j € {1,...,J} such that (B, B_;j) = 1.
O

Remark 3.8 Observe that there exist an odd number of positive winding
numbers j > 1 for which (B, B, ;j) = 1. These numbers will be denoted
by

1 <g1<ja<-+r <Jart1-

4 The Covering Flow

In the previous section the proof of Theorem 1.2(a) was reduced to equation
(11) where the summation was indexed by elements of the fundamental group
of D. Thus, to further exploit this equality, it is natural to consider covering
spaces of the isolating neighborhoods. This is the focus of this section and
will lead to the proof of Theorem 1.2(Db).

Throughout this section, D will be considered to be the pointed space
(D, BF). Let D denote the universal covering space of D with covering map

p: D—D.
There exists a unique local flow ®, defined on D which satisfies the relation

p(2:(t,0)) = 2c(t, p(v)). (12)

Since 7r1(D) Z, ®. has infinitely many fixed points which will be denoted
by {B* il 7€ Z} where p(BZ;) = BE. D will be considered as the pointed

space (D B 0) Furthermore, the notation is chosen such that if Bi
connected to B o by a path «, then

[p(a)UB.] =j € Z =~ m(D).
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Observe that this implies that if 4. € I'.(j) then its lift 7. is a heteroclinic
orbit B, — B_,, ;.

By (12) one might expect that if K is an isolating neighborhood for ®,
then p '(K) is an isolating neighborhood for ®.. Unfortunately, p—(K)
need not be compact. This suggests the following definition. Fix sufficiently
small ;1 > 0. Let U be a p-neighborhood of B(= By, see Definition 1.1). Let
U C K C D. Let K, be a connected subset of D containing {B |j=
0,...k} such that for every z € K\ U, p~'(z) N K, consists of exactly k
distinct elements and for every z € U, p~(z) N Kk consists of exactly k£ + 1
distinct elements. Observe that if a : [0,1] — D such that «(0) = Bf, and
a(l) = BZ, then 0 < [p(a) U B.] < k. Tt is now easily checked that if K
is an isolating neighborhood for ®. then K, is an isolating neighborhood for
P..

From now on, let K C D denote an isolating neighborhood for ®.. Then
for ¢ € [-£,0),

Inv(K,®.)= Bt UB-UC(B,B7;N,9®,). (13)
Observe that the arguments of Lemma 3.7 guarantee that such a K exists,

i.e., that C(B}, B;; N, ®.) is bounded away from A x [~1 — u, 1 + p] for all
e € [—£,0). Let S, ), = Inv(Kj, ®.).

Lemma 4.1 For e <0,
M(gfnlv) = {BE:,E,H | 0 S n S k}
is a Morse decomposition of ggvk with an admissible ordering

BT > B~

€, e,m?

m > n.

Proof. By equation (13) and the proof of Theorem 1.2(a), S. ; consists of
the fixed points {BZ, | 0 < n < k} and heteroclinic orbits from B, to B_,,
where m > n. O

Let

0 0 0 0
Aka : @ CH*(BE_H) @ @ CH*(B;I—H) - @ CH*(BE_W) @ @ CH*(B;I—H)
n==k

n==k n==k n==k

denote the connection matrix for M(ggk)
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Lemma 4.2

where . .
T..: 6P C’H*(B:f,n) — P CH.(B_,)
n=k n=k
Let T, (m,n) : CH.(BS,) — CH.B_,,) be the corresponding entry of T, ;.
Then
Tevk(man) =lem—n= 07j17j27 s 7.7'27'71-

Proof. Connection matrices are strictly upper triangular with respect to
the admissible ordering on the Morse decomposition. Hence, since B_, »*
B_,., B, # B, and Bf, > B_,, the only non-zero entries occur in

e,m» €,m? e,n e,m»

T, . Let 560(3) denot—evthe lift of D.(j) such that BF is lifted to B;fo.

Now observe that CH.(D.o(j)) = CH.(D.(j)). Therefore, T} 1(7,0) can be
identified with 0.(B., B-,j). Hence, by Remark 3.8 T, ;(4,0) = 1 if and
only if j = 0,71,...,J2,—1. The remaining non-zero entries are determined

by the deck transformations of D, (7). O

Since T} is independent of ¢ for ¢ € [—£,0) from Lemma 4.2, we shall

write
Ty =T, .

The same proof as in Lemma 4.1 gives:
Lemma 4.3 For e > 0,
M(S.;) ={B%, | 0<n <k}
1s a Morse decomposition of ggvk with an admissible ordering

B;" > B:jn? m Z n.

Proof of Theorem 1.2(b) Let 7. 4 denote a heteroclinic orbit B, , — B:e under

.. If £ # m then p(v.4) # p(Yem). Thus the theorem will be proven once
it is shown that there are infinitely many values of £ for which a B_; — B:f s
orbit exists.
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By Theorem 2.4 , for ¢ > 0

~ [0 Tt
Agvk_[o : ]

Let Ry, = T}, and let Ry(m,n) : CH.(B-,) — CH.(BZ,) be the corre-

sponding entry. Since A, is a connection matrix, if Rj(m,0) = 1 then there
exists a B_, — BT, orbit.

Recall from Lemma 4.2 that T} is an upper triangular matrix whose
diagonal consists of 1’s, and whose ji, 72, ..., j2,11 super diagonals consist of
1’s, and whose other entries are all zero. Thus, it is easy to check that if for
some kg, Ry,(m,0) = 1, then for all & > ko, Ri(m,0) = 1. Given k, let Mj
denote the maximal integer such that Rj(M;,0) = 1. If M}, — oo as k — oo,
then the theorem is proven. So we can assume that there exists M such that
Ry(m,0) = 0 for all k,m > M. However, this implies that for & sufficiently
large

Te(M + jo.i1, M) o Ri(M,0) =1,

and hence Ry, # T;, ', a contradiction.

5 Remarks

After submitting the first version of this paper, we became aware of the
preprint by Doelman and Holmes [2]. The motivation of their work comes
from study of travelling waves in the complex Ginzburg-Landau partial differ-
ential equations, and the results they obtained are similar to ours, although
their approach is more geometric rather than topological, based on many
drawings of the stable and unstable manifolds of the invariant manifold, com-
bined with analytic information obtained from Melnikov-type computations.
It is straightforward to verify, for the equation in [2], all the assumptions of
this paper. Hence the results given here hold as well for it.

There is another interesting example to which one can apply the results
in this paper. It is a model equation of “shallow water sloshing” studied by
Hastings and McLeod [5], where the authors show the existence of various
kinds of bounded solutions which exhibit a variety of types of oscillations. In
a similar way for the model equation (2) and the equation in [2], it is easy to
check the assumptions A1-A5 for this equation, and hence it is possible to
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apply our results to the equation for “sloshing”. Using our results, one may be
able to show the existence of such periodic solutions which are characterized
by certain symbolic sequences. The attempt to carry out this idea is in
progress and will appear in a future publication [4].
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Letter to the first referee

The manuscript was revised in order to answer the inquiry of the first
referee. The following is the list of corrections made in the revised version:

1. We included Lemma 3.3 and its proof which shows that the set BX U
B- UT.(j) is an isolated invariant set.

2. The proof of Lemma 3.3 provides the key point of the proof of Lemma
3.5.

3. We have replaced the assumption A5 with a stronger assumption which
can be verified for systems with monotone winding around A, as was
shown for the model equation (2) immediately after the new assumption
A5 is presented. Accordingly, the definition of the winding number is
moved before the assumption A5 is presented. Using the term “winding
number”, the statement of the main theorem is slightly strengthened.

4. Since we have changed the assumption A5, the remark which preceeds
the proof of the statement (a) of the main theorem is no longer trivial.
Therefore we have included the claim and its proof in the proof of the
main theorem.

5. The definition of [x(k is corrected.
6. Some minor typing errors are also corrected.

The authors are grateful for the careful reading of the referee, and hope
that he/she is satisfied with these corrections.
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