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Abstract

We prove that the Lorenz system with appropriate choice of parameter values has
a specific type of heteroclinic cycle, called a singularly degenerate heteroclinic cycle,
that consists of a line of equilibria together with a heteroclinic orbit connecting two of
the equilibria. By an arbitrarily small but carefully chosen perturbation to the Lorenz
system, we also show that the geometric model of Lorenz attractors formulated by
Guckenheimer will bifurcate from it, among other things. Although not proven, one
may also expect various other types of chaotic dynamics such as Hénon-like chaotic
attractors, Lorenz attractors with hooks which were recently studied by S. Luzzatto
and M. Viana, and what were observed in the original Lorenz system with large r and
small b in the Sparrow’s book [37]. Our analysis is all done within a family of three
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dimensional ODEs that contains, as its subfamilies, the Lorenz system, the Rössler’s
second system and the Shimizu-Morioka system, which are known to exhibit Lorenz-like
chaotic dynamics.

1 Introduction

In 1963, a meteorologist E. N. Lorenz [23] derived the following polynomial ordinary
differential equations in the study of thermal fluid convection in relation to the question
of long-term weather forcast:

ẋ = σ(y − x)
ẏ = rx − y − xz
ż = −bz + xy.

(1.1)

Setting the parameters (σ, r, b) to be at (10, 28, 8/3), Lorenz numerically found a so-
lution which remains bounded forever but behaves in a very complicated manner, as
shown in Figure 1.
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Figure 1: The “standard” Lorenz attractor.

This was one of the first examples of what is now known as “chaos”, and many
papers have been devoted to study this seemingly chaotic dynamics of the Lorenz
system, see e.g. [37] for relevant works by early 80’s, and [41] for a good updated
review of developments of the study of the Lorenz system.

The first mathematically important contribution to understanding the above chaotic
dynamics in (1.1) was made independently by Guckenheimer [14] (see also [16]), and
Afraimovich, Bykov and Shil’nikov [1]. From the numerical simulation of (1.1), they
have constructed a geometric model as an abstract three-dimensional vector field, and
studied the dynamics of the chaotic attractor of the geometric model. Briefly they
have proven the existence of a well-defined attractor in the geometric model, which
is chaotic in the sense that the reduced interval mapping which carries essential dy-
namical information of the attractor is uniformely expanding, and such an attractor
is, though not structurally stable, persistent under perturbation of the vector field.
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Although it is constructed from the numerical simulation of the solution that ex-
hibits a seemingly chaotic behavior, it was not at all clear whether the geometric model
truly represents the dynamics in the Lorenz’ original system, because rather strong hy-
potheses were imposed on the geometric model, that were not easily verified for (1.1).

Very recently, Tucker [39] gave a rigorous verification of the hypotheses for the
geometric model in the Lorenz system at the standard parameter values (σ, r, b) =
(10, 28, 8/3). He used validated numerical integration of the Lorenz system (1.1) com-
bined with a careful analysis near the equilibrium point where the orbits move very
slowly and hence the numerical error bound cannot be effectively given. (Precisely
speaking, the Poincaré map of the Lorenz system at the standard parameter values
turns out not to be uniformly hyperbolic everywhere on the cross section. According
to [39], several iterate of the Poincaré map does however become eventually hyperbolic,
and hence the existence of the stable foliation is guaranteed.) Therefore the question
of the existence of geometric Lorenz attractor in the original Lorenz system with the
classical parameter values σ = 10, r = 28, b = 8/3 has been answered affirmatively
by this computer assisted proof. Note also that, earlier to [39], Mischaikow, Mrozek
and Szymczak [25], and independently Galias and Zgliczyński [13] gave a proof of the
existence of chaotic dynamics in the Lorenz system (1.1) with classical and other pa-
rameter values in terms of semi-conjugacy to the symbolic dynamics. Although the
method of [25, 13] is limited to detecting only symbolic dynamics and not a chaotic
attractor, it is applicable to a broader class of systems at computationally lower cost.

In this paper, we shall furthermore investigate the Lorenz system and other relevant
systems having similar behavior, hoping to give a better understanding of common
features of Lorenz-like dynamics. The main results of this and a forthcoming paper
may be summarized as follows:

Main Results

(1) The Lorenz system (1.1) with correctly chosen parameter values (σ, r, b) possesses
a singularly degenerate heteroclinic cycle with arbitrarily large z-height.

(2) Unfolding of the singularly degenerate heteroclinic cycle obtained as above can
give rize to the geometric Lorenz attractor (and hopefully various other chaotic
attractors that are observed in (1.1)).

(3) In particular, a geometric Lorenz attractor exists in an arbitrarily small (but
carefully chosen) perturbation of (1.1), although one may need to deviate from
the original Lorenz system itself.

Here the singularly degenerate heteroclinic cycle is an invariant set consisting of a
line of equilibria and of a heteroclinic orbit connecting two equilibria in the line. In our
case, the line of equilibria is the z-axis, one of these two equilibria is the origin, and the
other is given by P∗ = (0, 0, G∗) for some large G∗ > 0. The z-height of the cycle means
the distance of the two equilibria measured along the z-axis, which is nothing but G∗

for our case. See Figure 2. In order to have such a singularly degenerate heteroclinic
cycle, we need to choose b = 0 in (1.1) so that the z-axis becomes the line of equilibria,
and r sufficiently large, whereas σ > 3/2 remains bounded. As we will see in the proof,
the equilibrium P∗ has complex conjugate stable eigenvalues normal to the z-axis, that
explains the spiral behavior of the singularly degenerate heteroclinic cycle near P∗ as
in Figure 2.
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Figure 2: A singularly degenerate heteroclinic cycle.

Under such choice of parameters, we can then perturb (1.1) so that the perturbed
vector field has an attractor in a small tubular neighborhood of the singularly degen-
erate heteroclinic cycle satisfying the hypotheses of the geometric model constructed
by Guckenheimer and Williams [14], [16]. Note that the perturbation can be given
by adding extra terms to (1.1) with arbitrarily small coefficients. As we shall discuss
in later sections, we also expect that this singularly degenerate heteroclinic cycle can
create other types of chaotic dynamics that are observed numerically in (1.1) and that
are not explained by the geometric Lorenz attractor model.

The structure of the rest of this paper is as follows. In the next section, we shall
give the precise statement of our results as well as further discussion on the motivation
and relevant results. In §3 and §4, we give a proof of the existence of the singularly
degenerate heteroclinic cycle. The main idea of the proof is the blow-up of the vector
field at infinity. After the blow-up, we obtain a vector field on the sphere at infinity
which has two equilibria, one at the north pole and another at the south pole, together
with an orbit connecting these two equilibria. We then prove that such a connecting
orbit persists in a neighborhood of the sphere at infinity. Since the equilibria at north
and south poles are highly degenerate, we must blow-up again in order to carry out
the analysis. Some Melnikov-like analysis, which is carried out in Appendix B, and
a result in [12] will be used to complete the proof of the existence of the singularly
degenerate heteroclinic cycle.

In the forthcoming Part II, we proceed to proving the existence of the geometric
Lorenz attractor in a perturbed system. Here we briefly explain the contents of Part
II. In §5, we shall make preliminary perturbation by introducing a movement on the
z-axis by which the singularly degenerate heteroclinic cycle turns to a non-degenerate
heteroclinic cycle where the line of equilibria changes to a heteroclinic orbit along the
z-axis. We then study the Poincaré map along the non-degenerate heteroclinic cycle
and its unfolding in §6, which is used in §7 to finish the proof of the existence of
the geometric Lorenz attractors. The crucial points are the existence of an invariant
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foliation for the Poincaré map that justifies the reduction to studying a one-dimensional
interval map, and uniform expanding property of the one-dimensional map. For the
former, we need to study the behavior of the vector field along the z-axis where the
orbits still move slowly even after the perturbation, and hence the behavior in the
normal direction should be taken into account. For the latter, we use a recent result of
Oguro [26], which is given in Appendix C, for a new change of coordinates when the
critical exponent is small. Recall that the critical exponent for the Lorenz attractor is
given by the absolute value of the ratio of the untable and weak stable eigenvalues, and
it roughly gives the order of divergence of the derivative of the reduced one-dimensional
map at the origin. For a typical form x 7→ sign(x)(c|x|ω − 1) of the map obtained in
a usual context, it is assumed that the critical exponent ω is larger than 1/2, thereby
guaranteeing the uniform expansion in the one-dimensional map, see e.g. [32]. In our
case, however, ω is close to 0, since our situation is a small perturbation from the
singularly degenerate heteroclinic cycle. As a result the graph of our reduced one-
dimensional map has very steep expanding part near the origin which quickly turns
to an almost flat contracting part outside, hence seemingly no hope for the uniform
expansion in this form. Oguro’s result says that, for such maps, if one can freely choose
the coefficient c of the one-dimensional map, which is indeed the case in our setting by
adjusting the unfolding parameters, there is a smooth change of coordinate by which
the resulting map recovers the uniform expansion. Therefore, combining these results,
we complete the proof of the existence of geometric Lorenz attractors in the unfolding
of the heteroclinic cycle. §8 is the discussion section where we show other types of
possible chaotic dynamics from the unfolding of our heteroclinic cycle and compare
them with relevant known results.

This work was mainly done during the first author’s long-term visit to Laboratoire
de Topologie, Université de Bourgogne in 2001. HK thanks the institute for its warm
hospitality and the Monbu-Kagaku-sho grant for the financial support. HK was also
partially supported by Grant-in-Aid for Scientific Research (No. 12440048,1434055),
Ministry of Education, Science, Technology, Culture and Sports, Japan.

2 Motivation and statement of the main theo-

rem

2.1 Motivation

The Lorenz system (1.1) has rich variety of chaotic dynamics of different kinds, and
the chaotic attractor at the classical parameter values (σ, r, b) = (10, 28, 8/3) which
is modelled by the geometric Lorenz attractor is just one of them. For instance, [19]
discusses a different type of chaotic dynamics in (1.1) for large r (around r = 210 while
the other parameters are kept at the classical values) in which a numerically computed
Poincaré map in a cross section gives rise to a folding map of a disk into itself. In fact,
this chaotic attractor served as the origin of an equally famous chaotic attractor known
as the Hénon attractor [18]. See Figure 3 for a computer generated attractor in the
Lorenz system at r = 210. Furthermore, the dynamics of (1.1) in the case of large r and
small b is numerically studied in detail in [37] where a new feature of behavior of orbits
called “twisting around the z-axis” is observed. This gives an additional spiral motion
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Figure 3: Chaotic attractor of the Lorenz system at r = 210, b =
8/3 and σ = 10.

around a part of the z-axis with large z values, and therefore the chaotic attractor in
that parameter regime looks like the standard Lorenz attractor with an extra spiral
behavior added on the top. See Figure 4.

Our principal motivation is to obtain good conceptual understanding of the essential
structure of the Lorenz system which is responsible for creation of such a rich variety
of dynamics. In other words, we want to find an organizing center, if any, for the
dynamics in the Lorenz system.

On the other hand, there are other ordinary differential equations that exhibit
chaotic dynamics similar to the Lorenz attractors. For instance, Rössler [29] gave the
following system of ordinary differential equations:

ẋ = x − xy − z
ẏ = x2 − ay
ż = b(cx − z).

(2.1)

This set of equations is different from his most famous one which is often called the
Rössler’s system, henceforth in this paper we call (2.1) the Rössler’s second system. For
the parameter values (a, b, c) = (0.1, 0.08, 0.125), numerical simulation of this system
shows chaotic dynamics as in Figure 5.

Another system exhibiting the Lorenz-like dynamics is the Shimizu-Morioka system
[36]:

ẋ = y
ẏ = x(1 − z) − λy
ż = −αz + x2.

(2.2)

Dynamics and bifurcations of this system are studied in [33] and [34], the latter of
which discusses the relation to normal form containing (2.2) which shares a similar
idea with the Lorenz-like system studied in this paper. In fact, it is clearly seen that
the system (2.2) can be embedded into the system studied in this paper (2.4). See
Appendix A for more discussion, in particular the relation to the results of [10].
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Figure 4: A chaotic attractor of Lorenz system (1.1) at r = 185.
Upper: (x, z)-plot; Lower: (x, y)-plot

As explained in Appendix A, the equations of these systems have some similarity
and difference to the Lorenz system, and therefore it is not immediately seen the
reason why numerically observed chaotic dynamics in these systems are similar (or
somehow related) to the chaotic dynamics in the Lorenz system. To the best of our
knowledge, there has been no serious attempt to study the Rössler’s second system
from mathematical point of view. However, see [40] for some hint of the relation.

Homoclinic orbits may be the first candidate for the organizing center of the Lorenz-
like dynamics. It is numerically observed that the Lorenz system has (a symmetric pair
of) homoclinic orbits associated to the origin when σ = 10, b = 8/3 and r ≈ 13.926 . . ..
Moreover, Chen [6] gave a necessary and sufficient condition of the parameters (σ, b)
for (1.1) to have a homoclinic orbit for some r. To be more explicit, he has proven that
(1.1) has a homoclinic orbit to the origin for some r > 0 if and only if

σ >
2b + 1

3
.

Interestingly, one can see from his proof that the existing homoclinic orbit converges
to a singularly degenerate heteroclinic cycle as r → ∞ and σ → (2b + 1)/3. Numerical
experiments in [4] suggests that there are many different types of homoclinic orbits
and many different homoclinic (or heteroclinic) bifurcations occurring in (1.1), and
therefore it may be very natural to consider that some kind of homoclinic bifurcations
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Figure 5: Chaotic attractor of the Rössler’s second system. (x, y)-plot.

should be responsible for the Lorenz-like dynamics. See also [34] for similar numerically
computed bifurcation sets of homoclinic orbits in the Shimizu-Morioka system (2.2).

Indeed, there have been several works devoted to the creation of the geometric
Lorenz attractors via homoclinic bifurcations. The first result along this line was ob-
tained by Rychlik [32], where he showed the bifurcation of the geometric Lorenz attrac-
tors from a symmetric pair of what is now called the inclination-flip homoclinic orbits.
See e.g. [21] and [22] for the definition and related results about the inclination-flip
homoclinic orbits. A part of the proof in [32] was postponed to the announced Part II
which has unfortunately not appeared so far, but the readers may find it in a relevant
work [11]. After [32], Robinson [28] also studied another type of homoclinic bifurca-
tions creating geometric Lorenz attractors. These different homoclinic bifurcations are
summarized in [27], in relation to other homoclinic bifurcations.

Not only the results of homoclinic bifurcations, these papers cited above also give
concrete examples of polynomial ordinary differential equations which are proven to
exhibit a geometric Lorenz attractor. We shall give only one example from [11] as this
has, in our opinion, the closest form, among those examples, to the original Lorenz
system:

ẋ = y
ẏ = Ax − By − xz − γyz − x3

ż = −βz + x2.
(2.3)

In [11] with slightly different notation, it is proven that, for appropriately chosen
coefficients A > 0, B > 0, β > 0 and γ < 0 with 1/2 < β/

√
A < 1, the corresponding

system possesses a geometric Lorenz attractor. Indeed, the original Lorenz system and
the Rössler’s second system can be put into the above form by a suitable change of the
space and time variables. See Appendix A for the explicit transformations.

Another interesting result was obtained in [2] where the authors studied a hetero-
clinic cycle involving a hyperbolic equilibrium point and a degenerate periodic orbit
which is just at the moment of saddle-node bifurcation. This is a codimention one cycle
(without symmetry) which is proven to produce a Lorenz-like attractor as formulated
in [1]. This shares a common feature with our setting in the sense that there is a spiral
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behavior in a part of the attractor.
Unfortunately, none of known bifurcation results for homoclinic and heterolinic

orbits seem to be applicable directly to the Lorenz and the Rössler’s second systems,
or even systems close to them. See also the discussion in Appendix A and in [11].

Hastings and Troy [17] used the so-called shooting method to show the existence
of chaos in the Lorenz equations, with an aid of numerical computation. This is an
analytical approach directly applied to the Lorenz equations, but the chaos proved
there is a symbolic dynamics and not a chaotic attractor. Similar existence results
of symbolic dynamics in the Lorenz equations at the classical parameter values were
obtained by a topological approach combined with rigorous numerical computation by
[25] and [13].

Idea of singular perturbation was used in Deng [8] for constructing Lorenz-like
attractors in several concrete systems of ordinary differential equations. However, al-
though the outlook of the attractors numerically obtained in such systems have some
similarity to the chaotic attractor in the Lorenz equations, there is no proof or discus-
sion about rigorous connection among those systems.

2.2 Statement of the main theorem

Now we give a precise statement of our main results:

Theorem 2.1

(1) Consider the system
ẋ = y
ẏ = Ax − By − xz − x3

ż = −βz + x2
(2.4)

with β = 0. Then for any B∗ > 0 which is smaller than some B0 ∈ (5/4, 2)
and for sufficiently large A∗ > 0, there exists G∗ = G∗(A∗, B∗) with G∗ = O(A∗)
uniformly in B∗ as A∗ → ∞, such that the system (2.4) with these parameter
values possesses a singularly degenerate heteroclinic cycle connecting O = (0, 0, 0)
and (0, 0, G∗).

(2) Consider perturbation of (2.4) in the following form:

ẋ = y
ẏ = Ax − By − xz − γyz − x3 − ηxz3

ż = −βz + x2 + δz2.
(2.5)

Then, for any A close to A∗, B close to B∗, and γ, δ both positive and close to 0,
there exist

G = G(A,B, γ, δ) = G∗ + O(|A − A∗| + |B − B∗| + |γ| + |δ|)

and η = o(|G|−1) > 0 such that the corresponding system (2.5) with these pa-
rameter values and with β = δ ·G possesses a (non-degenerate) heteroclinic cycle
connecting O = (0, 0, 0) and (0, 0, G).

Moreover, an unfolding of the non-degenerate heteroclinic cycle gives rise to a
geometric Lorenz attractor.
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In Part I, we shall give a proof of the first assertion of this theorem, and the proof of
second assertion is postponed to the forthcoming Part II. As is shown in Appendix A,
the Lorenz system (1.1) can be transformed to the system (2.4). Moreover, by choosing
b = 0 and r large enough in (1.1), while σ remains bounded, one can verify that the
conditions of the first part of the above theorem are satisfied. Therefore the Lorenz
system with such parameter values has a singularly degenerate heteroclinic cycle, as
asserted in Main Results in Introduction. See Figure 6 for a numerically computed
such cycle obtained in the original Lorenz system at a very large value of r and b = 0.
For the third assertion of the Main Results in Introduction, one needs to leave the
Lorenz system by adding the extra terms corresponding to γ, δ and η in (2.4), but it
can be shown that these extra terms give only arbitrarily small (yet carefully chosen)
perturbations to the original Lorenz system, hence the third assertion of Main Results
also follows.

Remark 2.2 Similar results were obtained as in the following theorem for a system
related to the Shimizu-Morioka system. See [10] and Appendix A for the details.

Theorem 2.3

(1) Consider the system
ẋ = y
ẏ = Ax − y − xz
ż = −βz + x2

(2.6)

with β = 0. Then, for sufficiently large A∗ > 0, there exists G∗ = G∗(A∗) =
O(A∗) such that the system (2.6) with these parameter values possesses a singu-
larly degenerate heteroclinic cycle connecting O = (0, 0, 0) and (0, 0, G∗).

(2) Consider perturbation of (2.6) as follows:

ẋ = y
ẏ = Ax − y − xz − γyz
ż = −βz + x2 + δz2.

(2.7)

Then, for any A close to A∗ and γ, δ both positive and close to 0, there exists

G = G(A, γ, δ) = G∗ + O(|A − A∗| + |γ| + |δ|)

such that the corresponding system (2.7) with these parameter values and with
β = δ · G possesses a (non-degenerate) heteroclinic cycle connecting O = (0, 0, 0)
and (0, 0, G).

Moreover, an unfolding of the non-degenerate heteroclinic cycle gives rise to a
geometric Lorenz attractor.

At the end of this section, we want to make comparison of studies of dynamics for
the Lorenz system and the Hénon family of diffeomorphisms in order to clarify the
meaning of the results of this paper. It was numerically observed by Hénon [18] that
the planar diffeomorphism given by

(x, y) 7→ (y + 1 − ax2, bx) (2.8)
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Figure 6: A singularly degenerate heteroclinic cycle in the Lorenz
system, r = 1000, b = 0 and σ = 10.

exhibits a chaotic attractor when the parameters are chosen to be a = 1.4 and b = 0.3.
However, up to now, there is no mathematically rigorous proof of the existence of such
a chaotic attractors at the above classical parameter values. Much later, Benedicks
and Carleson [3] proved the existence of non-trivial (non-uniformly hyperbolic) chaotic
attractors in the Hénon map (2.8) with sufficiently small b and correctly chosen a
from a set of positive Lebesgue measure. The key observation for their work was that
when b is set to be 0, the Hénon map (2.8) reduces to the one-dimensional quadratic
map x 7→ 1 − ax2, and hence for b close to 0, the Hénon map should be considered
as a singular perturbation of the quadratic interval map. Since their proof strongly
relies on the analysis of the quadratic map, it cannot be applied to the map with the
classical parameter values a = 1.4, b = 0.3. However, the results indicate some hint of
underlying mathematical structure of the Hénon map so that one might be convinced
that the Hénon map with other parameter values could also have chaotic attractors of
similar type, as observed by numerical simulation.

The history of the Lorenz system is somewhat different: After the numerical discov-
ery of the chaotic attractor by [23], its geometric model was first constructed ([16], [1])
and studied intensively, from which a number of interesting dynamical consequences
were obtained. Then the Lorenz system itself at the classical parameter values was
investigated by Tucker [39] with the help of validated numerical computation, from
which he successfully verified all the hypotheses needed to yield the previously ob-
tained properties of the Lorenz system and its chaotic attractors.

Comparing these two streams of studies, one sees that what is missing in the Hénon
map may be a good “geometric model” of the chaotic attractor, whereas in the Lorenz
system, a “singular limit” from which generation of interesting chaotic dynamics can
be conceptually understood. For the Hénon map, such a singular structure is rather
clear from the expression of the map, whereas for the Lorenz system, it is not at
all obvious what could be such a “singular limit”, because there is no clear singular
structure seen from the expression. What we have shown in this paper is that such
a possible “singular” and mathematically understandable structure may be obtained

11



once the system is transformed to the Lorenz-like system (2.4). Indeed, we believe
that it would have been extremely hard to show the existence of singularly degenerate
heteroclinic cycle if one studies the original system of the Lorenz equations.

In our case, we consider the extreme parameter values where b = 0 and r → ∞
and find, in this extreme situation, a singular object, namely the singularly degenerate
heteroclinic cycle in the Lorenz system. We unfold this very degenerate cycle to a
usual heteroclinic cycle, then to a geometric Lorenz attractor. Since the singularly
degenerate heteroclinic cycle is so degenerate, it has great potential of producing rich
variety of dynamics. For instance, it agrees with the behavior of “twisting around the
z-axis” observed in [37] for large r, and therefore it is intuitively close to the numerically
observed chaotic attractor. This gives a hope that the singularly degenerate heteroclinic
cycle may produce not only the geometric Lorenz attractors but also more variety of
Lorenz-like chaotic dynamics including suspension of Hénon-like attractors [19]. We
shall discuss this more in the last section. Finally, we emphasize that the results of [3]
for the Hénon map are much stronger in the sense that they could understand the entire
chaotic attractor of the Hénon map globally as long as their analysis works, whereas
in our case the best we can do, at least at this moment, is to prove the existence of
chaotic attractor in a small tubular neighborhood of the cycle.

Remark 2.4 Since it is necessary to choose γ close to 0 in the proof, and since the
Rössler’s second system (2.1) is transformed into (2.5) with δ = η = 0 but with γ = 1
which is not close to 0, our argument does not work for (2.1) as it is unfortunately.
However, even in this case, some kind of singularly degenerate heteroclinic cycle is
observed in a numerical simulation, and hence our point of view remains valid. We
shall discuss this in more detail in §8.

Remark 2.5 One may notice that the inclusion of some of the terms in (2.5) is arti-
ficial; as we shall see later in the proof of the main theorem, the δz2 term in the third
line is used mainly to create an additional equilibrium on the z-axis which has no cor-
respondence in the original Lorenz system (1.1), and the ηxz3 term in the second line
is added in order to carry out some estimate for the perturbation. This may be true,
but we do not know whether a similar result can be obtained for systems with no such
artificial perturbation terms. We only point out that the term δz2 appears naturally in
normal form calculation which is closely related to the degenerate singularity related
to Lorenz-like dynamics, see [10].

In the following sections, we shall give the proof of Theorem 2.1.

3 Blow-up at infinity (1): behavior on the sphere

at infinity

In this and next sections, we give the existence of the singularly degenerate heteroclinic
cycle in (2.4) with appropriate choice of parameters. More precisely, throughout these
two sections, we mainly consider the following subfamily of (2.4) with β = 0:

ẋ = y
ẏ = Ax − By − xz − x3

ż = x2.
(3.1)
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We then shift the z-coordinate, namely introduce the change of coordinate z̃ = z − A,
which brings (3.1) to

ẋ = y
ẏ = −By − xz − x3

ż = x2,
(3.2)

where z in fact stands for z̃, but we keep the same notation for simplicity. Observe
that the z-axis is the line of equilibria in this system of equations.

The principal goal here is to find a singularly degenerate heteroclinic cycle in (3.2),
which then shows the same conclusion in (3.1) by the reverse shift along the z-axis.
Main idea to reach this goal is the method of blow-up. We shall carry out different
blow-ups to (3.2); in this section, we shall apply what is called the blow-up at infinity,
and in the next section, we then apply further blow-ups to the vector field obtained
by the primary blow-up in this section in order to get more precise structure of the
orbits. See e.g. [9] for more general account of the method of blow-ups in the study of
dynamical systems.

3.1 First blow-up: the blow-up at infinity

The main idea of the blow-up at infinity is to compactify R
3 to a 3-ball and, from the

original vector field, define a vector field on the 3-ball, including the boundary sphere
called the sphere at infinity, by introducing new coordinates which parametrize a family
of curves emanating the origin and going off to infinity. To be more explicit, in order
to compute the blow-up at infinity of (3.2), we use the following new coordinates:

x =
u

s
, y =

v

s2
, z =

w

s
, (3.3)

where we consider (u, v,w) as coordinates on the unit 2-sphere, and s as the variable
which parametrizes curves from the origin to infinity.

This choice of degrees 1, 2, 1 for s-variable is given by studying the quasi-homogeneity
of terms in (3.2). Namely, if one wants to make

y
∂

∂x
, x3 ∂

∂y
, x2 ∂

∂z
,

which are the highest order terms in each equation of (3.2), to be quasi-homogeneous,
one must choose the quasi-homogeneous degree of x, y, z to be 1, 2, 1, respectively. See
[9] for details of quasi-homogeneous blow-up technique. Another possibility may be to
make

y
∂

∂x
, xz

∂

∂y
, x2 ∂

∂z

to be quasi-homogeneous, which results in choosing the quasi-homogeneous degree of
x, y, z to be 3, 4, 5, respectively. But this turns out to be not so effective for the
analysis of the blown-up vector fields. Therefore we have chosen (3.3) as the blow-up
transformation.

The blown-up vector field by (3.3) can be given in several different charts: as we are
interested in the behavior of vector field near infinity, we decompose a neighboorhood
of the sphere at infinity into three parts, namely
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bottom chart: the chart given by w = −1 where we use (u, v, s) as the coordinates
describing the vector field, with (u, v) in a compact disk around (0, 0) of arbitrary
radius;

top chart: the chart given by w = +1 where we use (u, v, s) as the coordinates with
(u, v) in a compact disk around (0, 0) of arbitrary radius;

side chart: after introducing the cylindrical coordinates (u, v,w) with u = ρ cos θ,
v = ρ sin θ, the chart given by ρ = 1 where we use (w, θ, s) as the coordinates
with w in a compact interval around 0 of arbitrary length.

Using the change of coordinates given above and the indicated local coordinates,
the resulting blown-up vector fields in each chart of (3.2) are given as follows.

Lemma 3.1

(1) The blow-up at infinity of (3.2) in the bottom chart is given by:

s′ = su2

u′ = v + u3

v′ = −u3 + 2u2v − s(Bv − u).
(3.4)

(2) The blow-up at infinity of (3.2) in the top chart is given by:

s′ = −su2

u′ = v − u3

v′ = −u3 − 2u2v − s(Bv + u).
(3.5)

(3) The blow-up at infinity of (3.2) in the side chart is given by:

s′ = −s cos θ sin3 θ + s2(B sin2 θ + w sin θ cos θ)
θ′ = −(cos4 θ + 2 sin2 θ) − s(B sin θ cos θ + w cos2 θ)
w′ = cos2 θ(1 + sin2 θ) − w cos θ sin3 θ

+s(Bw sin2 θ + w2 sin θ cos θ).

(3.6)

Note that in the above equations, the time derivative ′ indicates that the time variable
has also been changed accordingly, and the change may not be the same for all three
results of blow-up. However, since the change of time variable is just given by mul-
tiplying an everywhere positive function, each of the vector field is equivalent to the
original one, and hence there will be no problem in the following analysis.

The proof of lemma is a straightforward calculation, thus omitted.

3.2 Behavior on the sphere at infinity in the bottom and

top charts

From (3.4), the blown-up vector field on the sphere at infinity in the bottom chart is
given by setting s = 0, hence

u′ = v + u3

v′ = −u3 + 2u2v.

This has a unique equilibrium at the origin which we call the south pole S for con-
venience of later use, which is globally repelling (i.e. globally attracting if the time

14



coordinate is reversed), because the Lie derivative of the function Φ(u, v) = u4/2 + v2

with respect to the vector field is everywhere non-negative. Therefore any orbit on the
sphere at infinity other than S must leave any compact domain of this chart in finite
time.

Similarly in the top chart the blown-up vector field on the sphere at infinity

u′ = v − u3

v′ = −u3 − 2u2v

has a unique equilibrium at the origin which we call the north pole N , which is globally
attracting, because the same function Φ(u, v) has non-negative Lie derivative with
respect to this vector field. Therefore any orbit that enters the top chart on the sphere
converges to N as the time goes to ∞.

Notice that the equilibria S and N in each of the local charts are highly degenerate,
they are not structurally stable, and hence these behaviors on the sphere at infinity
might be completely different from the behavior of nearby orbits close to but not on
the sphere at infinity. We need more careful analysis for determining those orbits near
the sphere at infinity, for which we use further blow-ups around S and N in the next
section.

3.3 Behavior on the sphere at infinity in the side chart

The vector field on the sphere at infinity in the side chart is given by

θ′ = −(cos4 θ + 2 sin2 θ)
w′ = cos2 θ(1 + sin2 θ) − w cos θ sin3 θ,

which is equivalent to

dw

dθ
=

cos θ sin3 θ

cos4 θ + 2 sin2 θ
w − cos2 θ(cos2 θ + 2 sin2 θ)

cos4 θ + 2 sin2 θ
, (3.7)

as the right hand side of the θ′-equation remains strictly negative.

Proposition 3.2 The equation (3.7) has no periodic solution.

Proof. The equation (3.7) is an inhomogeneous linear ordinary differential equation
of the form dw

dθ = p(θ)w − q(θ), where

p(θ) =
cos θ sin3 θ

cos4 θ + 2 sin2 θ
, q(θ) =

cos2 θ(1 + sin2 θ)

cos4 θ + 2 sin2 θ
, (3.8)

and therefore it can be solved by using the variation of constants formula:

w(θ) = w(0) exp

(
∫ θ

0
p(σ)dσ

)

−
∫ θ

0
q(ϕ) exp

(
∫ θ

ϕ
p(σ)dσ

)

dϕ.

Observe that

exp

∫ θ

0
p(σ)dσ = (cos4 θ + 2 sin2 θ)1/4. (3.9)
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Thus, by putting θ = 2π, we obtain

w(2π) − w(0) = −
∫ 2π

0

q(ϕ)

(cos4 ϕ + 2 sin2 ϕ)1/4
dϕ,

which is strictly negative, since q(ϕ) ≥ 0 which is not identically 0. Therefore the
return map on the vertical axis {θ = 0} is a non-trivial translation. This proves the
non-existence of periodic orbits in (3.7). �

Combining all the above information, we can conclude that on the sphere at infinity,
all the orbits except the equilibria S and N are connecting orbits between S and N ;
any orbit other than S in the bottom chart must leave the bottom chart in finite time
and enter the side chart where any orbit has monotone upward behavior, and therefore
it eventually moves from the side chart into the top chart, hence converging to N .

In the next section, we shall study the vector fields near S and N in more detail
using the second blow-ups, and prove that the orbits sufficiently close to the sphere
at infinity behave similarly, hence proving the existence of the singularly degenerate
heteroclinic cycle.

4 Blow-up at infinity (2): second blow-ups

In this section, we carry out the second blow-up for (3.4) and (3.5), and finish the proof
of the existence of the singularly degenerate heteroclinic orbit.

4.1 Second blow-up for (3.4)

Recall (3.4) is given by

s′ = su2

u′ = v + u3

v′ = −u3 + 2u2v − s(Bv − u).

Based on a similar reasoning for quasi-homogeneous degree of the variables, see Sub-
section 3.1, we blow-up this vector field with using the following rescaling:

s = r2Σ, u = rU, v = r2V,

and with two different charts as follows:

top chart: the chart given by Σ = 1 where we use (r, U, V ) as the coordinates;

side chart: after introducing the cylindrical coordinates U = R cos Θ, V = R sin Θ,
the chart given by R = 1 where we use (r,Θ,Σ).

Note that we do not need to consider the bottom chart given by Σ = −1, because s
being negative does not make sense. The next lemma can be proven by straightforward
computaion.

Lemma 4.1
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(1) The blow-up of (3.4) in the top chart is given by:

ṙ = 1
2r2U2

U̇ = V + 1
2rU3

V̇ = U − U3 + r(−BV + U2V ).

(4.1)

(2) The blow-up of (3.4) in the side chart is given by:

ṙ = r
(

cos Θ sin3 Θ + Σ cos Θ sin Θ
)

+r2
(

cos4 Θ + 2cos2 Θ sin2 Θ − BΣ sin2 Θ
)

Θ̇ = −
(

cos4 Θ + 2 sin2 Θ
)

+ Σ cos2 Θ
−BrΣ cos Θ sinΘ

Σ̇ = −2Σ
(

cos Θ sin3 Θ + Σ cos Θ sin Θ
)

−rΣ
(

cos4 Θ + 2cos2 Θ sin2 Θ − 2BΣ sin2 Θ
)

.

(4.2)

In particular, the planes given by r = 0 and by Σ = 0 are both invariant under
the blown-up vector field.

4.2 Analysis of (4.1)

The vector field (4.1) restricted to the (U, V )-plane is a Hamiltonian system with the
Hamiltonian function

H(U, V ) =
1

2
V 2 +

1

4
U4 − 1

2
U2, (4.3)

and in particular, there are three equilibrium points, one at the origin which is a
saddle, and two others at (U, V ) = (±1, 0) which are centers. There is also a pair of
symmetric homoclinic orbits to the origin. Away from the (U, V )-plane, the r-axis is
a line of equilibria, which is normally hyperbolic, at least for small r > 0, and hence
we can speak about its stable and unstable manifolds. In particular, we are interested
in the structure of the unstable manifold of the r-axis. Let W u(r) denote the unstable
manifold of the equilibrium (0, 0, r) for sufficiently small r > 0. Our goal is the next
proposition.

Proposition 4.2 There exists B0 ∈ (5/4, 2) such that for any 0 < B < B0, for any
large L > 0, for any small δ > 0, and for any sufficiently small r > 0, the unstable
manifold W u(r) must leave the domain {U2 + V 2 ≤ L}× [0, δ] in finite time, and does
so from its side boundary {U2 + V 2 = L}.

This means that the unstable manifold of (0, 0, r) with sufficiently small r > 0
remains sufficiently close to the (U, V )-plane until its projection to the plane leaves
any compact domain (and hence the top chart). Since this orbit is very close to the
Hamiltonian vector field

U̇ = V

V̇ = U − U3,
(4.4)

it spirals around the r-axis many times before leaving the top chart, although the r-axis
is normally of saddle-type.

In order to prove the above proposition, we make use of the fact that the vector
field for small r is close to the Hamiltonian vector field (4.4), and apply the so-called
Melnikov analysis. Let P denote (U, V ) and consider the solution

P (t;U0, r0) = (U(t;U0, r0), V (t;U0, r0)) and r(t;U0, r0)
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of (4.1) with the initial condition at t = 0 given by P = (U, V ) = (U0, 0) (U0 ≥
√

2)
and r = r0 > 0. Let T (U0, r0) be the time t > 0 at which the solution satisfies

V (t;U0, r0) = 0,
dV

dt
(t;U0, r0) < 0

for the first time. This is well-defined for small enough r0, since the orbit behave close
to that of (4.4). Define

η(U0, r0) = H(P (T (U0, r0);U0, r0)), ρ(U0, r0) = r(T (U0, r0);U0, r0).

Lemma 4.3 The functions η(U0, r0) and ρ(U0, r0) have the following asymptotic ex-
pansions as r0 → 0:

η(U0, r0) = h0 −
(

∫

Γh0

γ

)

r0 + O(r2
0), (4.5)

ρ(U0, r0) = r0 +
1

2

(
∮

Uh0
(t)2dt

)

r2
0 + O(r3

0), (4.6)

where h0 = H(U0, 0), Γh0
is a closed curve given by H(U, V ) = h0, Uh0

(t) is the U -
component of the solution of the (4.4) with the initial condition (U0, 0), and γ is a
1-form given by

γ =
1

2
U3dV + (B − U2)V dU.

Notice that when h0 = 0 (and hence U0 =
√

2), Γh0=0 degenerates to the homoclinic
figure eight curve, but for h0 > 0, Γh0

remains to be a regular periodic orbit.

Proof. The first term Taylor expansion of the function η(U0, r0) with respect to r0

at r0 = 0 is
η(U0, 0) = H(P (T (U0, 0);U0, 0)) = H(U0, 0) = h0,

since P (t;U0, 0) is simply a solution of (4.4).
The coefficient of the second term of the Taylor expansion is

∂η

∂r0
(U0, 0) =

dH

dt
· ∂T

∂r0
+ ∇H · ∂P

∂r0
,

but the conservation of the Hamiltonian implies

dH

dt
(T )

∣

∣

∣

∣

r0=0

=
dH

dt
(T (U0, 0);U0, 0) = 0,

and hence we obtain

∂η

∂r0
(U0, 0) = ∇H(P (T ;U0, 0)) ·

∂P

∂r0
(T ;U0, 0).

Since ∂P
∂r0

(t)|r0=0 = (Ur0
(t), Vr0

(t)) is a solution of (part of) the variational equation to
(4.1), namely

U̇r0
= Vr0

+ 1
2U3

V̇r0
= (1 − 3U2)Ur0

+ (−BV + U2V ),
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we get
d

dt

(

∇H · ∂P

∂r0

)

=
d

dt
(HU · Ur0

+ HV · Vr0
)

= (3U2 − 1)U̇ · Ur0
+ (U3 − U) · U̇r0

+V̇ · Vr0
+ V · V̇r0

=
1

2
(U3 − U)U3 + V (−BV + U2V )

= −1

2
U3 · V̇ − (B − U2)V · U̇ .

On the other hand, (Ur0
(0), Vr0

(0)) = (0, 0) at t = 0, and hence (∇H · ∂P
∂r0

)(0) = 0.
Therefore we obtain

∂η

∂r0
(U0, 0) = (∇H · ∂P

∂r0
)(T )

= −
∫

H(U,V )=h0

1

2
U3dV + (B − U2)V dU

= −
∫

Γh0

γ,

which proves (4.5).
We proceed to the Taylor expansion of ρ(U0, r0) with respect to r0 at r0 = 0. Since

the plane given by r = 0 is invariant, clearly ρ(U0, 0) = 0. Moreover, from the form of
the ṙ-equation in (4.1), r(t;U0, 0) ≡ 0 for any t, and hence

d

dt

∂r

∂r0
= rU2 · ∂r

∂r0
= 0,

which yields ∂r
∂r0

(T ) = ∂r
∂r0

(0) = 1. Therefore we obtain

∂ρ

∂r0
(U0, 0) = ṙ · ∂T

∂r0
+

∂r

∂r0
(T ) = 1.

This gives the second term of the Taylor expantion of ρ(U0, r0).
Similarly, using the above information, the first three terms of the right hand side

of
∂2ρ

∂r2
0

(U0, 0) = r̈ ·
(

∂T

∂r0

)2

+ ṙ · ∂2T

∂r2
0

+ 2
d

dt

∂r

∂r0
+

∂2r

∂r2
0

(T )

vanish, and from the ṙ-equation of (4.1),

d

dt

∂2r

∂r2
0

∣

∣

∣

∣

r0=0

=

(

∂r

∂r0

)2
∣

∣

∣

∣

∣

r0=0

U2 = U2,

thus we obtain
∂2ρ

∂r2
0

(U0, 0) =
∂2r

∂r2
0

(T ) =

∮

U2
h0

dt,

hence (4.6). This completes the proof of the lemma. �
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Since the integral

∫

Γh0

γ =

∫

H(U,V )=h0

1

2
U3dV + (B − U2)V dU

is nothing but a Melnikov-type integral, and we want to know the behavior of the value
of this integral with respect to h0, we follow the conventional notation for the Melnikov
analysis as follows. We solve the equation H(U, V ) = 1

2(V 2 + 1
2U4 − U2) = h0 with

respect to V as V =
√

2h0 + U2 − 1
2U4 and define a function M(h0) as

M(h0) =
1

4

∫

Γh0

γ =

∫ U0

0

(

1

2
U3 dV

dU
+ (B − U2)V

)

dU.

We claim that this function always takes negative value. More precisely,

Proposition 4.4 There exists B0 ∈ (5/4, 2) such that, for any 0 < B < B0, the
Melnikov integral M(h0) satisfies

∀h0 ≥ 0, M(h0) ≤ M0 < 0

for some M0 < 0 that is independent of h0 ≥ 0.

Recall that the Hamiltonian value h0 = 0 corresponds to the homoclinic orbits in
(4.4).

Since the proof of this proposition is rather lengthy and will not be used in later
analysis, we give it in Appendix B, and now we proceed to the proof of Proposition 4.2
using Proposition 4.4.

For convenience, we abuse the notation and from now on consider (η(U0, r0), ρ(U0, r0))
as a mapping Φ acting on the (h0, r0)-plane, namely

Φ(h0, r0) = (η(h0, r0), ρ(h0, r0)) (h0, r0 ≥ 0)

= (h0 − 4M(h0)r0 + O(r2
0), r0 + K(h0)r

2
0 + O(r3

0)),

where K(h0) is the coefficient of r2
0 in (4.6). This makes sense, because U0 and h0

are related as H(U0, 0) = h0, and they are in one to one correspondence at least in
the range h0 ≥ 0 and U0 ≥

√
2. Therefore we shall regard Φ(h0, r0) as having the

asymptotic expansion given in Lemma 4.3. Our goal is to give estimates of the iterates
of this mapping Φ with an initial point (h0, r0) for sufficiently small r0 > 0. consider
the h-component.

Lemma 4.5 There exists h̄ > 0 such that, for sufficiently small r0 > 0, the h-
component of the solution starting (0, r0) must reach h̄ in finite time, and the r-
component of the solution grows only less than 2r0 during that time.

Proof. First we make initial choice of h̄ > 0 and r̄ > 0 small enough so that

ρ(h0, r0) < C
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is satisfied for some (large) C > 0 as long as 0 ≤ h0 ≤ h̄ and 0 ≤ r0 ≤ r̄. Under this
circumstance, the evolution of the r-component of the iterates of Φ is dominated by
the solution of the differential inequality

dr

dt
≤ Ar2

for some A > 0. Notice that the function K(h0) remains bounded even at h0 = 0,
because Uh0

(t) for h0 = 0 is a homoclinic solution to a hyperbolic equiribrium, and
therefore has exponential decay as t → ∞, which guarantees the convergence of the
integral defining K(0), and hence the existence of A.

By choosing h̄ smaller if necessary, we may assume h̄ < |M0|/A. Also, by choosing
r̄ smaller if necessary, we have η(h0, r0)− h0 > 2|M0|r0 for any h0. Here we have used
the fact that the r-component of the iterates Φi(h0, r0) is no less than r0, which follows
from ρ(U, r) ≥ r for any (U, r) in a domain where (4.6) is valid. Therefore if we choose
N∗ = 1/(2Ar0), then, for any N ≥ N∗, the h-component of the N -th iterate of Φ is
larger than

2|M0|r0 × N >
|M0|
A

> h̄,

thus we obtain the desired conclusion for the h-component. (Note that one can choose
A suitably so that N∗ becomes an integer.) During this time, the growth of the r-
component is estimated by solving the above differential inequality, hence we obtain

r-component of ΦN(0, r0) ≤
r0

1 − Ar0N
≤ r0

1 − Ar0/(2Ar0)
= 2r0

for N ≤ N∗. Therefore the claim follows. �

Now we consider the growth of the iterates of Φ in the range h̄ ≤ h ≤ L for arbitrary
L > 0.

Lemma 4.6 For any large L > 0 and for any small δ > 0, there exists r∗ > 0 such that
the h-component of the iterates of Φ starting (h̄, r∗) must reach L while the r-component
remains less than δ.

Clearly Proposition 4.2 follows once the above lemma is proven, for which, we need
the following:

Lemma 4.7 For any h∗ ∈ [h̄, L], there exists α, β > 0, with β arbitrarily small, such
that in the domain D∗ = [h∗−α, h∗ +α]× [0, β], there are sets W±, where W− is a half
open outer neighborhood of a bottom part of the left vertical edge of D∗ and W+ is a
half open inner neighborhood of the (entire) right vertical boundary of edge, satisfying
that any orbit of the iterates of Φ leaving W− must immediately enters D∗ and leaves
D∗ in finite number of iterates necessarily through W+. See Figure 7.

Proof. From the form of Φ:

(h0, r0) 7→ (h0 − 4M(h0)r0 + O(r2
0), r0 + K(h0)r

2
0 + O(r3

0)),

we can apply the results of [12] and conclude that Φ is C∞-conjugate to the time 1
map of the vector field

ḣ = r · [−4M(h) + O(r)]
ṙ = r2 · [K(h) + O(r)],
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δ

hh̄ L

D∗

W+

W−

Figure 7: Sets W± in Lemma 4.7

which is equivalent, by time reparametrization, to

h′ = −4M(h) + O(r)
r′ = r[K(h) + O(r)].

Since M(h) 6= 0 for any h ∈ [0,∞), the latter vector field is non-singular in a small
enough neighborhood of the line r = 0 and the line r = 0 itself is invariant. Therefore,
there exists a flow-box in a neighborhoof of (h∗, 0) that contains a segment in r = 0.
The construction of W± is now straightforward from this fact. �

Proof of Lemma 4.6. For any h∗ ∈ [h̄, L], we can choose D∗ that satisfies the
assertion of Lemma 4.7. Since the segment [h̄, L] is compact, only finitely many such
D∗ can cover the whole segment [h̄, L]. By connecting orbits using the corresponding
W± for these finitely many D∗’s, we can obtain the desired orbit remaining in an
arbitrary small rectangular neighborhood of the segment [h̄, L] and travels from its left
vertical edge to the right vertical edge.

This completes the proof of Lemma 4.6, and thus Proposition 4.2. �

4.3 Analysis of (4.2)

In the previous subsection, we have shown that the unstable manifold W u(r) of an
equilibrium point (0, 0, r) for sufficiently small r > 0 leaves the top chart of the second
blow-up of (3.4) in finite time, and enters the side chart where the orbits are governed
by the equation (4.2):

ṙ = r
(

cos Θ sin3 Θ + Σ cos Θ sinΘ
)

+r2
(

cos4 Θ + 2cos2 Θ sin2 Θ − BΣ sin2 Θ
)

Θ̇ = −
(

cos4 Θ + 2 sin2 Θ
)

+ Σ cos2 Θ
−BrΣ cosΘ sin Θ

Σ̇ = −2Σ
(

cos Θ sin3 Θ + Σ cos Θ sin Θ
)

−rΣ
(

cos4 Θ + 2cos2 Θ sin2 Θ − 2BΣ sin2 Θ
)

.

Here we prove that W u(r) passes through and leaves the side chart in finite time,
thereby proving that it indeed leaves the bottom chart of the first blow-up. Once we
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have shown this assertion, we can conclude that W u(r) must enter within finite time
the top chart of the first blow-up, since, as we have already seen in the previous section,
the behavior of orbits in the side chart of the first blow-up are regular on the sphere
at infinity and hence in its neighborhood as well.

In order to verify that W u(r) from the top chart of the second blow-up must leave
the side chart of the second blow-up in finite time, we again use the results of [12].
Observe from (4.2) that, when Σ = 0, Θ̇ = −(cos4 Θ + 2 sin2 Θ) ≤ −1, and hence
the return map with respect to the (r,Σ) coordinates is well-defined. More explicitly,
consider the differential equations:

dr

dΘ
= − cos Θ sin Θ(sin2 Θ + Σ) + O(r)

cos4 Θ + 2 sin2 Θ + Σ cos2 Θ + O(r)
· r

dΣ

dΘ
=

2cos Θ sinΘ(sin2 Θ + Σ) + O(r)

cos4 Θ + 2 sin2 Θ + Σ cos2 Θ + O(r)
· Σ,

(4.7)

which are obtained by taking the ratios of the right hand sides of (4.2). For an initial
condition (r0,Σ0) at Θ = 0, let (r(Θ; r0,Σ0),Σ(Θ; r0,Σ0)) be the solution of the above
equations. Then we can define the return map (R(r0,Σ0), S(r0,Σ0)) as

R(r0,Σ0) = r(−2π; r0,Σ0), S(r0,Σ0) = Σ(−2π; r0,Σ0).

Note that, since Θ̇ < 0, Θ decreases as the time variable of (4.2) increases, hence taking
values at Θ = −2π in the above definition. This return map clearly leave both the Σ-
and r-axes invariant, since so is (4.2).

Lemma 4.8 The return map (r0,Σ0) 7→ (R(r0,Σ0), S(r0,Σ0)) satisfies the following:

R(r0,Σ0) = r0 + r2
0[R∗ + O(|r0| + |Σ0|)]

S(r0,Σ0) = Σ0 + r0Σ0[S∗ + O(|r0| + |Σ0|)],

for some R∗ > 0 and S∗ < 0.

Proof. First observe that, from the invariance of the r- and Σ-axes, the solution of
(4.7) satisfies

r(Θ; 0,Σ0) ≡ 0, Σ(Θ; r0, 0) ≡ 0,

that implies R(0,Σ0) ≡ 0, S(r0, 0) ≡ 0. This means R is divisible by r0 and S by Σ0,
hence

R(r0,Σ0) = r0R̃(r0,Σ0), S(r0,Σ0) = Σ0S̃(r0,Σ0),

for some R̃, S̃, for which we claim that they can be written as:

R̃(r0,Σ0) = 1 + r0R̂(r0,Σ0), (4.8)

S̃(r0,Σ0) = 1 + r0Ŝ(r0,Σ0), (4.9)

for some R̂, Ŝ, and that

R∗ = R̂(0, 0) =
∂R̃

∂r0
(0, 0) =

1

2

∂2R

∂r2
0

(0, 0) > 0,

S∗ = Ŝ(0, 0) =
∂S̃

∂r0
(0, 0) =

∂2S

∂r0∂Σ0
(0, 0) < 0.
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Once these are proven, we obtain the desired conclusion

R̃(r0,Σ0) = 1 + r0[R∗ + O(|r0| + |Σ0|)],

S̃(r0,Σ0) = 1 + r0[S∗ + O(|r0| + |Σ0|)].
Differentiating the first equation of (4.7) with respect to r0 and evaluating it at

r0 = 0, we obtain

d

dΘ

(

∂r

∂r0

∣

∣

∣

∣

r0=0

)

= − cos Θ sin3 Θ + Σ(Θ) cos Θ sinΘ

cos4 Θ + 2 sin2 Θ − Σ(Θ) cos2 Θ
· dr

dr0

∣

∣

∣

∣

r0=0

,

and hence it can be solved as

∂r

∂r0
(Θ; 0,Σ0) =

∂r

∂r0
(0; 0,Σ0) · exp

(
∫ Θ

0
A(ϕ)dϕ

)

,

where A(Θ) is the coefficient of the above linear differential equation. Notice that,
from the form of the Hamiltonian vector field given by (4.3) in the top chart, the
solution Σ(Θ) = Σ(Θ; 0,Σ0) can be taken as a π-periodic even function by shifting the
parametrization of Θ, if necessary. This implies

∫

−2π

0
A(ϕ)dϕ = 0,

from which and ∂r
∂r0

(0; 0,Σ0) ≡ 1, we obtain

R̃(0,Σ0) =
∂r

∂r0
(−2π; 0,Σ0) ≡ 1,

hence proving (4.8).
For (4.9), we first observe that the return map restricted to the Σ-axis is the identity

map, namely S(0,Σ0) = Σ0, again due to the fact that the vector field given by the
blow-up locus in the top chart is Hamiltonian, hence completely integrable. This
implies that S(r0,Σ0) − Σ0 is divisible by r0, and therefore we can write

S(r0,Σ0) = Σ0 + r0Š(r0,Σ0).

On the other hand, S(r0,Σ0) is divisible by Σ0, hence so is Š(r0,Σ0), from which we
have (4.9).

In order to evaluate the constants R∗ and S∗, we use the differential equations for
∂2r
∂r2

0

and ∂Σ̃
∂r0

. A straightforward computation gives that they satisfy:

d

dΘ

∂2r

∂r2
0

(Θ; 0, 0) = −p(Θ)
∂2r

∂r2
0

(Θ; 0, 0) − 2q(Θ)

d

dΘ

∂Σ̃

∂r0
(Θ; 0, 0) = 2p(Θ)

∂Σ̃

∂r0
(Θ; 0, 0) + q(Θ),

where p and q are given by (3.8). From (3.9), we can use the variation of constants
formula to explicitly solve the above differential equations and obtain

R∗ =
1

2

∂2r

∂r2
0

(−2π; 0, 0) = −
∫

−2π

0
q(Θ) exp

(
∫

−2π

Θ
−p(ϕ)dϕ

)

dΘ

=

∫ 2π

0
q(Θ) exp

(
∫ 2π

Θ
−p(ϕ)dϕ

)

dΘ,
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and

S∗ =
∂Σ̃

∂r0
(−2π; 0, 0) =

∫

−2π

0
q(Θ) exp

(
∫

−2π

Θ
2p(ϕ)dϕ

)

dΘ

= −
∫ 2π

0
q(Θ) exp

(
∫ 2π

Θ
2p(ϕ)dϕ

)

dΘ.

Clearly from the form of the integrals, R∗ is a positive number and S∗ is a negative
number. Approximate values given by numerical evaluation of these integrals using
Maple are

R∗ ≈ 3.577 > 0, and S∗ ≈ −3.305 < 0.

This completes the proof of the lemma. �

Due to [12], Lemma 4.8 implies that the return map (R(r0,Σ0), S(r0,Σ0)) is C∞-
conjugate to the time one map of a vector field of the form

ṙ = r2[R∗ + O(|r| + |Σ|)]
Σ̇ = rΣ[S∗ + O(|r| + |Σ|)],

which is equivalent by time reparametrization to

r′ = r[R∗ + O(|r| + |Σ|)]
Σ′ = Σ[S∗ + O(|r| + |Σ|)].

Since this last vector field has a hyperbolic saddle equilibrium at the origin, and since
both the Σ- and r-axes are invariant, we obtain the desired conclusion. Notice also
that r 7→ rω is the leading term of the transition map of orbits passing near the saddle,
with the ratio of the stable and unstable eigenvalues of the saddle to the above vector
field being ω = −S∗/R∗ ≈ 0.92396. This will be used later to obtain the asymptotic
behavior of W u(r).

4.4 Second blow-up for (3.5)

We proceed in the same way to the analysis of (3.5):

s′ = −su2

u′ = v − u3

v′ = −u3 − 2u2v − s(Bv + u),

namely we make further blow-up of (3.5) and prove that W u(r) which is proven to
enter the top chart where (3.5) is defined, really converges to a single equilibrium on
the line of equilibria. Once this is proven, it will complete the proof of the existence
of a singularly degenerate heteroclinic orbit by blow-down the vector field.

As before, we blow-up (3.5) using the following rescaling:

s = r2Σ, u = rU, v = r2V,

and with the same two different charts:

top chart: the chart given by Σ = 1 where we use (r, U, V ) as the coordinates;
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side chart: after introducing the cylindrical coordinates U = R cos Θ, V = R sin Θ,
the chart given by R = 1 where we use (r,Θ,Σ).

Lemma 4.9

(1) The blow-up of (3.5) in the top chart is given by:

ṙ = −1
2r2U2

U̇ = V − 1
2rU3

V̇ = −U − U3 − r(BV + U2V ).

(4.10)

(2) The blow-up of (3.4) in the side chart is given by:

ṙ = r
(

cos Θ sin3 Θ − Σ cos Θ sin Θ
)

−r2
(

cos4 Θ + 2cos2 Θ sin2 Θ + BΣ sin2 Θ
)

Θ̇ = −
(

cos4 Θ + 2 sin2 Θ + Σ cos2 Θ
)

−BrΣ cos Θ sinΘ

Σ̇ = −2Σ
(

cos Θ sin3 Θ − Σ cos Θ sin Θ
)

+rΣ
(

cos4 Θ + 2cos2 Θ sin2 Θ + 2BΣ sin2 Θ
)

.

(4.11)

In particular, the planes given by r = 0 and by Σ = 0 are both invariant under
the blown-up vector field.

4.5 Analysis of (4.11)

Here we also proceed exactly the same way as in the analysis of (4.2). If one views the
right hand side of (4.2) and (4.11) as polynomials in terms of r and Σ with coefficients
being functions of Θ, then the difference of (4.2) and (4.11) are only in the signs of
some of the terms. Therefore we can obtain the same form of expression of the return
map

(r0,Σ0) 7→ (R̄(r0,Σ0), S̄(r0,Σ0))

as
R̄(r0,Σ0) = r0 + r2

0[R̄∗ + O(|r0| + |Σ0|)]

S̄(r0,Σ0) = Σ0 + r0Σ0[S̄∗ + O(|r0| + |Σ0|)],
and only difference here is that

R̄∗ = −R∗ ≈ −3.577 < 0, S̄∗ = −S∗ ≈ 3.305 > 0.

This suffices to conclude that the orbit of W u(r) coming into the side chart of the
second blow-up of (3.5) must leave it in finite time and enters the top chart. Moreover,
the leading term of the transition map near the saddle in this side chart is given by
r 7→ rω̄, where ω̄ = −R∗/S∗ = 1/ω, which compensates the asymptotic behavior
obtained at the end of §4.3.

4.6 Analysis of (4.10)

Finally we come to the last part and study (4.10). This vector field restricted to the
(U, V )-plane is again a Hamiltonian system whose Hamiltonian function is given by

H(U, V ) =
1

2
V 2 +

1

4
U4 +

1

2
U2,
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and in particular, there is a unique equilibrium at the origin which is a global center
for this planar system. Our goal is to show that each orbit which is close to the (U, V )-
plane must be attracted to a single equilibrium on the line of equilibria at the r-axis.
The main idea is again the results of [12].

First we make change of coordinates (U, V ) = (ρ cos ϕ, ρ sin ϕ), which brings (4.10)
into

ϕ̇ = −1 − ρ2 cos4 ϕ − rρ(B cos ϕ sin ϕ + 1
2ρ2 cos3 ϕ sin ϕ)

ρ̇ = −ρ3 cos3 ϕ sin ϕ + rρ(B sinϕ − 1
2ρ2 cos4 ϕ − ρ2 cos2 sin2 ϕ)

ṙ = −1
2r2ρ2 cos2 ϕ.

In the same way as in the analysis of (4.2) and (4.11), we observe that for small
enough r, the right hand side of the ϕ̇-equation is strictly negative, hence it is possible
to regard (r, ρ) as functions of ϕ which satisfy the differential equations:

dr

dϕ
= −

1
2r2ρ2 cos2 ϕ

1 + ρ2 cos4 ϕ + O(rρ)
(4.12)

dρ

dϕ
=

ρ3 cos3 ϕ sin ϕ + rρB sinϕ + O(rρ3)

1 + ρ2 cos4 ϕ + O(rρ)
. (4.13)

Solutions of these differential equations define the return map

(r0, ρ0) 7→ (R(r0, ρ0), T (r0, ρ0)), (4.14)

where
R(r0, ρ0) = r(−2π; r0, ρ0), T (r0, ρ0) = ρ(−2π; r0, ρ0).

Proposition 4.10 The return map (4.14) has the following asymptotic expansion:

R(r0, ρ0) = r0 + r2
0ρ

2
0(−3π

8 + . . .)
T (r0, ρ0) = ρ0 + r0ρ

2
0(−π + . . .).

Once this is proven, we can again use the result of [12]. In fact, since (R(r0, ρ0) −
r0, T (r0, ρ0) − ρ0) are factored out by r0ρ0, we can say that this return map is C∞-
conjugate to the time 1 map of the vector field

ṙ = ρ(−3π
8 r + . . .)

ρ̇ = −πρ + . . . .

This vector field clearly shows that the r-axis is normally hyperbolic and attracting,
and hence W u(r) finally converges to some equilibrium (0, 0, r̄) in this chart. Therefore
we obtain the desired conclusion.

Furthermore, since the ratios of the eigenvalues of the saddles in each of the side
charts of the second blow-ups (4.2) and (4.11) are mutually inverse of the other, as
remarked above, and since the average in θ of the first equation of (3.6) gives 0 as its
coefficient of the leading term with respect to s at s = 0, the correspondence between
r > 0 in the top chart of the second blow-up of (3.4) and its limiting equilibrium
(0, 0, r̄) are asymptotically equivalent as r → 0. This shows that, going back to the
original coordinates of (3.2) after blow-down, the two equilibria (0, 0,−A) and (0, 0, Ā),
A, Ā > 0, that are connected by the heteroclinic orbit, are related as Ā = O(A)
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as A → ∞. Therefore, if we choose such a sufficiently large singularly degenerate
heteroclinic cycle in (3.2) and let −A∗ be given by the z-coordinate of the bottom
equilibrium of the heteroclinic orbit, then the shifted heteroclinic orbit by z 7→ z + A∗

in (3.1) connects the origin and an equilibrium (0, 0, G∗) with

G∗ = A∗ + Ā∗ with G∗ = O(A∗) as A∗ → ∞. (4.15)

So what remains is the proof of the above proposition, which is given below.

Proof of Proposition 4.10 and completion of the proof of Theorem 2.1(1). Observe
first that

r(ϕ; 0, ρ0) ≡ 0, ρ(ϕ; r0, 0) ≡ 0,

which follow from the invariance of the plane given by r = 0 and the cylinder given by
ρ = 0. From the latter, we have

dr

dϕ
(ϕ; r0, 0) ≡ 0,

and hence r(ϕ; r0, 0) ≡ r0, nalely

R(r0, 0) ≡ r0.

Also notice that when r = 0, the system (4.10) defines a Hamiltonian vector field on
the (U, V )-plane whose orbits are all periodic orbits surrounding the origin. Therefore,
the solution ρ(ϕ; 0, ρ0) is 2π-periodic in ϕ and, by shifting the parametrization, it can
be considered as an even function of ϕ. In particular, we have

T (0, ρ) ≡ ρ0.

From these identities, we can expand R(r0, ρ0) and T (r0, ρ0) as follows:

R(r0, ρ0) = r0 + r0ρ0R̄(r0, ρ0)
T (r0, ρ0) = ρ0 + r0ρ0T̄ (r0, ρ0).

For this form, we claim the following:

(a) T̄ (r0, 0) ≡ 0,

(b) R̄(r0, 0) ≡ 0,

(c) R̄(0, ρ0) ≡ 0,

(d)
∂3ρ

∂r0∂ρ2
0

(−2π; 0, 0) = −2π,

(e)
∂4r

∂r2
0∂ρ2

0

(−2π; 0, 0) = −3π

2
.

The first claim (a) shows T̄ (r0, ρ0) is divisible by ρ0 and (b) and (c) show that R̄(r0, ρ0)
is divisible by r0ρ0. Then (d) and (e) give the coefficients of the leading terms of the
expansion of R̄(r0, ρ0) and T̄ (r0, ρ0), which all together prove the desired assertion of
the proposition.

The first three claims can be proven similarly, so we shall only give a proof of the
claim (a). From the definition of T̄ (r0, ρ0), one has

∂T

∂ρ0
(r0, 0) = 1 + r0T̄ (r0, 0).
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Differentiating (4.13) with respect to ρ0 and evaluating it at ρ0 = 0, we obtain

d

dϕ

(

∂ρ

∂ρ0

)∣

∣

∣

∣

ρ0=0

= Br0 sin ϕ ·
(

∂ρ

∂ρ0

)∣

∣

∣

∣

ρ0=0

,

hence
∂ρ

∂ρ0
(ϕ; r0, 0) is 2π-periodic in ϕ. This shows that

∂T

∂ρ0
(r0, 0) =

∂ρ

∂ρ0
(−2π; r0, 0) =

∂ρ

∂ρ0
(0; r0, 0) = 1,

from which we get T̄ (r0, 0) ≡ 0. The proof of the claims (b) and (c) are similar, hence
left to the readers.

The evaluation of the derivatives in the claims (d) and (e) can be done by very
tedious but straightforward computation using the differential equations (4.12) and
(4.13), hence we omit it. This completes the proof of Proposition 4.10.

Combining all these results of analysis, we have completed the proof of the first
assertion of Theorem 2.1. �

Remark 4.11 Those who are familiar with the blow-up method for vector fields might
ask if there may be a different scaling for the first blow-up at infinity that simplifies
the proof. In fact, if we take a slightly different scaling

x =
u

s
, y =

v

s2
, z =

w

s2
,

for the blow-up at infinity of (3.2), then we obtain the same vector fields as (4.1) and
(4.10) in the bottom and top charts. However, the equation for the side chart becomes
different, and seems more difficult to study the dynamics than (3.6), therefore we finally
decided to proceed in the way given in this and previous sections.

A Coordinate transformations to the Lorenz-

like system

Lorenz system

The Lorenz system (1.1)

ẋ = σ(y − x)
ẏ = rx − y − xz
ż = −bz + xy

can be transformed, by the coordinate change

X = px, Y = q(y − x), Z = m(z − `x2), τ = kt, (A.1)

with

p =
1√

2(2σ − b)
,

√
2q =

σ

(2σ − b)2
= m, ` =

1

2σ
, k = 2σ − b,
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to a subfamily of the system (2.4):

X ′ = Y
Y ′ = AX − BY − XZ − X3

Z ′ = −βZ + X2
( ′ =

d

dτ
)

with

A =
σ(r − 1)

(2σ − b)2
, B =

σ + 1

2σ − b
, β =

b

2σ − b
. (A.2)

Notice that the relation given by (A.2) between (A,B, β) and (r, σ, b) is a diffeomorphic
change of parameters in reasonable domains of definition including the case discussed
in this paper when A being very large, β being very small and B remaining bounded
around 1. Having this in mind, we can transform (2.5) with non-zero but small γ and
δ by the inverse of (A.1), assuming (A,B, β) are given by (A.2), and we obtain

ẋ = σ(y − x)

ẏ = rx − y − xz − σγ

2σ − b
yz − γ

2(2σ − b)
(x3 − x2y)

ż = −bz + xy + δ(2σ − b)

(

z − x2

2σ

)2

.

Therefore, if γ and δ are small, we can see that the system (2.5) can be considered a
small perturbation of the original Lorenz system.

Rössler’s second system

By the coordinate change

X = px, Y = q(x − xy − z), Z = my, τ = kt

with

p = m =
1

k
=

1

b − a
, q =

1

(b − a)2
,

the Rössler’s second system (2.1)

ẋ = x − xy − z
ẏ = x2 − ay
ż = b(cx − z)

is transformed to

X ′ = Y
Y ′ = AX − BY − XZ − γY Z − X3

Z ′ = −βZ + X2 + δZ2
( ′ =

d

dτ
)

with

A =
b(1 − c)

(b − a)2
, B =

b − 1

b − a
, β =

a

b − a
, γ = 1, δ = 0.

Unfolding of a nilpotent singularity with Z2-symmetry
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[10] carried out the study of the normal form and its unfoldig of a nilpotent singu-
larity with a non-degenerate 2-jet of vector fields on R

3 having a reflectional symmetry
with respect to a line, and in particular, the following vector field was analysed:

ẋ = y
ẏ = λx + µy − xz + byz + h.o.t.
ż = ν + x2 + z2 + h.o.t.

After a suitable rescaling, the above family can be brought to

X ′ = Y
Y ′ = λ̄X + µ̄Y − XZ + (small terms)
Z ′ = X2 + (small terms)

( ′ =
d

dτ
),

and the existence of a singularly degenerate heteroclinic cycle was proven for the family
with the small terms truncated. The argument of §5 and §6 in this paper applies to
this family with small terms, and thus the geometric Lorenz attractor exists in the
above family, and hence in the unfolding of the nilpotent singularity of codimension
three as claimed in [10].

Shimizu-Morioka system

The Shimizu-Morioka system (2.2)

ẋ = y
ẏ = x(1 − z) − λy
ż = −αz + x2

can be directly embedded to the system (2.4). However, by making additional rescaling

x = λ2X, y = λ3Y, z = λ2Z, τ = λt,

we obtain
X ′ = Y

Y ′ =
1

λ2
X − Y − XZ

Z ′ = − α

λ2
Z + X2

(′ =
d

dτ
).

When α = 0 and λ is small, this is the same situation studied in [10] discussed above,
for which a singularly degenerate heteroclinic cycle is shown to exist. Therefore we can
prove that a singularly degenerate heteroclinic cycle also exists in the Shimizu-Morioka
system, and that, by a similar reasoning given in this paper, the geometric Lorenz
attractor is generated by an arbitrarily small (but correctly chosen) perturbation of
the Shimizu-Morioka system.

B Melnikov analysis

In this section, we shall give a proof of Proposition 4.4 using the standard technique
which can be found in e.g. [5].

Let c(h) be a unique solution U = c(h) of the equation H(U, 0) = h for a given h,
and define

Ji(h) =

∫ c(h)

0
U2iV dU (i = 0, 1, 2),
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where V is related to U, h through H(U, V ) = h, namely V = V (U, h) =
√

2h + U2 − U4/2,
and in particular, V (c(h), h) ≡ 0. From

dJi(h)

dh
=

∫ c(h)

0

U2i

V
dU, (B.1)

it is possible to express

M(h) =

∫ c(h)

0

{

1

2
U3dV + (B − U2)V dU

}

=

∫ c(h)

0

{

1

2
U3

(

U − U3

V

)

+ (B − U2)V

}

dU

(B.2)

in terms of Ji and its derivatives. For this purpose, we shall first derive some properties
of the functions Ji.

By straightforward evaluation of integrals using c(0) =
√

2, we obtain

Lemma B.1

J0(0) =
2

3
, J1(0) =

8

15
.

Lemma B.2 The functions J0 and J1 satisfy the differential equations:

d

dh

(

J0

J1

)

=
1

4h(4h + 1)

(

4(3h + 1) −1
−4h 4H

)(

J0

5J1

)

.

Proof. From (B.1), we have

J0 =

∫ c(h)

0

V 2

V
dU =

∫ c(h)

0

2h + U2 − U4/2

V
dU

= 2h

(

dJ0

dh

)

+

(

dJ1

dh

)

− 1

2

(

dJ2

dh

)

.

On the other hand, using integration by parts and implicit differentiation, as get

J0 = [UV ]
c(h)
0 −

∫ c(h)

0
U

dV

dU
dU = −

∫ c(h)

0

U2 − U4

V
dU

= −
(

dJ1

dh

)

+

(

dJ2

dh

)

.

By eliminating dJ2/dh from these two, we obtain

3J0 = 4h

(

dJ0

dh

)

+

(

dJ1

dh

)

.

Similarly for J1, we get

5J1 =
4h

3

(

dJ0

dh

)

+
4(3h + 1)

3

(

dJ1

dh

)

,

and, together with these two equations, we obtain the desired conclusion. �

Let Φ(h) =
J1(h)

J0(h)
. From Lemma B.1, we have Φ(0) = 4

5 .
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Lemma B.3

M(h) =
1

2
J0(h) · (2B − 5Φ(h)).

Proof. From (B.2), V 2 = 2h + U2 − U4/2 and Lemma B.2, we have

M(h) =

∫ c(h)

0

{

1

2
U3(U − U3) + (B − U2)

(

2h + U2 − U4

2

)}

dU

V

= 2Bh

(

dJ0

dh

)

+ (B − 2h)

(

dJ1

dh

)

− B + 1

2

(

dJ2

dh

)

=
2h(2B − 1)

3

(

dJ0

dh

)

+
B − 6h − 2

3

(

dJ1

dh

)

= BJ0 −
5

2
J1 =

J0

2
(2B − 5Φ).

�

Remark B.4 Since M(0) = 2
3(B − 2) when h = 0, we must choose B < 2 in order to

have M(h) < 0 for any h ≥ 0.

From Lemma B.2, the function Φ(h) = J1(h)/J0(h) satisfies the following Ricatti
differential equation:

dΦ

dh
=

1

4h(4h + 1)

{

5Φ2 + 4(2h − 1)Φ − 4h
}

. (B.3)

Lemma B.5

lim
h→∞

Φ(h) = +∞.

Proof. Since c(h) = O(h1/4), we have

J0(h) =

∫ c(h)

0

√

2h + U2 − U4/2dU ≤
√

2h +
1

2
× c(h) = O(h3/4).

On the other hand, letting c̃(h) = O(h1/4) be the solution of 2h + U2 − U4/2 = h, we
have

J1(h) ≥
∫ c̃(h)

1
U2

√
hdU =

c̃3 − 1

3

√
h = O(h5/4).

Therefore

Φ(h) =
J1(h)

J0(h)
≥ O(h1/2) → +∞ (h → ∞).

�

Now we give a proof of Proposition 4.4.
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Proof. We show that the function Φ(h) has a positive minimum for h ≥ 0. Since
Φ(h) satisfies the Ricatti differential equation (B.3), the solution correspond to an
invariant curve of the vector field

ḣ = 4h(4h + 1), Φ̇ = 5Φ2 + 4(2h − 1)Φ − 4h,

that passes the point (h,Φ) = (0, 4/5). The above vector field has equilibrium points

at (0, 0) and (0, 4/5), and the linearization matrix at (0, 4/5) is

(

4 0
12/5 4

)

, hence it

is an unstable node. The vector field is such that it points downward on the half-line
give by Φ = 0 and h > 0, whereas upward on the half-line given by Φ = 4/5 and h > 0.
Therefore the asymptotic behavior of the solution orbit in the limit of h → ∞ is either
(i) it has a minimum and tends to +∞ as h → ∞, or (ii) it remains bounded from
above as h → ∞. However, the latter is not possible because of Lemma B.5, and thus
there must be a minimum which is given by Φ̇ = 0 or equivalently

h = −Φ(5Φ − 4)

4(2Φ − 1)
.

From the graph of this, we can easily see that the minimum Φ0 is larger than 1/2.
Letting B0 be 5

2 · Φ0, hence B0 > 5/4, we have that for any B < B0

M(h) =
1

2
J0(h)(2B − Φ) ≤ 1

2
(2B − 2B0) =

2

3
(B − B0) < 0.

Therefore, we obtain the desired conclusion by choosing M0 = (2/3) · (B − B0). This
completes the proof of Proposition 4.4. �
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Figure Captions

Figure 1: The “standard” Lorenz attractor.

Figure 2: A singularly degenerate heteroclinic cycle.

Figure 3: Chaotic attractor of the Lorenz system at r = 210,

b = 8/3 and σ = 10.

Figure 4: A chaotic attractor of Lorenz system (1.1) at r = 185.
Upper: (x, z)-plot; Lower: (x, y)-plot.

Figure 5: Chaotic attractor of the Rössler’s second system. (x, y)-

plot.

Figure 6: A singularly degenerate heteroclinic cycle in the Lorenz
system, r = 1000, b = 0 and σ = 10.

Figure 7: Sets W± in Lemma 4.7.
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Figure 1: The “standard” Lorenz attractor.
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Figure 2: A singularly degenerate heteroclinic cycle.
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Figure 3: Chaotic attractor of the Lorenz system at r = 210, b =
8/3 and σ = 10.
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Figure 4: A chaotic attractor of Lorenz system (1.1) at r = 185.
Upper: (x, z)-plot; Lower: (x, y)-plot
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Figure 5: Chaotic attractor of the Rössler’s second system. (x, y)-plot.
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Figure 6: A singularly degenerate heteroclinic cycle in the Lorenz
system, r = 1000, b = 0 and σ = 10.
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