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Abstract

The purpose of this and forthcoming papers is to obtain a better un-
derstanding of complicated bifurcations for multiple homoclinic orbits.
We shall take one particular type of codimension two homoclinic orbits
called orbit-flip and study bifurcations to multiple homoclinic orbits ap-
pearing in a tubular neighborhood of the original orbit-flip. The main
interest of the present paper lies in the occurrence of successive homo-
clinic doubling bifurcations under an appropriate condition, which is a
part of the entire bifurcation for multiple homoclinic orbits. Since this
is a totally global bifurcation, we need an aid of numerical experiments
for which we must choose a concrete set of ordinary differential equa-
tions that exhibits the desired bifurcation. In this paper we employ a
family of continuous piecewise-linear vector fields for such a model equa-
tion. In order to explain the cascade of homoclinic doubling bifurcations
theoretically, we also derive a two-parameter family of unimodal maps
as a singular limit of the Poincaré maps along homoclinic orbits. We
locate bifurcation curves for this family of unimodal maps in the two-
dimensional parameter space, which basically agree with those for the
piecewise-linear vector fields. In particular, we show, using a standard
technique from the theory of unimodal maps, that there exists an infi-
nite sequence of doubling bifurcations which corresponds to the sequence
of homoclinic doubling bifurcations for the piecewise-linear vector fields
described above. Since our unimodal map has a singularity at a bound-
ary point of its domain of definition, the doubling bifurcation is slightly
different from that for standard quadratic unimodal maps, for instance
the Feigenbaum constant associated to accumulation of the doubling bi-
furcations is different from the standard value 4.6692....

1 Introduction

Motivation Extensive study has recently been done for bifurcations occurring
in a neighborhood of a codimension two homoclinic orbit in a three-dimensional
vector field, and in particular, it became known that some types of codimension
two homoclinic orbits, which are bi-asymptotic to hyperbolic equilibria with real
principal eigenvalues, can give rise to multiple homoclinic orbits; an /N-times
rounding homoclinic orbit arises under perturbation in a tubular neighborhood
of the unperturbed orbit where N being an integer ([Yanagida, 1987], [Chow et
al., 1990], [Kisaka et al., 1993a, 1993b], [Sandstede, 1993], [Homburg et al.,

1994]). Such a homoclinic orbit is referred to as an N-homoclinic orbit with



respect to the original unperturbed one. The bifurcation of such multiple ho-
moclinic orbits are, however, still far from the complete understanding. For
instance, when one varies the eigenvalues of the equilibria it has been observed,
by a numerical simulation, very complicated bifurcations involving many such
multiple homoclinic orbits. See, for instance, Fig. 3 and [Iori et al., 1993].

The purpose of this and forthcoming papers is to obtain a better understand-
ing of such complicated bifurcations for multiple homoclinic orbits by combining
results from homoclinic bifurcation analyses with those from numerical exper-
iments. To be more precise, we shall take one particular type of codimension
two homoclinic orbits with real eigenvalues in IR?, called orbit-flip, and study
its bifurcation of multiple homoclinic orbits appearing in a tubular neighbor-
hood of the original orbit-flip. The main interest of the present paper lies in the
occurrence of successive homoclinic doubling bifurcations under an appropri-
ate condition, which is a part of the entire bifurcations for multiple homoclinic
orbits. Here the homoclinic doubling bifurcation refers to the bifurcation of a
homoclinic orbit changing into a twice rounding homoclinic orbit in a tubular
neighborhood of the original one. The homoclinic doubling bifurcation associ-
ated to real principal eigenvalues was first studied by Yanagida [1987] where he
asserted that there are three kinds of codimension two homoclinic orbits that
can undergo the homoclinic doubling bifurcations: these are now called (i) a ho-
moclinic orbit with resonance, (ii) that of inclination-flip type, and (iii) that of
orbit-flip type. See [Chow et al., 1990], [Kisaka et al., 1993a, 1993b] and [Sand-
stede, 1993 for efforts toward completing and generalizing Yanagida’s original
ideas concerning these three types of homoclinic doubling bifurcations. In this
paper, we shall show the existence of cascade of homoclinic doubling bifurca-
tions starting from a homoclinic orbit of orbit-flip type followed by those of
inclination-flip type. Relation between such a global bifurcation and a local
bifurcation from orbit-flip will also be discussed in the last section.

Continuous piecewise-linear vector fields Since the cascade of homoclinic
doublings is a totally global bifurcation, we need an aid of numerical experiments
for which we must choose a concrete set of ordinary differential equations that
exhibits the desired bifurcation. In this paper we employ a family of continuous
piecewise-linear vector fields for such a model equation. The advantage of using
such continuous piecewise-linear (abbrev. PL) vector fields is that, firstly it is
easier to analyze dynamics and bifurcations of the vector fields because of their
piecewise-linearity, and secondly, according to a general theory established by
the second author of this paper ([Komuro, 1988]), we can obtain a kind of
normal forms for generic continuous piecewise-linear vector fields if one specifies
the number of regions on which the vector field is linear, and the normal form



is completely characterized in the sense of linear conjugacy in terms of the
eigenvalues at equilibria in each of these linear regions. This means that these
eigenvalues are considered to be the bifurcation parameters of the normal form
equations, which is suitable for our purpose of this and subsequent papers.
In our case, we use the normal form of piecewise-linear vector fields with two
linear regions in IR®, and hence it possesses six parameters in total. Moreover it
is easy to derive an explicit condition in terms of the eigenvalue parameters for
the existence of an orbit-flip. Using this information, we can set up the model
problem in a tractable way and perform very precise numerical experiments
based on explicitly computed analytic formulas. The results obtained by such
analyses and experiments will also be valid for general smooth vector fields,
because the homoclinic bifurcation theory only uses information from the return
map along the original homoclinic orbit and hence the piecewise-linearity does
not lose essential information for it is constructed in the same way as in the
smooth case.

Main results Using such a family of continuous piecewise-linear vector fields,
we shall demonstrate the presence of the following global bifurcations in this
paper: Since the original homoclinic orbit is assumed to be of orbit-flip type,
it undergoes the first homoclinic doubling bifurcation and gives rise to a 2-
homoclinic orbit. It then turns to be a homoclinic orbit of inclination-flip type
after a slight change of parameters and thus undergoes the second doubling bi-
furcation creating a 4-homoclinic orbit. This 4-homoclinic orbit becomes again
that of inclination-flip type for a further variation of parameters and we find
8-homoclinic orbit through the third homoclinic doubling bifurcation. By nu-
merical experiments for our family of continuous piecewise-linear vector fields we
can similarly see that each 2*-homoclinic orbit becomes that of inclination-flip
type and gives rise to a 2°t1-homoclinic orbit through the homoclinic doubling
bifurcation. In fact we have observed up to 2!° = 1024-homoclinic orbits through
these doubling bifurcations. Such precise numerical experiments could only be
done by using piecewise-linear vector fields, since it is in general hard to find
a homoclinic orbit as an intersection of the stable and unstable manifolds, but
for piecewise-linear vector fields, those manifolds are locally given by a straight
line or a plane and hence it is quite easy to find a parameter value where an
orbit precisely lies on these manifolds.

In order to explain this bifurcation more theoretically, we derive a two-
parameter family of unimodal maps as singular limit of the Poincaré maps along
homoclinic orbits. We locate bifurcation curves for this family of unimodal maps
in the two-dimensional parameter space and these curves basically agree with
those for the piecewise-linear vector fields. Moreover, we can prove, using a stan-



dard technique from the theory of unimodal maps (see e.g. [Collet & Eckmann,
1980], [Milnor & Thurston, 1988|, [de Melo & van Strien, 1993]), that there
exists an infinite cascade of doubling bifurcations which corresponds to the se-
quence of homoclinic doubling bifurcations for the piecewise-linear vector fields
described above. Since our unimodal map has a singularity at a boundary point
of its domain of definition, the doubling bifurcation is slightly different from
that for standard quadratic unimodal maps, for instance the Feigenbaum con-
stant associated to accumulation of the doubling bifurcations is different from
the standard value 4.6692.... Basic qualitative similarity between the bifurca-
tions of our unimodal map family and the piecewise-linear vector fields strongly
suggest that there does also exist a cascade of homoclinic doubling bifurcations
in our family of continuous piecewise-linear vector fields in a way described by
their singular limit unimodal maps.

Organization of the paper The organization of this paper is as follows. In
Sec. 2, we briefly summarize basic terminology and known results for homoclinic
doubling bifurcations in vector fields. In Sec. 3, we present numerical results for
successive homoclinic doubling bifurcations in a family of continuous piecewise-
linear vector fields, after a brief introduction to the normal form theory for such
PL vector fields. In order to visualize the bifurcation phenomena and compare
the results with those for vector fields, we use color diagrams where the homo-
clinic bifurcation sets are given as boundary curves of colored regions. We also
observe more complicated bifurcation structure of homoclinic orbits in the color
diagrams, but this will be treated in our forthcoming papers. In Sec. 4, we first
derive a family of unimodal maps from the Poincaré maps along homoclinic or-
bits. The derivation works not only for the piecewise-linear vector fields but also
for more general vector fields, and hence our result could be read as a general
existence theorem of cascade of homoclinic doubling bifurcations from orbit-flip.
We then investigate bifurcations of the unimodal map family with an aid of nu-
merical experiments and draw the bifurcation curves by using the method of
color diagrams, which shows the existence of the cascade of special period dou-
bling bifurcations that can be interpreted as those corresponding to homoclinic
doubling bifurcations in the piecewise-linear vector fields. We also compute the
Feigenbaum constants for the doubling bifurcations in the unimodal maps and
compare it with a similar result for the PL vector fields. Concluding remarks are
given in Sec. 5 where we discuss meaning of the cascade of homoclinic doubling
bifurcations and possibility of giving a mathematically rigorous proof for it.
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2 Preliminaries

Consider a family of vector fields X, on IR? with a hyperbolic equilibrium point
O and suppose that when 7 = 0 it admits a homoclinic orbit I' to the equilibrium
point where the linearization matrix possesses eigenvalues \,, —A,,, —A, with
—Ass < —Ay < 0 < Ay. The eigenvalues A, and —A, are called principal. If X,
may possess a homoclinic orbit rounding twice in a small tubular neighborhood
of the original homoclinic orbit for sufficiently small  # 0, such a bifurcation
is referred to as homoclinic doubling bifurcation and the bifurcating homoclinic
orbit is called a doubled homoclinic orbit or a 2-homoclinic orbit with respect
to the original one, which is called the primary or 1-homoclinic orbit.

For a homoclinic orbit, we can generically expect the following two condi-
tions to be satisfied:

(EV) A F s

S 1s tangent a o the eigendirection associated to —A, as ends to
Asy) T' is tangent at O to the eigendirecti iated t A t tends t
—+00.

Besides the stable manifold W*(O), one can consider another invariant manifold
which is tangent to the eigendirections associated with A, and —\,. In this paper
we call it an eztended unstable manifold and denote it by W<*(O). Notice that
the homoclinic orbit I' is contained in W**(O) N W*(O). Generically we also
have

(Tr) We*(O) and W*(O) intersect transversely along I'.

A degenerate homoclinic orbit arises by breaking one of these genericity
conditions, as in the following way.

Definition 2.1. Let I' be a homoclinic orbit in the vector field X = Xj.

(Inc) T is called a homoclinic orbit of inclination-flip type, if (Ev) and (Asy)
hold, but (Tr) does not, namely, W*(O) and W**(O) are tangent along T’;

(Orb) T is called a of orbit-flip type, if (Tr) and (Ev) hold, but (Asy) does not,
namely, T lies in the strong stable manifold W**(O);



(Res) T'is called a homoclinic orbit with resonance, if (Tr) and (Asy) hold, but
(Ev) does not, namely, the resonance condition A, = A, is satisfied.

Remark 2.2. The proof of the center manifold theorem works as well for the
existence of the extended unstable manifold W¢*(O). See [Hirsch et al., 1977]
for the proof. This invariant manifold is not unique, but has the unique tan-
gent space along the homoclinic orbit, and hence the condition (Inc), which
is sometimes referred to as the strong inclination property ([Deng, 1989]), is
independent of the choice of the extended unstable manifold.

Bifurcations to doubled homoclinic orbits were first studied in [Evans et al.,
1982] in the case of the Shil’nikov-type homoclinic orbit, along with the result of
non-existence of the homoclinic doubling bifurcation for homoclinic orbits with
real principal eigenvalues under the generic conditions (Asy), (Tr) and (Ev).
Yanagida [1987] then claimed that there are the above three possibilities of more
degenerate homoclinic orbits with real principal eigenvalues that can generate
a doubled homoclinic orbit under perturbation. Since then, a lot of work has
been carried out toward completing and generalizing Yanagida’s original ideas.

It was shown in [Chow et al., 1990] that the period-doubling bifurcation
or the saddle-node bifurcation for a periodic orbit occurs in a generic two-
parameter unfolding of a homoclinic orbit with resonant eigenvalues, depending
whether the homoclinic orbit is twisted or non-twisted. Similar bifurcations are
also shown for inclination-flip homoclinic orbits ([Kisaka et al., 1993a, 1993b])
with the ratio v = i‘— of the principal eigenvalues satisfying % < v < 1. On the
other hand, if the ratio v is smaller than %, more complicated dynamics such as
the shift dynamics accompanied by rich bifurcation phenomena in their creation
possibly appear ([Deng, 1993], [Homburg et al., 1994]). In particular, Hom-
burg et al. [1994] proved the existence of suspension of the Smale s horseshoe in
unfoldings of an inclination-flip homoclinic orbit with v < L, 2v < = “ and
described how N-homoclinic orbits are created or destroyed in the unfoldmd
Sandstede [1995] announces the existence of a shift dynamics in the unfolding
of an inclination-flip homoclinic orbit with © < 1, p < 2v using Lin’s methods
[Lin, 1990]. Recently, the existence of Hénon-like strange attractors was proven
in [Naudot, 1995] using a result of Mora and Viana [1993], in the case where
l<ptv, v<i 5> > Kv with some large enough K. See also [Naudot, 1994]
and [Kokubu & Naudot, 1995] for relevant results.

With regard to the orbit-flip, Sandstede [1993] has proven that homoclinic
doubling and homoclinic N-tupling bifurcations (N > 3) as well as the shift
dynamics do occur in its unfolding. There is also a numerical simulation done
by Iori et al. [1993] for piecewise-linear vector fields involving an orbit-flip ho-
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moclinic orbit which located bifurcation curves for N-homoclinic orbits with
2 < N < 11. Our work was inspired by this last result.

Here we state a theorem concerning the homoclinic doubling bifurcations
for homoclinic orbits of inclination-flip or of orbit-flip type summarizes some
results from [Kisaka et al., 1993b| and [Sandstede, 1993].

Theorem 2.3. Let X, be a generic two-parameter family of vector fields which
has either an orbit-flip or an inclination-flip homoclinic orbit I' at n = 0. Then
the following holds:

(1) Ifl<v = i‘—s, the homoclinic doubling bifurcation does not occur.

(2) ]f <v<landpu= —‘& > 1, the homoclinic doubling bifurcation occurs.
More precisely, there e:msts a local change of parameters at n =0

e = (e1,62) = £(n),

and curves of the form

€2 = ff2H(€1) (51 > 0)7
€2 = /€PD(51) (51 > 0)7
€2 = fCSN(€1) (81 < 0)7

in the parameter space such that a primary homoclinic orbit persists along
g = 0 whereas a doubled homoclinic orbit bifurcates along €2 = Kag(e1),
a periodic orbit undergoes the period doubling bifurcation along €5 =
kpp(e1), and the saddle-node bifurcation occurs for periodic orbits along
£s = kgy(€1). Moreover,

1

Kom(€1) R~ €177,
kpp(e1) =~ 051ﬁ for some 0 < ¢ < 1,
ksy(e1) =~ c'|€1|11_" for some ¢ < 0.

The bifurcation diagram is shown in Fig. 1. See also [Matsumoto et al.,
1993] and references therein for more information.

— Figure 1 comes here —



3 Successive Homoclinic Doublings in PL Vector Fields

3.1 Normal forms of three-dimensional two-region proper piecewise-
linear vector fields

Here we shall summarize results on normal forms for three-dimensional proper

two-region piecewise-linear vector fields. Since the proper condition which will

be defined later is generic, they form an important class of vector fields in the

study of bifurcations for continuous piecewise-linear vector fields. In particular it

can be shown that normal forms of proper systems are determined by elementary

symmetric polynomials of eigenvalues in each linear region as described below.
Given a non-zero vector a € IR?, define a plane

V ={z c R*(a,z) =1}
(where (-,-) denotes the usual inner product) and half spaces
Ry ={z €e R*| &+ ({a,z) — 1) > 0}.
Consider a vector field defined by an ordinary differential equation

dr {A:c, (zeR.)

dat X(z) = Bz —p, (z€ R,), (1)

where A and B are 3x3 matrices and p € IR® (all elements of IR’ are column
vectors, unless otherwise stated). We call the vector field a three-dimensional
two-region piecewise-linear vector field, and the plane V the boundary of the
vector field. This vector field is continuous on the boundary V' if and only if

B = A+ pal.

See [Matsumoto et al., 1993; Lemma 2.5.1].

Definition 3.1. Two vector fields X and X’ on IR® are linearly conjugate if
there is a non-singular matrix H € GL(3,1R) such that

HX(z) = X'(Hz) forall z ¢ R’

Definition 3.2. A vector field X defined by (1) is proper if any A-invariant
proper linear subspace £ C IR? intersects with the boundary V| i.e.,

A(E)CE and 0<dim(E)<3= ENV #0. (2)



— Figure 2 comes here —

Theorem 3.3.
Any proper continuous three-dimensional two-region piecewise-linear vector
field given by

X(e) = Az gl o)~ 1]+ (@, 2) - 1)

B {A'aj, ((o/,z) =1 <0)
~ \Bz-p, (d,z)—1>0),

is linearly conjugate to the vector field defined by

X(2) = Azt pll(ez) — 1+ (fa2) - D},

_ {Aw, ({a,z)y — 1 <0)

Bz —p, ({a,z)—12>0),

where

0 1 0 c1 1 0
A=[0 0 1|, B= o 0 1 |=A+paT
a3 Qo Qg c3+as ag ap

ar = A1+ A2+ A3, a2 = —(Ade 4+ Aoz + A3h1), az = Ao,
by = v +va + s, by = — (Vs + ovs + 1314), by = vi1aus,

g =by — a1, cg =by —as+cra1, cg = bs — az + azcy + asc,

A1, Ao, A3 being the eigenvalues of A and vy, 15,3 being those of B.
Moreover, when det(B) = bs # 0, we can write
_ A$7 (<Oé,£L’> -1< O)
X(z) = {B(a: ~P), (la.a)—1>0),
where
asz Cias3 c2a3>

p=(1-=2 258 205
< by’ by | b

See [Matsumoto et al., 1993; Subsection 2.5.1] for the proof of this theorem.

10



The vector field X is determined by p = (ay,as, as, by, bo, b3) € IR, which
will be called the eigenvalue parameters. Define the boundary V' by

V ={z € R*|{a,z) =1},

and set
Vi ={z e V| L {a, Az) > 0}.

If \; (i = 1,2,3) is real, then the vector O—CZ gives an eigenvector of A
associated with A;, where

Ci = (1,2, )T eV, (3)

)

Assume \; and )\ are negative real numbers and Aj is a positive real number,
whereas v; and 15 are a pair of complex-conjugate numbers and vj is real. Since
an eigenvector for \; is given by (3), the one-dimensional unstable eigenspace
E*(0O) and the two-dimensional stable eigenspace E*(O) for O = (0,0,0)” are
given by

E"(0) ={z € R®’|z = 7(1, 23, A3)7, {a,z) —1 <0, 7 € R},
E*(0) = {z € R*|{u,z) = 0, (a,z) — 1 < 0},

where u = (-1, )‘/{;;\)2‘2 , —ﬁ) The intersection F*(O) NV is thus given by

E(0)NV ={z = (z*,2% 2°) € R*|(u,z) = 0, ' = 1}. (4)
If Ao < A1 <0, the strong stable eigenspace £**(O) is given by
E*(0) = {z € R*z = (1,2, )3)", (a,2) =1 <0, r € R}.

Take a point C3 = (1,A3,A3)7 € V, on the local unstable manifold of O
and consider its entire orbit O(C3). The integer m > 0 is called the rounding
number of the orbit if )

m = §|j((’)(03) nv).
Assume in particular the point C3 lies in a homoclinic orbit of O. Then the
point C'5 is called a homoclinic point transversal to the boundary V if there
exists an integer m > 0, real numbers s1,¢;,s; > 0 and z;,y; € V (2 < i < m)
such that
y; = ePi(z; — P)+PcV. (1<i<m)

T = ettty eV, (1<i<m-—1)
(a,{eP*(x; = P)+ P}) —1#0 forall sec(0,s) (1<i<m)

11



(a, ey —1#0 forall te(0,t;41) (1<i<m-—1)
(a,ey,) —1#£0 forall t>0,

where 1 = Cj3. Here s; and t; stand for the half-return time, which is the period
of time from the orbit each time leaving V' until it coming back to V' again.

Theorem 3.4.
Assume A and B are non-singular, and set

C = A 'BA,
h=(11,1)T e =(1,0,0)%,e2 = (0,1,0)T,e3 = (0,0, 1),

K(t7 S) = [elaTe—At + €204T + esaTeCs]_l7

01 0
N_(O 0 1>'

(1) If there exists s; > 0 such that

(a,e“1C3) — 1 =0,
(u,e“*1C3) = 0,
(a,e“*C3) —1#£0 forall s € (0,s;),
(a,eteC1C3) —1#0 forall t>0,

then C5 is a homoclinic point transversal to the boundary with the rounding
number 1.
Moreover, if A\oa < Ay <0 and

6051 03 = 027

then O(C3) is a homoclinic orbit of orbit-flip type. Similarly, if Ay < Ay < 0
and
(€2, P (e —€1)) = 0,

then O(C3) is a homoclinic orbit of inclination-flip type.
(2) If there exist s1,t;,s; >0 (2 <1i < m) such that

12



(a,e¢1(C3) — 1 =0, (5)

N(et2e“*1C3 — K (o, s2)h) = O, (6)

N(eAMi+1eCi K(t;,8,) — K(tiz1,8i41)R) =0 (2<i<m—1), (7)
(u, €9 K (tm, 8m)h) = 0, (8)

(a,e“*C3) —1#£0 forall se€(0,sy), (9)

{a,e MK (t;,8)h)y —1#£0 forall te(0,t;) (2<i<m), (10)
(a,e“*K(t;,s;)h) =1 #0 forall se(0,s) (2<i<m), (11)
(a, eMe“*m K(ty, sm)h) —1#0 forall t>0, (12)

then C3 is a homoclinic point transversal to the boundary with the rounding
number m (m > 2).
Moreover, if A\ < A1 <0 and

e " K(tm, 5m)h = Oy,

then O(C3) is a homoclinic orbit of orbit-flip type. Similarly, if Ay < Ay < 0
and
<€2, e—lee—Atze—Bsz . e—Atme—Bsm (62 o el)) — 0’

then O(C3) is a homoclinic orbit of inclination-flip type.

Remark 3.5. Equations (6)-(9) are viewed as 2m scalar equations with 2m +
5 variables (p, s1,t2, 82,y tm, 8m) € IR*"°. Equations (10)-(12) give open
conditions, and hence the solution set for (6)-(12) is 5 dimensional in IR*" "
This statement is also valid for m = 1. The projection of the solution set to the
space IR® of eigenvalue parameters p gives a codimension one subset called the
homoclinic bifurcation set.

3.2 Successive homoclinic doublings in piecewise-linear vector fields

— Figure 3 comes here —

We take a piecewise-linear vector field with an orbit-flip, put it into the nor-
mal form using Theorem 3.3 and regard the eigenvalues as parameters that un-
fold the orbit-flip homoclinic obit. Here we fix the eigenvalues \; = —0.2, Ay =
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—0.4, A3 = 0.3 at O and only vary vy, v5,v3. The parameter values when the
orbit-flip exists are 14,5 = 0.0580073059 & v/—1 and v3 = —0.2. In particular,
for vy, vy = 0 +w+/—1 and v3 = 7, we mainly consider o and v as the bifurcation
parameters in what follows, with fixed w = 1.0. Note that with this choice of
eigenvalues, we have A\, = A3, A\; = —A;, A\gs = —A5 and hence v = §

Figure 3(a) exhibits bifurcations in the normal form family. This figure is
called a color diagram, which is produced in the following way. For each choice of
o and vy while other eigenvalues being fixed, we follow the orbit starting the point
('5 in one branch of the local unstable manifold and count the rounding number
m defined in the previous subsection. Each color code (except black) stands for
a rounding number m, for instance, m = 1 (blue), 2 (yellowish green), 3 (sky
blue), 4 (red), 5 (purple), 6 (yellow) and 7 (white). Higher rounding numbers
m not larger than a number called Mazcount are coded as (m — 1)mod(7) + 1.
If m > Maxcount or m = oo, then black is assigned. The assignment of color
codes changes only when either the orbit hits the stable manifold or it becomes
tangent to the boundary of the linear region, the latter case of which is not
observed in our numerical experiments. In this way, it is quite easy to see the
bifurcation curves for N-homoclinic orbits with various N. In Fig. 3(a), one can
see, among other things, the boundary H; of blue region with m = 1 which
corresponds to the 1-homoclinic bifurcation curve.

Figures 3(b) - 3(d) are successive enlargements of Fig. 3(a). In Fig. 3(b), one
can observe a 2-homoclinic bifurcation curve as the boundary H, of yellowish
green region with m = 2, and in Fig. 3(¢), a 4-homoclinic bifurcation curve as
the boundary H, of red region with m = 4. Figure 3(d) is yet another enlarge-
ment where a 8-homoclinic bifurcation curve can be observed. These homoclinic
bifurcation curves are computed by using the bifurcation equation given in The-
orem 3.4. Moreover, it is also possible to compute the inclination-flip bifurcation
points from these bifurcation equations, and it turns out numerically that each
of the branching points from k-homoclinic bifurcation curve to 2k-homoclinic
bifurcation curve corresponds to an inclination-flip homoclinic orbit, except the
first one (k = 1). Since it is not easy to keep following such homoclinic bifurca-
tions curves by enlargements of two-dimensional parameter space, we instead fix
a line segment in the parameter space that cuts through the region where suc-
cessive homoclinic doubling bifurcations are expected to occur. Enlargements
of the bifurcation diagram along the line segment is much easier to carry out,
and one can see in Fig. 3(e) successive homoclinic doubling bifurcations for up
to 2° = 64-homoclinic orbits are observed. Numerically, we have so far observed
such homoclinic doubling bifurcations until giving rise to 2!° = 1024-homoclinic
orbits. The parameter values for these bifurcation points are give in Table 1. A
2¥_homoclinic bifurcation set for higher N is not computed, because the width
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of the corresponding colored region shrinks extremely fast so that it quickly
exceeds the computational limit.

— Table 1 comes here —

The parameter values for the bifurcation points given in Table 1 were com-
puted by using UBASIC created by Y. Kida [1990], which is a variant of BASIC
having the high precision real and complex arithmetic (up to 2600 digits) as well
as exact rational arithmetic and arithmetic of polynomials with complex, ra-
tional, or modulo p coefficients. We have performed our numerical simulation
in a way that the results of parameter values for the bifurcation points are
guaranteed up to 15 digits.

Using these values, we compute the Feigenbaum constant for the homo-
clinic doubling bifurcations as follows. Let (7, o)) be the value of (v, ) at the
inclination-flip homoclinic bifurcation point for a 2*-homoclinic orbit at which
a 2" 1_-homoclinic orbit bifurcates. Then the Feigenbaum constant § for the
homoclinic doubling bifurcation may be computed as either

6 = lim Tk T M1 or 6 = lim

O — Ok—1

In fact, with the values in Table 1,

T8V _ 34541992606
Yo — Vs

and
98 7 97 _ 3.4539854789.
09 — 08

One can also estimate a more precise value of the Feigenbaum constant by
using what is called the Aitken acceleration method, by which one can obtain
the (expected) Feigenbaum constant 3.4544635128...

4 Analysis of Reduced One-Dimensional Maps

In this section we shall derive and analyze a two-parameter family of one-
dimensional maps in order to study the dynamics and bifurcations that occur
in an unfolding of the orbit-flip. This family is obtained by taking the singu-
lar limit of the two-dimensional return maps along the homoclinic orbit as the
strong stable eigenvalue going to —oo.

Let X, be the generic two-parameter unfolding as above which possesses an
orbit-flip I', homoclinic to a hyperbolic equilibrium point O at n = 0. I lies in
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the intersection of the unstable and strong stable manifolds W*"(O) N W**(0).
We choose the (z,y, z)-coordinates in such a way that the local stable, unstable
and strong stable manifolds are given by

Wige(O) ={z =y =0}, Wy (0)={2=0}, Wi (0)={z=2z=0]

loc

in a neighborhood of 0. We assume for simplicity that the vector fields X,
are uniformly smoothly linearizable in a neighborhood of O containing the unit
cube [—1,1]%, and take the two cross sections

YW={y=1}, ¥={r=1}

which are transverse to the homoclinic orbit I'. Then the Poincaré map for X,
along I will be given by composing the following two mappings:

14

x xz
the local map: X — Xt ;| 1 || 2z# |,
z 1
X p+aX +BY + hot.
the global map: X! —= X" ;| YV | — 1 ,
1 g+yX +0Y + h.o.t.

where y = )/‘\“ and v = i‘—s Note that the constants, in particular, p and g may

depend on the unfoldinguparameter 7. Since the orbit-flip exists when (0,0, 1)
is mapped to (0, 1,0) under the global map, we have

Therefore the parameter 7 should be taken in such a way that

d(p,q)

8(7717772)

n=0

In other words, (p,q) can be thought of as unfolding parameters, and conse-
quently, the return map A takes the form

()= D))+ (n).

Here we consider the case when the strong stable eigenvalue has a very large
modulus so that we can neglect the term involving 2#. Then the most dominant
terms in the return map reduce to give a one-dimensional map
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s a(z—g+ )2+,

or, by rescaling the variable and parameters,
flz) =(z —a—Db)x" +b.

Note that here we have assumed o > 0 for simplicity, since the other case
can be treated similarly. In what follows, we fix v as % < v < 1 and consider
the bifurcation of this two-parameter family of one-dimensional maps that are
related to the dynamics of original vector fields. Recall that this range of v
corresponds to the situation described in Theorem 2.3(2). We remark that in
the derivation of the one-dimensional maps, we have not used any particular
form of vector fields such as piecewise-linearity, etc., and therefore the following
analysis should be equally valid both for smooth vector fields and for PL vector
fields.
Our goal is to show that the two-parameter family of maps

flz;a,b) =(x —a—0b)z" +b <%<7/<1>

possesses an infinite sequence of special doubling bifurcations that can be inter-
preted as homoclinic doubling bifurcations of corresponding vector fields. First
we note that the orbit of 0 for the one-dimensional map corresponds to the
unstable manifold of the equilibrium point O for the vector field, and therefore
we only consider the maps on the interval [0, f(0)] = [0, b] and trace the orbit of
0 as long as it stays within this interval. This map is in general a unimodal map
with a minimum which can be either positive or negative depending on the pa-
rameters. In particular, the map with the parameters (a,b) = (0,0) corresponds
to the vector field with an orbit-flip. The curve which can be interpreted as the
persistence curve for 1-homoclinic orbit coming out from the orbit-flip point is
given by the condition that 0 is a fixed point, namely f(0) = b = 0, whereas
the bifurcation curve for 2-homoclinic orbit is given by f2(0) = f(b) = 0, hence
a = b'¥. These two bifurcation curves nicely fit with the bifurcation diagram
for the vector fields that unfold an orbit-flip.

In general homoclinic orbits for vector fields correspond to periodic or-
bits through 0 for these one-dimensional maps, which is given by the equation
V(0) = 0. Inclination-flip homoclinic orbits are interpreted as such periodic or-
bits that pass through 0 and the minimum point, and hence given by the equa-
tions f¥(0) = 0, f'(f¥~*(0)) = 0. In particular the inclination-flip 2-homoclinic
orbit is given by the equations f?(0) = 0 and f'(f(0)) = 0, or equivalently,
(a,b) = (yl%l, Vl) Figure 4 illustrates the correspondence between bifurcation
sets for vector fields and for unimodal maps. It is hard to obtain explicit analytic
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expressions for the N-homoclinic bifurcation curves with N > 2, and hence, we
use the color diagram again in order to visualize these curves.

— Figure 4 comes here —
— Figure 5 comes here —

We compute the number
m =min{n > 1| f*(0;a,b) <0}

and assign a color code for each number m. Then we can draw bifurcation
sets with those assigned colors at each parameter value (a,b). Each color code
(except black) stands for a rounding number m in the same way as before,
namely, m = 1 (blue), 2 (yellowish green), 3 (sky blue), 4 (red), 5 (purple), 6
(yellow) and 7 (white) and higher rounding numbers m < Maxcount are coded
as (m — 1)mod(7) + 1. If m > Maxcount or m = oo, black is assigned. By
definition, each point of the boundary of a region with a specific color satisfies
f™(0) = 0 for certain number m, and hence it is interpreted as to a homoclinic
bifurcation point for m-homoclinic orbit. For example, the boundary Hy of a
red region with m = 4 exhibits a 4-homoclinic bifurcation curve.

It can be seen that there is a curve which seems tangent to all colored
regions. This curve, called the envelop, is in fact given by the condition that the
minimum value of f is equal to 0, since if the minimum value is positive, then
the orbit of 0 never becomes negative and hence, by the rule of color assignment,
such a parameter value is colored in black. This condition of the envelop is given
by Jz. € [0,b] such that f'(z.) =0, f(z.) =0, or equivalently,

1 1
Yy

a+b=

v

Using this expression of the envelop, we make the change of parameters from
(a,b) to

ro= (et t), w= S = (f(arn)

1+v v\l+4+v

in such a way that the envelop is mapped to the z,-axis. Figure 5(b) exhibits
the color diagram with these new parameters, where we can more easily see
the bifurcations, in particular several successive homoclinic doubling bifurca-
tions. This situation can be seen in more detail by taking (log z.,logy.) as new
parameters. See Fig. 5(c). Observe that the homoclinic doubling bifurcations
successively occur from 2-homoclinic orbit to 2'Y = 1024-homoclinic orbit.
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Since the homoclinic doubling bifurcation in vector fields corresponds to 0
being a periodic point that passes through the minimum of the unimodal map f,
we shall rigorously show that there exists an infinite sequence of such successive
doubling bifurcations in the family of unimodal maps.

Theorem 4.1. The two-parameter family of one-dimensional unimodal maps
fap has a cascade of doubling bifurcations that can be interpreted as cascade of
homoclinic doublings in the above sense.

Proof. We have only to consider the case where the minimum value of the
unimodal map is 0. This will reduce the two-parameter family of unimodal
maps to that with only one parameter:

= 1+v 1
fr = {:U - (vb)i+ } z” 4+,
v
since the condition that the minimum is equal to 0 is given by

1
y*:b__<
v

The family fb is a C'-family of unimodal maps that are continuous and onto
over the interval [0,5], and are of C'*' on (0,b]. Therefore this is almost what is
called the full family in the sense of Collet-Eckmann, for which the intermediate
value theorem for kneading sequences holds. See [Collet & Eckmann, 1980], in
particular Theorem III.1.1 for the detail. We can apply this theorem to our
family by modifying the proof of Theorem II1.1.1 in [Collet & Eckmann, 1980],
or more simply by looking at the second iterate sz as follows: Since we assume
the exponent v satisfying % < v < 1, it is easy to see that sz restricted to [z, 0]
is exactly a full family of C''-unimodal maps without any singularity, where z
stands for the unique fixed point for fb Since we have computed the existence
of the first doubling bifurcation point analytically, we conclude that the cascade
of doubling bifurcations occurring in f;2 gives the desired sequence.

(a + b)> " =0.

— Table 2 comes here —
— Figure 6 comes here —

We have numerically computed, again by using UBASIC [Kida, 1990], the
Feigenbaum constants for the doubling bifurcations in the family f, with var-
ious exponents v. See Fig. 6. It should be noted that when » = 1, the map
becomes quadratic and hence the Feigenbaum constant must be equal to the
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standard value 4.6692..., but it is not the case when % < v < 1. Our data
for the Feigenbaum constants resemble to similar data for the unimodal maps
r — 1 —alz|® with 1 < ¢ < 12 computed in [Hu & Satija, 1983] where the
exponent ( corresponds to 2v in our case. From our computation, we get the
Feigenbaum constant for v = § is 3.4544613..., which is quite close to the cor-
responding value 3.4544635128... given in Sec. 3 for the homoclinic doubling

bifurcations in the vector fields.

5 Concluding remarks

In this paper, we have shown the existence of cascade of homoclinic doubling
bifurcations from a vector field with a homoclinic orbit of orbit-flip type. We
have verified it by performing numerical simulation for piecewise-linear vector
fields, which is a convenient object for accurate numerical computation be-
cause of its piecewise-linearity. This result is confirmed by deriving a family
of one-dimensional unimodal maps that seems to reflect essential features of
bifurcations in the vector fields when the strong stable eigenvalue has a large
modulus. We have given a rigorous mathematical proof for the existence of an in-
finite sequence for successive doubling bifurcations in the one-dimensional maps
that are interpreted as homoclinic doublings in the corresponding vector fields.
The bifurcation aspects in both vector fields and unimodal maps are viewed via
color diagrams. By comparing these color diagrams as well as the corresponding
Feigenbaum constants, we believe that there exists such a cascade of homoclinic
doublings in vector fields as well, which will give a new bifurcation scenario to
chaotic dynamics.

Importance of studying the accumulation of homoclinic doublings is that
it can provide new information about the boundary of chaotic dynamics in
the parameter space. It has been known as in Theorem 2.3 that a homoclinic
doubling bifurcation accompanies a period doubling bifurcation for periodic or-
bits that bifurcate from the homoclinic orbits ([Chow et al., 1990], [Kisaka et
al., 1993a, 1993b], [Sandstede, 1993]). See also Figs. 7 and 8 for the locus of
the first few bifurcation curves from 1-homoclinic orbits. Similar bifurcation
structure repeatedly appear for higher homoclinic orbits, and the period dou-
bling bifurcation curves seem converging to a certain curve in the parameter
space. Furthermore the Feigenbaum constant for the period doubling bifurca-
tions along a line transverse to the period doubling bifurcation curves gives the
standard value 4.6692... according to our numerical simulation both for the PL
vector fields and to the reduced one-dimensional maps.

— Figure 7 comes here —
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— Figure 8 comes here —

The accumulation of period doubling bifurcations give one of the most typ-
ical routes to chaos which is a codimension one phenomenon, namely, one can
observe it in a one-parameter family. On the other hand, a homoclinic orbit is
considered to be related with the sudden disappearance of chaotic attractor as
known by the name “crisis”. The accumulation of homoclinic doublings thus
corresponds to a corner point in the parameter space where the fate of chaotic
attractors drastically change.

In this respect, it is quite interesting to notice that the Feigenbaum constant
for the homoclinic doubling bifurcations is different from that for the usual pe-
riod doublings; the latter gives the standard value 4.6692..., whereas the former
depends on the eigenvalues at an equilibrium point to which the homoclinic
orbits are asymptotic, and the value is in general different from the standard
one. This may provide a hint for a better understanding of chaotic dynamics
in vector fields rather than unimodal maps or diffeomorphisms, because the
homoclinic doubling bifurcation is a unique bifurcation phenomenon in vector
fields.

Another interesting feature of the bifurcations studied in this paper is a
difference between two kinds of codimension two homoclinic orbits, namely, the
orbit-flip and the inclination-flip. Our numerical results show that an orbit-flip
gives rise to successive homoclinic doublings through inclination-flips, but not
vise versa, namely, none of the inclination-flip homoclinic orbits does not seem
to create another orbit-flip. This may be due to the specific form of normal
form equations, but could be the case in a more general situation. Note that
bifurcations from orbit-flip and inclination-flip homoclinic orbits are fairly simi-
lar, because both of them act as changing twisting nature of nearby trajectories
around the homoclinic orbit. This similarity has been partly explained by Nii
[1995] from a topological point of view, and will further be investigated in our
forthcoming papers.

We shall now briefly discuss about the possibility of giving a rigorous math-
ematical proof for the existence of the cascade of homoclinic doubling bifurca-
tions. Needless to say, the main difficulty lies in the fact that this bifurcation
is totally of global nature and hence one needs to trace infinitely many dou-
bling bifurcations all the way in the parameter space, which is of course a very
hard task in general. For one-dimensional maps, we can make use of the knead-
ing theory which enables us to keep track of bifurcations in a combinatorial
way. Therefore, one way of showing the existence of the cascade in vector fields
may be to relate the bifurcations in one-dimensional maps with the vector field
counterparts in a more rigorous manner. This will be a type of singular pertur-
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bation argument from a one-dimensional map in singular limit to a perturbed
two-dimensional return map.

A similar but slightly easier problem has been studied in [Kokubu & Naudot,
1995] where it is shown that there exist infinitely many inclination-flip homo-
clinic orbits in an unfolding of a codimension three homoclinic orbit which is
called an inclination-flip homoclinic orbit of weak type. The motivation again
lies in tracing global bifurcations involving infinitely many codimension two ho-
moclinic orbits such as inclination-flips, and the main idea in [Kokubu & Nau-
dot, 1995] was to reduce such a global bifurcation problem into a local problem
by focusing on a more degenerate situation where the global bifurcations shrink
down to local bifurcations occurring in an unfolding of the degenerate homo-
clinic orbit. This kind of ideas may also be useful for our problem in this paper
and will also be exploited furthermore in the subsequent papers.

In this paper, we have mainly focused upon successive homoclinic doubling
bifurcations, but as we see in the figures in Sec. 4, we can find various kind of
other homoclinic bifurcations. We have also observed more complicated bifurca-
tions when we go to the situation where the ratio of eigenvalues v = i— becomes

Ass

smaller than % or u = 42 smaller than 1. It will be an interesting problem to

study how the situation cﬂhanges from the case where we only have a homoclinic
doubling bifurcation ([Kisaka et al., 1993a, 1993b], [Sandstede, 1993]) to the case
where there exists a chaotic dynamics and accompanying complicated bifurca-
tions that lead to chaos ([Homburg et al., 1994], [Sandstede, 1993], [Naudot,

1995]). We also leave this problem for our future publications.
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Captions

Table 1 The values of (v, o) at the k-th inclination-flip homoclinic bifurcation
points (IF;) for k = 2,3,...,9, from which a 2*!-homoclinic orbit bifur-
cates.

Table 2 Successive homoclinic doublings and the Feigenbaum constant. For
each value of v, the parameter values z, for inclination-flip 2*-homoclinic
orbits (k = 1,2,...10) are shown, together with approximate values of the
corresponding Feigenbaum constant 6 computed from those data.

Figure 1 Homoclinic doubling bifurcation diagram.
Figure 2 Continuous piecewise-linear vector field and a homoclinic orbit.

Figure 3 Color-coded homoclinic bifurcation diagram for three-dimensional
continuous piecewise-linear vector field with \; = —0.2, Ay = —0.4, A3 =
0.3,w = 1.0. (a) Horizontal axis: 0.0 > 5y > —0.26, Vertical axis:
0.0 < o < 0.3, Maxcount = 20. (b) Enlargement of (a). Horizontal axis:
0.0 > v > —0.26, Vertical axis: 0.1 > Hy(y) — 0 > 0.0, where 0 = Hy(7)
is a function which gives the 1-homoclinic bifurcation curve Hj in (a).
Maxcount = 20. (c) Enlargement of (b). Horizontal axis: 0.0 > v >
—0.16, Vertical axis: 0.01 > Hs(y)—o > 0.0, where 0 = H,(7) is a function
which gives the 2-homoclinic bifurcation curve Hs in (b). Maxcount = 20.
(d) Enlargement of (c). Horizontal axis: 0.0 > v > —0.08, Vertical axis:
0.001 > Hy(y) — 0 > 0.0, where 0 = Hy(7) is a function which gives
the 4-homoclinic bifurcation curve Hy in (c). Maxcount = 20. (e) Suc-
cessive enlargements of a line segment in (d) with v = —0.074 fixed,
Maxcount = 128. Left: 0.1537311 < ¢ < 0.1537811, that corresponds to
0.00010 > Hy(y) — ¢ > 0.00015. Middle: 0.1537433 < ¢ < 0.1537437.
Right:0.1537433998075 < o < 0.1537433998125.

Figure 4 Correspondence between bifurcation sets for vector fields and those
for their reduced one-dimensional unimodal maps. The shaded region ex-
hibits the set of parameter values whose color code is 3.
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Figure 5 Color-coded bifurcation diagram for the one-dimensional map f(z) =
(2 —a — b)z” + b where v = 0.8. (a) (a,b)-parameter space: 0.0 <
a < 2.0,0.0 <b < 5.0, Maxcount = 30. (b) (y., z.)-parameter space:
0.0 > y. > —0.1, 0.0 < z, < 2.0, Maxcount = 30. (c) Successive ho-
moclinic doubling bifurcations. Horizontal axis: —9.5 < log;,v. < 0.0,
Vertical axis: logy by > logo(by — z.) > —8.0, where b, = 1.151739 and
log,, by = 0.061354, Maxcount = 1024.

Figure 6 The graph of (approximate) Feigenbaum constants as a function of v.

Figure 7 (Above) Bifurcation curves in the (o,v)-space for the PL vector
fields; the homoclinic bifurcation curves for 1-homoclinic orbits (1-Hom)
and 2-homoclinic orbits (2-Hom), the period doubling bifurcation curve
(1-PD) are drawn. (Below) Its enlargement in the parallelogram with the
vertices (01,v1) = (0.2, —0.07), (0.13, —0.07), (0.07,-0.22), (0.0,—0.22).

Figure 8 (Above) Similar bifurcation curves in (., y.)-space for the reduced
one-dimensional maps; the homoclinic bifurcation curves for 1-homoclinic
orbits (1-Hom) and 2-homoclinic orbits (2-Hom), the period doubling bi-
furcation curves for 1-periodic orbits (1-PD) and 2-periodic orbits (2-PD),
and the saddle-node bifurcation curve for 2-periodic orbits (2-SN) are
drawn. (Below) Its enlargement.
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v |

g

IF, || -0.1143684417184471594039919 | 0.1245967855709927436457872
IF3 || -0.0893076296728837061318133 | 0.1425234287814261493886995
IF, || -0.0819176192959480895116969 | 0.1478886683320668581770555
IF5 || -0.0797578108867008472064297 | 0.1494684661147538746776917
IF¢ || -0.0791306693168575817679145 | 0.1499283106523416285672450
IF7 || -0.0789489603959497262592244 | 0.1500616439415316034318965
IFg || -0.0788963453873744650394922 | 0.1501002597020075111169766
IFy || -0.0788811132005183641082790 | 0.1501114397607286116966235

Table 1:
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[»=10501]v=060]v=070]r=080]r=090]v=1.00]

k=1 ] 0.251694 | 0.426827 | 0.600774 | 0.756593 | 0.889525 | 0.999999
k= 0.287954 | 0.593588 | 0.847700 | 1.047174 | 1.198263 | 1.310702
k= 0.289910 | 0.646458 | 0.920318 | 1.125175 | 1.274332 | 1.381547
k=4 | 0.290711 | 0.663550 | 0.940856 | 1.145058 | 1.292127 | 1.396945
k= 0.291060 | 0.669037 | 0.946594 | 1.150062 | 1.296239 | 1.400253
k=6 || 0.291214 | 0.670792 | 0.948191 | 1.151317 | 1.297187 | 1.400961
k=7 ] 0.291281 | 0.671353 | 0.948635 | 1.151632 | 1.297405 | 1.401113
k=38 || 0.291311 | 0.671532 | 0.948758 | 1.151711 | 1.297455 | 1.401146
k= 0.291325 | 0.671590 | 0.948792 | 1.151730 | 1.297467 | 1.401153
k=10 || 0.291330 | 0.671608 | 0.948802 | 1.151735 | 1.297469 | 1.401154
| 6 | 2.259316 | 3.131465 | 3.598464 | 3.990066 | 4.342408 | 4.669195 |

Table 2:
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