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1 Introduction

Let X be a vector field with a homoclinic orbit to a saddle equilibrium point.
Shil’'nikov [Shil68] showed in a very general context that an open set of small
perturbations of X has a periodic orbit with a very high period. As the size
of the perturbation shrinks to 0 the Hausdorff distance between the periodic
orbit and the homoclinic loop approaches 0 and the period of the periodic
orbit approaches infinity. This phenomenon is often referred to as an infi-
nite period bifurcation or a homoclinic bifurcation. Recently there has been



a considerable interest in understanding the dynamics near degenerate ho-
moclinic orbits, typically occuring in two parameter families. Suppose X is
a vector field in IR® having a saddle point at O and a homoclinic orbit T'
asymptotic to O. Assume that the linearization of X at O has three real
eigenvalues A% A“ A““ satisfying \* < 0 < A* < A“*. A degeneracy of I,
known as inclination-flip or critical twist, can be characterized as follows.
Generically T'|rIR® has a continuous subbundle with one dimensional fibers
which is invariant under the linearization of the flow of X along I' and whose
fiber at O is tangent the eigendirection of A**. This bundle, which we refer
to as the strong unstable bundle, can be orientable or nonorientable. The cor-
responding homoclinic orbits are called nontwisted and twisted respectively.
A point of transition between the two cases is called an inclination-flip point
or a critical twist point. The analysis of the dynamics in the unfoldings of an
inclination-flip point is the subject of this article.

Inclination-flip bifurcation, together with two other codimension two prob-
lems was studied by Yanagida [Yan87]. The two other problems Yanagida
considered were the resonant bifurcation, occuring when the magnitudes of
the principal eigenvalues are equal (—A* = A"), and the orbit-flip bifurca-
tion, taking place when the homoclinic orbit I' is tangent at O to the strong
unstable direction. The results of Yanagida asserted that each of the three
bifurcations led to the occurrence of double homoclinic orbits, that is ho-
moclinic orbits consisting of two loops near I'. The article of Yanagida was
followed by a number of publications on this subject. In particular the work
of Chow, Deng and Fiedler [CDF90] and Kisaka, Kokubu and Oka [KKO93a]
led to a complete understanding of the resonant bifurcation. Further work
has also been done on the inclination-flip bifurcation. Dumortier, Kokubu
and Oka [DKO92] studied the persistence condition for inclination-flip ho-
moclinic orbits in terms of Melnikov-like integrals. Kisaka, Kokubu and
Oka [KKO93b| carried out a rigorous analysis of the homoclinic doubling
for an inclination-flip homoclinic orbit in the case when A" < —A% < 2\".
Deng [Deng91] presented a scenario suggesting that a perturbation of an
inclination-flip point would lead to the occurrence of Smale horseshoes. The
work of Deng is one of the main motivations of our research and will be dis-
cussed in more detail in the sequel. Using Lin’s method Sandstede [San93]
has recently shown the existence of shift dynamics and n-homoclinic orbits
for arbitrary n in the unfolding of an inclination-flip point in the case when
20" > A" and —A* > 2A\“. Sandstede has also studied the orbit-flip bifurca-



tion finding similar phenomena.

Inclination-flip bifurcations have also been studied in the context of Z,
symmetric vector fields. Rychlik [Rych90] considers the inclination-flip bifur-
cation for a pair of symmetry related homoclinic orbits. He assumes that the
linearization of X at O has the eigenvalue configuration A** < \* < 0 < A*
and the Z, action flips the principal unstable direction and fixes the prin-
cipal stable direction. He shows that arbitrarily small perturbations of this
configuration have a geometric Lorenz attractor. Aronson, Golubitsky and
Krupa [AGK91] and later Aronson, van Gils and Krupa [AvGK92] studied
inclination-flip bifurcations of homoclinic orbits invariant under the Z, (re-
flection) symmetry. They showed that in the unfoldings of such bifurcations
there exist symmetry related pairs of homoclinic orbits tangent to the Z,
symmetry plane. Homburg [Hom93] proved that unfoldings of this type of
homoclinic orbits lead to occurrence of Z, symmetric horseshoes.

The work of Deng [Deng91] and Homburg [Hom93] provided the main
motivation for this research. Deng conjectured that a suitable perturbation
of a flow at an inclination-flip point would have a Smale horseshoe. He sug-
gested that by following a circular path around the inclination-flip point one
would observe the disappearence of all the periodic orbits of the horseshoe
in an infinite period bifurcation. As a result of this bifurcation sequence
only one periodic orbit would remain. Deng studied a one parameter family
of planar maps modelling the return maps of a transverse section near the
homoclinic orbit I and analyzed the bifurcation sequence occuring for these
maps. He showed the occurrence of a number of bifurcations other than the
ones associated with the disappearence of a periodic orbit through an infinite
period bifurcation. Homburg [Hom93] found horseshoes and similar bifurca-
tion sequences in the unfoldings of a codimension 1 homoclinic orbit under
the assumption of a global property for the vector field X. He assumed that,
simultaneously with I', there exists a generalized homoclinic orbit, that is an
orbit in the unstable manifold of the saddle O which is forward asymptotic to
I'U{O}. It turns out that generalized homoclinic orbits naturally occur near
inclination-flip points. In his analysis Homburg took advantage of the exis-
tence of a strong invariant foliation to reduce the dimension of the dynamics
and consequently obtained a more complete description of the bifurcation
sequence than Deng [Deng91]. He was, in particular, able to specify the or-
der of the infinite period bifurcations of periodic orbits and prove that the
bifurcation set had Lebesgue measure 0.



This article achieves the following two objectives. We prove that, pro-
vided that A“* > 2A* and —A° > 2\“ and a number of nondegeneracy as-
sumptions hold, then in every parameter neighborhood of an inclination-flip
point there are parameter values for which the return map defined on a cross
section of the flow near the homoclinic orbit I' has a horseshoe. The second
objective we achieve is proving that the bifurcation sequence conjectured by
Deng occurs in an arbitratrily small neighborhood of the inclination-flip point
and can be analyzed using the methods of Homburg. Sandstede [San93] has
obtained similar results for the orbit-flip case using the method of Lin.

Since our analysis is only valid in a thin wedge of the parameter space
many questions about the inclination-flip bifurcation remain unanswered. It
is remarkable that the bifurcation sequence we analyze does not involve the
occurrence of homoclinic tangencies and the related chaotic dynamics. It is,
however, quite clear from the form of the return map around the homoclinic
orbit that other bifurcation scenarios, leading to annihilation of a horseshoe,
possibly involving chaotic dynamics, must occur. Another way which could
lead to interesting bifurcation sequences would be to violate the eigenvalue
conditions we impose. These issues will be discussed in more detail in Section
6.

The article is organized as follows. In Section 2 we give a rigorous defini-
tion of an inclination-flip point and discuss the form of generic unfoldings. At
the end of the section we state the main theorems of the article. In Section 3
we show the existence of topological horseshoes near an inclination-flip point.
Section 4 is devoted to the proof of the existence of an unstable invariant
foliation on a conveniently chosen subset of a cross section transverse to the
flow. In Section 5 we use the results of Section 4 to obtain a reduction of the
dynamics of the return map defined on a two dimensional transverse section
of the flow to the dynamics of a multivalued map of an interval. We analyze
the dynamics and bifurcations of the relevant multivalued maps. The analy-
sis in Section 5 provides the proof of the main theorems stated in Section 2.
We conclude the article in Section 6 where we present some conjectures on
the type of phenomena that could occur outside the region of validity of our
analysis.

The authors acknowledge fruitful conversations with V.S. Afraimovich,
H. Broer, B. Deng, B. Fiedler, S. van Gils, H. Oka, B. Sandstede and F.
Takens. HK was supported in part by the Kyoto University Foundation.



2 Inclination-flip homoclinic orbit

Let X, be a smooth vector field on IR® with a hyperbolic equilibrium point O.
Assume the linearization DX((O) has real eigenvalues A%, \* A\** satisfying
A? <0 < A" < A", and hence the vector field has a one-dimensional sta-
ble manifold W#(O) and a two-dimensional unstable manifold W*(O) at O.
Furthermore there exists a two-dimensional invariant manifold whose tangent
space at O is spanned by the eigenvectors associated with the eigenvalues A*
and A\". See [HPST77] for the existence of such an invariant manifold. Clearly
it contains the stable manifold by definition. Here we call it the extended sta-
ble manifold and denote it by W*(0O). Note that such an invariant manifold
is not unique but has the unique tangent space at any point on the stable
manifold.

We moreover assume that the vector field X has a homoclinic orbit I'
based at O, namely, I' C W*(O) N W*(O). Clearly I' is contained in the
intersection of W**(0) and W*"(O). Let h(t) be a homoclinic solution of I,
namely, tl}inooh(t) =0 and I' = {h(t)|t € R}.

Definition 1 The homoclinic orbit I is called an inclination-flip homoclinic
orbit if it satisfies the following three conditions:

(CT) W*(O) and W**(0O) are tangent along T’

(NR) X" # X

(PR) lim |h(t)e "t < 400, lim |h(t)e | < 4oc0.

t——o0 t——+oo

Remark 1 The condition (CT) makes sense since the extended stable man-
ifold W**(O) has the well-defined tangent space along the homoclinic orbit
['. This definition of the inclination-flip homoclinic orbit is equivalent to the
one explained in the previous section.

In this article we assume the following two eigenvalue conditions.
(EV1) Au% > 2)"
(EV2) —)\% > 2)%



Under the condition (EV1) the extended stable manifold W**(O) is of at least
C*-class (see [HPST77]), and hence the second order derivative of the W*(O)
is well defined. Therefore the inclination-flip homoclinic orbit generically
satisfies that

(QT) the unstable manifold W*(O) and the extended stable manifold W*(O)

have the quadratic tangency along the homoclinic orbit I'.

Throughout this paper an inclination-flip homoclinic orbit is always assumed
to satisfy the genericity condition (QT).

Consider a smooth family of vector fields X,, on IR® unfolding the vec-
tor field X, possessing the inclination-flip homoclinic orbit I'. Our goal is
to study the dynamics in the family near the homoclinic orbit. For this
purpose, we first describe the return map along the homoclinic orbit and
its perturbation. The return map is constructed by the composition of two
successive mappings between cross sections as follows: Take the local coor-
dinates (x,y, 2) near the origin O in which the vector field X, is uniformly
C3-linearized as 9 9 9

X, = )\Z;v% + /\Z“ya—y + )x}jza.
This uniform smooth linearization assumption, which is guaranteed under
a generic assumption for the family (see [Rych90]), is not necessary but it
simplifies the arguments in the sequel. We consider the planes

%= {o=1Jyl+ | < 1},
S ={le|+lyl < 1,2 = 1}.

Rescaling the variables we may assume that these planes are contained in
the neighborhood where the linearization of the vector field is valid and are
transverse to the homoclinic orbit T'.

It is easy to obtain the following forms of successive flow-defined map-
pings:

A Auu

i E1 — EU; (17972) = (Zi)‘_uvyziA_u7 1)7 (1)

Gu: Xo— Zy (XY 1) = (1, G(X, Y1), (2)
where G(X,Y; u) = (¢4(X,Y; ), d*(X,Y;p)) is a diffeomorphism satisfying

9

. _ a 1 . _ a 1 .
G(0,0,0) =0, —-¢*(0,0;0) =0, 55¢*(0,0;0) # 0.



Here the first equality corresponds to the existence of the homoclinic orbit
[' at i = 0, the second equality to the inclination-flip condition and the last
inequality expresses the quadratic tangency condition (QT). The resulting
return map is thus obtained by the composition of these two mappings as
follows (see Figure 1): f, : ¥; — X is simply given by

fu(yvz) = (Gu o I')(y, 2).

In what follows we sometimes suppress the parameter dependence in the no-

]

Figure 1: The return map to a section ¥; at an inclination-flip point.



tation if there is no confusion. We also use the following abbreviations. The
derivatives of the functions ¢'(X,Y’; u) (z = 1,2) with respect to (X, Y ug, o)
are denoted by using the corresponding suffices. For instance, gi(X Y )
stands for a—ng(X,Y; ). Moreover, gilf(it stands for 33—2”91(0, 0;0), the value
of the corresponding derivative at (X,Y’; 1) = (0,0;0).

After the perturbation by u, the persistence condition for the inclination-
flip homoclinic orbits is given by the equations

G(0,Y;) =0 and  gy(0,Y;pu) =0.

The condition ¢i’ = 0 and the fact that G is a diffeomorphism imply that
g2® # 0. By the implicit function theorem there exists Y = Y, (u) satisfying
g%(0,Y,(n); 1) = 0. We express the persistence condition of the inclination-
flip homoclinic orbit by the equations:

g (0,Ya(p); ) =0 and gy (0,Yi(p); ) = 0.

If the family X, generically unfolds the inclination-flip homoclinic orbit I’
near x4 = 0, then the above equalities, treated as a function of u, have to
attain a regular value at p = 0, namely,

d g0, Yu(p); ) \| _
rank [_ o ( 9y (0, Ya(p); 1) )] =2

dp

The converse is also true, and hence we have shown the following Proposition.

Proposition 1 The family of vector fields X, unfolds the inclination-flip
homoclinic orbit I' generically, if and only if rankM = 2, where

20
e [ Mu M) _ (0 /T g,
My Ma Qxlfuy g 911/2
We assume X, is a generic two-parameter unfolding of X, and we make
the change of parameters:

gy (0, Yi(1); 1)
g%(O,Y*(u);u)> ' ®)

In order to study the dynamics of the return map f,, we look at the
rectangle R, = [0, p] x [—1,1] contained in the cross section X,. We will

v=(n,r) = (91(0,1@(#);#),
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later choose p in such a way that the orbits which stay in a neighborhood
of the homoclinic orbit I" have to pass through the rectangle, otherwise they
eventually go far from I'. We now consider the preimage C, = F~Y(R,) of R,
under F' and the image P, = G,(R,) of R, under G,,. Clearly the way these
sets intersect determines the recurrent dynamics of f,. A straightforward
computation shows that C, = F~*(R,) C X is a cusp-shaped region whose
boundary consists of two side curves

AuU

by = {(:EZA_U,Z”O <z<t,= p*%}

and the top segment

Auu

See Figure 2.

z Y
by (R
c, R,

P

Figure 2: The cusp-shaped region C), and the rectangle R,.

Next we study the region P, = G,(R,). A segment given by {£} x [—1,1]
in R, is mapped by G, to a curve pe = {G,(&,Y,1)] —1 <Y < 1}. Letting

y= g'(&,Y;p)
2= g*(&Y;n)

and eliminating Y from these expressions, we obtain

y = (€ 1)

More precisely, we consider the equation
(=g Y5n)

9



and solve it for Y using the implicit function theorem (recall that g3’ # 0).
We obtain the function

Y =Y(GE p). (4)

satisfying
(&Y (¢ 6 p);m) =¢ and Y(0;0,0) =0.

It follows that
-1

a%y(g; & 1) = g (&Y (G 6 ) )

from which we obtain

0 1

—Y(0:0,0) = —=

ac 000 =g

and 52 20
- 9yy
Y(0: - _ )
ac? " (%00 =~

Moreover, from the definition of Y, (x), we also have

Yi(p) = Y(0;0, ).

The function ¢(z;¢&, 1) is now defined by

o2&, 1) = g" (&Y (256, 1); ), (5)
and therefore it satisfies
©(0;0, 1) = g"(0,Y(0;0, ); 1) = g*(0, Ya); 1) = 1. (6)

Similarly we obtain

—-¢(0;0, ) = =V
5: 0K = 0 Vo)) =
and
2 911/UY
—(0:0,0) = .
82290( ¥ ) (9%0)2

(0;0,0) at the bifurcation point
(0;0,0) does not, hence defining

In particular, the first order derivative %gp
: . . 32
vanishes whereas the second derivative %gp

10



a parabola denoted by pe. Note that the unstable manifold W*(O) intersects
the cross section X along the parabola p, given by y = ¢(z;0, ). The set
of the parabolas p¢ forms a parabola-like region P, = G/,(R,) C 2.

The mutual position of the cusp €, and the region P, at u = 0 depends
on the Jacobian matrix

gx g;zfo

10 10
DG(0,0;0) = ( 95 % )

and the second derivative ¢i% as in Figure 3. In fact, since the flow-
induced map from ¥, to X; is orientation-preserving and since gi = 0 from
inclination-flip condition, we always have det DG(0,0;0) = ¢gi0¢2® < 0. If
g% g% > 0, then the unstable manifold is on the outside boundary of the
parabola region P,, while it is on the inside boundary if g;%-g% < 0. Ac-
cording to [Deng 1991], the former case is called the inward twist case and
the latter is called the outward twist case (see Figure 3).

(a) inward twist (b) outward twist

Figure 3: The regions C, and P, for the inward and outward twist.

In what follows we assume the parameter transformation (3) has been
carried out, that is the considered objects depend on the parameters (v, v2).
We also assume that g3 > 0. The other case is similarly treated.

We now state the two main theorems of the article.

Theorem 1 Consider a two parameter family of vector fields X, having an
inclination-flip bifurcation point at v = 0 corresponding to the inward twist

11



case. Then there exist functions vy (v3) < 0 < v (v2), a neighborhood U of
T and € > 0 such that for each —e < vp < 0 the following statements hold.

(i) When 0 < vy < vy (v2) the nonwandering set in U is the union of the
singularity at 0 and a suspended horseshoe, namely the Poincaré map
along T' possesses a horseshoe.

(ii) As vy decreases from 0 to vy (1s), all the orbits of the suspended horse-
shoe disappear in a bifurcation connecting to the origin O. The bifur-
cation set is the closure of the parameter set for which there exists a
homoclinic orbit in U. The Lebesque measure of the bifurcation set is

0.

(iii) There exists an ordering of symbolic representations of periodic orbits.
The order of disappearence of periodic orbits in an infinite period bi-
furcation agrees with the symbolic ordering.

(iv) Twisted homoclinic orbits correspond to isolated bifurcation values. Pa-
rameter values where nontwisted homoclinic orbits occur are isolated
on the right and are accumulation points of other bifurcation points on

the left.

Theorem 2 Consider a two parameter family of vector fields X, having an
inclination-flip bifurcation point at v = 0 corresponding to the outward twist
case. Then there exist two curves 0 < vy (1o) < Vi (12), a neighborhood U of
T and € > 0 such that for every —e < v5 < 0 the following statements hold.

(i) When 0 < vy (1) < vy < vi (1») the nonwandering set in U is the union
of the singularity at 0 and a suspended horseshoe.

(ii) As vy decreases from vy (12) to 0 all the orbits of the suspended horseshoe
disappear in a bifurcation connecting to O. The bifurcation set is the
closure of the parameter set for which there exists a homoclinic orbit in
U. The Lebesque measure of the bifurcation set is 0.

(iii) There exists an ordering of symbolic representations of periodic orbits.
The order of disappearence of periodic orbits in an infinite period bi-
furcation agrees with the symbolic ordering.

12



(iv) Twisted homoclinic orbits correspond to isolated bifurcation values. Pa-
rameter values where montwisted homoclinic orbits occur are isolated
on the right and are accumulation points of other bifurcation points on
the left.

3 The existence of horseshoes

In this section we prove the existence of a horseshoe in the return map
fv X1 — Xp given in the previous section. Namely we show the following
theorem:

Theorem 3 Assume
(EV1) A% > 2\,
(EV2) —\* >2)“.
Then for small enough vy, o with
vy < 0,0 < 1y < ki’ (7)
for some k > 0 in the case of inward twist, and with
vy < 0,0 < kyn < vy < kori?, (8)

for some ki, ko > 0, R > 2 in the case of outward tunst, the nonwandering
set of X, in a small neighborhood of I' consists of the singularity O and a
suspended topological horseshoe.

(Proof.) We only prove the inward twist case, the other case is proved in
the same way. Recall g3° > 0. Consider the strip R, = {0 < X < p,|Y| < 1}
in Yy and its inverse image under F),,

C, = {|y| < zAAu_“u,O <z<t,= p_ﬁ_:}
in 3. We shall show that, if the two eigenvalue conditions (EV1) and (EV2)
hold, we can determine p as function of v5 (for small 1), such that, for v,

satisfying (7), the image f,(C,) has a horseshoe shape intersecting C), in two

13



— f,(C1)

z 2

Ly

Figure 4: The position of C, and f,(C,) in %4, for 11 = 0,1, < 0.

strips, see Figure 4. Because f,(Cy \ C,) does not intersect C; \ C,, this
suffices to prove the theorem.

Recall that the image G, ({X = £}) is of the form

{(y,2) € S1ly = p(z;6,v) =i+ vz +az” + O(¢] + |z + [V[*)}  (9)

10
Here a is a function of the parameters, close to (—;’é%‘;—,) for small vy, v5, which
2072

is hence positive from the assumption g, > 0. It follows from (9) that in
a sufficiently small neighborhood of I' and for vy, 5 small enough, there are
positive constants «, 3 such that

G,(R,) C {v + ez 4+ az® <y < v+ vz +a2” + fp}. (10)
Define the map g¢ by g¢(2) = v1 +1v22+ az?+ €. Observe that the quadratic
map ¢ has its top at 2z, = —42. To start the computations, we suppose

vy = 0. We first perform the computations showing that for small enough
positive v, the return map f, has a horseshoe. After these computations we
derive the more precise bound (7).

14



The return map f, has a horseshoe for sufficiently small positive values
of v, if the following two conditions are satisfied:

AuU

plz) < —2", (11)

wu

wlt.) > bi(t) = (t.)>. (12)

This condition is sufficient for the existence of a topological horseshoe, if we
observe the following two points. First, the side boundary of R, given by ¥ =
+1 are mapped by G, to somewhere far to the right of the cusp-shaped region
C,. This is a consequence of the choice of local coordinates in the upper cross
section ¥ in such a way that a sufficiently small neighborhood of I' N ¥
contains the lines Y = 1. This together with the continuous dependence of
the image P, on the parameter v implies the claim for sufficiently small v.
Second, the image P, indeed cuts the cusp C, through horizontally. This is
verified by checking that the preimage of the line {z = z,} by G,, namely a
solution Y = Y (z4; ¢, v) of the equation g*(¢,Y;v) = z,, sits in R, disjoint

from the side boundary. Since %—)C/(O; 0,0) = ﬁ # 0, the last assertion follows
9y

if p and v are chosen sufficiently small. Thus the second condition is also
verified.

The existence conditions (11) and (12) for the topological horseshoe are
computed as follows:

Thus
1/22 —U9 %
— < == , 13
4o +Fp < 20 ) (13)
A _2at v
vep N +ap N > p o, (14)
For vy, p small, by (14), in order to find the horseshoe we must have
QAU, AU/U;
T < — R ie. A" >2\%

15



Write p = vo®. By (13), using A** > 2)\“, we must require R > 2. Further,
(14) gives

Oé(—VQ)_ZZ;?u > (—VQ)%:H + (—Vg)l_RA_/\Su.

So we need
2RAY RX* A?
Y <1_T’ ie. R<—F.
Since also R > 2, we need —\* > 2\" to find the horseshoe.
It remains to find the estimate (7) on how far the existence of the horse-

shoe extends into the vy direction. We find this bound by computing where

wu

the graph of ¢, is tangent to the boundary {y = —zAA_“} of C,. Because

’\/\u: > 2, we may approximate this point by solving ¢,(z) = —2A"A 0 at
z = z,. This gives vy — % ~ 0, from which (7) follows. The upper bound in

(8) is found in a similar way. To establish the lower bound we note that the
topological horseshoe exists as soon as the parabola (v + 22 + az® + Bp, 2)
cuts the y-axis at a negative value of y. Moreover # < 0 in the outward twist
case. The estimate (8) follows. O

Let k,£ > 0 be small constants. In the forthcoming analysis we restrict
our attention to the parameter region

{—e < <0, |n|<|wl™}, (15)
where the constants x and ¢ are determined by the following proposition.

Proposition 2 Fix k > 0. There exists ¢ > 0 such that if v is in the

parameter region defined by (15), then C, N P, is the union of two disjoint

regions Hy and Hy (Hy may be empty). Moreover there exists a constant
C > 0, independent of v and Kk such that

9y (6, Y50)| = Cll,  (£,Y) € GJH(C,).
(Proof.)  The equation y = ¢(z;&,v) can be written in the form

az® + vz + o(vy + 2%) = 0.

It follows that there are two solutions for z; z = o(1) and z = —vs + o(vs),
which proves the first two assertions. To prove the estimate on |g{-(€,Y, ;)|

16



we note that from the definition of ¢ (see the equation (5)) it follows that
0 Op
ey (GEV) - ar(§Y5v) = 26 Y5v).

The assertion follows since ‘%f’ = |vo| + o(12). O

Let R be the constant introduced in Theorem 3. Let P denote the pa-
rameter region defined by (15) with (k,¢) chosen so that 0 < kK < R — 2 and
so that Proposition 2 holds.

Remark 2 Note that for v € P, PN C; C C,. It follows that all the local
recurrent dynamics of f, takes place in C),. In other words, to understand
the recurrent structure of the dynamics of f,|¢, it suffices to consider f,|c, .

Note that the topological horseshoe exists for some values of v € P but its
region of existence is not confined to P. In the sequel we analyze the structure
of the dynamics of f,|C), for v € P, concentrating on the bifurcation sequence
leading to the annihilation of the horseshoe. Our methods apply to a larger
parameter region, but we are at this point not able to give a precise estimate
of its size and can only speculate what happens at its boundary.

Showing that the topological horseshoe we found in Theorem 3 is a true
horseshoe, namely, proving the hyperbolicity of the invariant sets of f,|c,
is more difficult, because the angle between the expanding and contracting
directions at the points of the invariant sets approaches 0 as vy — 0. To
remedy this fact we introduce a new cross section

N5 =A{z =4yl + 2] <1},
and decompose the local map F' into two parts:

Ss: ¥ — X5 (Ly,2)— (5,5¥y,5%2),

Fs:%5 = Xo; (6,y,2) — (52_%,@2_&#, 1).
Instead of f, : C, — C, we consider the return map f, : C,5 — C,; where
C,s = F;*(R,). The expanding and contracting directions of the invariant
set of f,|C, s are almost orthogonal. In the next section we prove that f,|C, s
has a strong unstable foliation and that the distance between the leaves of
the foliation is strongly contracted when f, is applied. These two facts imply,
in particular, the hyperbolicity of the horseshoe found in Theorem 3.

17



4 Existence of an invariant foliation

In this section we prove the existence of an invariant foliation on the cusp
C, 5. Using this foliation we can reduce the study of the return map f to the
analysis of a one-dimensional multivalued map.

Theorem 4 Let R be the constant introduced in the proof of Theorem 3. Let
D be such that R and D satisfy

U

A
2<R<—¥, maX{Xu

A® —2X°
_ )\uu’ Nuu

}<D<R.

Let o = 252~ Then, for p = |w|?, § = |n|P and v € P there exists a

foliation F* on the cusp C, ;5 satisfying the following properties.
(A) F* is invariant for f in the following sense. If | is a leaf of F" then
the connected components of f(I) N C, ;s are leaves of F*.

(B) F*“ depends C1*t*-smoothly on the base points and on the parameter vy.
The dependence on vy is continuous. The leaves of F* are at least C*
smooth.

(C) f contracts distances between the leaves of F* and expands distances
along the leaves of F*. More precisely there exists n > 1 such that

1. if f(l1) and f(l3) are in the same connected component of f(C,5)N
C,.s then dist(f(l1), f(l2)) < n~t-dist(ly, l).

2.ifx, y € Ll and f(x), f(y) € C,5, then dist(f(z), f(y)) > 7 -
dist(z, y).

The remainder of this section is devoted to proving Theorem 4. The proof
is given using the graph transformation technique. We begin by defining the
suitable graph transformation. Let Cy be the Banach space of continuous
vector fields on C), 5 of the form (1, v(z)) equipped with the supremum norm
||v||. We identify this space with the space of continuous functions on C,, .

We write D f(p) as
’ Dt = [ A) B
fo) = ( C(p) D(p) )

Let vy be a fixed function such that ||vy|| < 1 and the following conditions

hold.
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. o SsoG)~ 1 "
() w(p) = 6 BHEEDLEL for p € (S50 G) (Wi (0) N o);

(i) v(f(p)) = SEEFE2L  for pet.

We define the graph transformation as follows (compare [Rob89]).

P(0)(p) = { it P € Cpo\ [(Cpa)

ClLD@wlg) . _ o :
A By 9=7"'(p) with p € f(Cz).

Note that for a general v, ['v is not necessarily continuous as a function of
p. Therefore we restrict ourselves to the subspace C|, of Cy consisting of the
functions v with ||v]| < 1 and satisfying the condition:

C(p) + D(p)vo(p)
A(p) + B(p)vo(p)

We will show that I'(Cjy) C Cj. To prove this property we observe that I' can
be written as a composition of two transformations, one induced by Fj and
the other one by Hs = S5 0 G. We now define the transformation & = ¢,
carrying vector fields of the form (1,v) on C,; to vector fields of the form
(w,1) on R,,.

o(f(p)) = for pet.

(@0)(p) 0 for p=(0,Y),
UVP) = Fla+Fi(@vle -1

Frg ey 4= L5 (p) forp#(0,Y).
We have the following lemma.

Lemma 1 Ifv € C, then (®v)(p) is continuous. If moreover v € C1To
then (®v)(p) € C1** and % (O,Y) 0.

(Proof.) A straightforward computation shows that

AS
o _X1+a
)\u 5(1 _

WFNXY)
o(F; (V)

Pu(X,Y) =

Recall that X < p, p = || and § = |1n|”. Hence, by the assumption
R< D, X <. O
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We now prove a technical lemma which will be used in verifying a number
of inequalities required for the proof of the Theorem 4. We write D f~(p) in
the following form:

- (A0 B )
o7 =( iy iy )

Lemma 2 Letp e C,5N f(C,s5). Then the expressions:

DGy SO,
| A'(p) |B’(p) | C’'(p) |
D'(p)|” |D'(p)|” |D'(p)

converge to 0 as v, — 0.

(Proof.)  The proof is a straightforward calculation based on the estimate
in Proposition 2 and is left to the reader. O

The following proposition implies the existence of a continuous direction
field on C), 5 which is invariant under f.

Proposition 3 Suppose that (v1,12) € P. Then I'(Cj) C Cj and T' is a
contraction on C;.

(Proof.) The graph transformation I' is a composition of ® and a transfor-
mation induced by the smooth map Hs = S; o G. This and the statement of
Lemma 1 imply that I'(C)) C C|. We now show that I' is a contraction on C;,
(compare ([Moser73]). Let v, 0 € Cj. A straightforward computation shows
that

det D f(q) H o=
(A(g) + B(q)v(9))(A(g) + B(g)9(q)) '

The equality [Df(p)] ' = Df 1(f(p)) implies that

|ITv —T'9|| < sup
Cp,émfil(cpﬁ)

det D f
(A + Bv)(A + BY)

det Df~1
DI

1

=T D)1= B

(16)
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It follows from Lemma 2 that the right hand side of (16) converges to 0 as
vy — 0 independently of v and ©. The proposition follows. O

We now state a lemma which will be useful in the proof of the existence
of a smooth invariant foliation. For proof see [Hen81] or [Hom93].

Lemma 3 Let C°(E, F) be the space of bounded continuous maps E — F,
between two complete metric spaces E and F', equipped with the supremum
norm.

Let CN"*(E,F) C C°(E, F) be the C* maps f: E — F, such that Df is
a-Hélder with Hélder constant N: ||Df(xz) — Df(y)|| < Nz — y||*.

Let Lip,(E,F) C C°(E, F) be the Lipschitz continuous maps f : E — F,
with Lipschitz constant 1: ||f(z) — f(y)|| < ||z — |-

Then the set Cx™*(E, F) N Lip1(E, F) is closed in C°(E, F).

Let N be a constant and « as in the statement of Theorem 4. We define
the space S,y as the space of elements v € Cy which are C'™*, and Duv is
Holder continuous with constant N. Lemma 3 implies that S, y is closed
in Cy. Assume that vy € S, n (vp is the function used in the definition of
the graph transform) and let S}, y be the subspace of S, consisting of the
elements v € C{, whose derivatives satisfy the conditions:

(iii)

(r) =3 (p) for pe Hs(p,Y)

(iv)
ov

Ay, 2)

The proof of part (A) of Theorem 4 is based on the following proposition.

(p) = DH;s(0,Y) ( 2 > for p= H;0,Y).

Proposition 4 There exist N > 0 and v; > 0 such that for (v1,1n) € P the
graph transformation I' maps S|, y into S, y .

(Proof) Let ¥ : IR* = IR and © : IR®> — IR be defined as follows.

A® X1ty
\I;(X,Y,CL)) = __u o \uu o
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and

ag;%'(X7Y) — gg{(Xay) i \I!(X7Y:W)
g (X,Y) = g% (X,)Y) - ¥(X,Y,w)

A straightforward computation shows that

O(X,Y,w)=94§

To(y, 2) = O(H; (v, 2),v(F (v, 2)))- (17)
Let (I'v)’ denote g((;?) Using the above formula we prove that

(Cv) = | =———

00 00 v
————DF;') o Hy" - DH;". 18

(8(X,Y) e Ay ) o P (18)
We first show that ||(I'v)’|| converges to 0 uniformly in v as vo — 0. We
begin by obtaining an estimate for

6(XH,Y) :

00 _ ] 0 gv | 0 x|y
AX,Y)  |o(X,Y) |gb —ok¥] O9(X,Y) |gt —gkV¥

_50.{ 9% oY }

The inequality |X| < p implies that
o

U(X,Y,w) =0(5*X"™) and ————(X,Y,w) = O(67*X*).
( Y ,U)) ( ) an a(ij)( Y 7(})) ( )
. il : e % —
We now estimate the terms XY [gifgﬁc‘l’]’ where x = X or Y.
dg:
0 l g ] _ 8()?,3/) _ g: < dgy _ dgx \Il)
OX,Y) gy —gx¥ gy —9x¥ (v —9x¥)? \O(X,Y) 9(X,Y)

gegx 09
(v —9x¥)? 0(X,Y)

+

Using the inequality |¥| < X < |vz| and Proposition 2, we conclude that

H LC)
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Since ||[DH; || = O(6-37), it follows that

DH;Y| =675 - 0(vy2).

00
0(X,Y)

The inequality _)\2—’\ < D implies that this expression converges to 0 as v, —
0. This way we have estimated the first term in (I'v)’.
To estimate the second term, we observe that

S det DG - 2%

. S«

dw (g — gkw)?

(9_111 B _& 5aX1—|—a
Bw | N/ (0 — A XYw)?

It follows that 22 = O(X'** - 1;?). Moreover

and

w w L STaya L S—ayatl
DFé_lzéi_SX_i_s_1~<cl XYY ¢y-67%X >7

C3 0

where ¢y, ¢ and c3 are almost constant terms. We now have

The conditions R > D and D(%) > 2, together with the preceding com-
putation, imply that ||(T'v)’|| converges to 0 uniformly in v as v, — 0. We
observe that (I'v)'(y, z) consists of terms of the form

0© o
ow 0(X,Y)

Df!

IA

st | 52| [or |- Joai]

= O(X*¥u3?%) < 0(p 15?).

h’(y7 Zy v(y, Z)) ’ l(y7 2, U(y7 Z))7
where h and [ are a-Hdlder as functions of (y, z,w), or
v
k Y, 2, U\Y,2)) - 57—V
2w 5.2

where k is a-Hélder as a function of (y,z,w) and ||k|| < 1. Therefore, for
sufficiently large N, (T'v)'(y,z) is a-Hdlder as a function of (y,z). Hence
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I'(S,n) C Shn- O

(Proof of Theorem 4 .)  (A) Proposition 3 and the Contraction Mapping
Theorem imply that I' has a unique fixed point u € C|. The fixed point u is
a direction field invariant under I'. By integrating u we obtain the required
invariant foliation F*.

(B) Choose v5 and N, so that the assertion of Proposition 4 holds. Let
v € S,y Clearly u = nli_}rr;oF"(v). Proposition 4 and Lemma 3 imply that
u € S, . Hence u is C'**. Tt follows that F* is C'**. Differentiation
along the leaves produces u, hence the leaves are at least C?T<. To prove the
continuous dependence of u on the parameters (11, 2) we modify the defini-
tion of C| to functions depending on (4, 15) and observe that the estimates
similar to the ones obtained in the proof of Proposition 3 hold. To prove
the C1T* dependence on 1, we redo the proof of Proposition 4 for functions
depending on (y,z,v1). The proof is analogous. Note that this method of
proof may fail for the parameter vs.

(C) follows from the fact that the expressions |C'u 4+ D’| and |A + Bu| uni-
formly diverge as v, — 0. This property is the consequence of Lemma 2 via
the following equalities.

|C'u+ D'| =|D'| - ‘1 + gu
D/

B D'
4+ 8l =14 |1+ 5] = | | - B

B/
A ’

5 Multivalued maps

Consider the foliation F* whose existence was proved in Section 4. Let [ be
the intersection of the line {y = 0} in X5 with the cusp shaped region C,, .
It is clear that [ intersects the leaves of F* transversally. Let 7 denote the
projection of the leaves of F* onto I and let m, = 70 f, o 7~!. ;From the
considerations in Section 4 it follows that m, is in general not a well-defined

map. Indeed, there exist leaves [ of F* such that f,(l) N C, s consists of two
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leaves. Clearly m,(7(l)) has two values. In other words 7, is a union of two
maps: 2z — &,(2), which assigns to z the larger value in m,(2) and z — 7,(2)
which assigns to z the smaller value in 7,(z). The domain of 7, is, in general,
only a subinterval of I. We denote this interval by K, (see Figures 5, 6).
Note that , is only defined on (0,¢,]. We extend this definition by requiring
that m,(0) = lii%m,(z).

The goal of this section is to characterize the recurrent dynamics of the
vector field X, near the homoclinic orbit I' and to analyze its bifurcations in
the parameter region mentioned in Theorems 1 and 2. It follows from Remark
2 that this is equivalent to analyzing the recurrent dynamics of f,|C, 5. Note
that each trajectory of 7, remaining in / corresponds to a unique trajectory
of f,|C, s and each trajectory of f, which remains for all positive time in C, 5
corresponds to a trajectory of m,. Consequently Theorems 1 and 2 follow
from the results for 7, which we describe below. Theorem 5 and Proposition
6 have been first formulated and proved by Homburg in [Hom93]. We include
these results for completeness, but only sketch the proofs, referring the reader
to the source for details. We begin with the following proposition.

Proposition 5 The maps &,, n, are C*T* with |n,(2)],1£,(2)] = o(1) with
respect to vo. In the case of inward twist &,(z) < 0 and n,(z) > 0. In the
case of outward twist £,(z) > 0 and 1,(z) < 0.

(Proof.) The statements about the signs of the derivatives follow from the
definition of inward and outward twist and from Proposition 1. The state-
ment about the size of the derivatives follows from Theorem 4. a

Note that I = [0,t,], where ¢, = |1/2|(R’D)%S. It follows from Proposition 5
that in the case of inward twist K, = [a,,t,], where a, = 771(0). In the case
of outward twist K, = [0,b,] (b, = 1(0)). See Figures 5, 6.

We concentrate on the case of inward twist. At the end of the section we
prove a result extending the analysis to the case of outward twist.

Fix v, and let n € IN. Consider the set 77(0). When v; > 0 this
set consists of 2" points. As 14 is varied a point p € 7'(0) varies defin-
ing a curve p(ry). More precisely, let o : {1,---,n} — {&,,n,} and define
p(r1) =o(n)oo(n—1)o---00(1)(0). Suppose at least one element of the
sequence {o(1),---,0(n)} equals n,. Then for v; < 0 and |v;| large enough
p(v1) no longer exists. This is a consequence of the fact that as 1y decreases
the interval K, of definition of 7, shrinks and eventually becomes empty. For
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- (a) v > w1 >0

()11 <0

Figure 5: The map 7, in the inward twist case.
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*-\ (@) v > v >y

(b) v; >11 >0

()1 =0

Figure 6: The map 7, in the outward twist case.
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example 7, (0) does not exist for v; < 0. Assume p(r4) is a curve correspond-
ing to an element of 7}!(0). We now estimate the rate of change of 7, (p(11))
as 11 is being varied.

Lemma 4 There exists a positive constant C' independent of n such that if
p(11) is a curve corresponding to an element of w'(0) then

d

d—ylnu(p(m)) > C.

(Proof.) Fix zo € I and let [, = {(y, h(y))} be a leaf of F* with h(0) = z.

The curve transforms under Fjs to the curve
iXo = {(;L(Y)7Y)}7 XU = F(S(Z()a 0)

It follows from the definition of Fjs that B(Y) is implicitly defined by the
equation
)\'Ll'Ll A'LL'LL A'LL
X=6-[h(6 X FY) >.
Implicit differentiation and the boundedness of g—lz and g—;" for the function

h(y; zp,v) imply that ‘g—;‘l’ becomes arbitrarily small as 5 — 0. The curve
Ss o G, (Ix,) intersects the line y = 0 at the points 7,(z) < &,(20). The

quantity 5537 n,(z0) is obtained by solving the following two equations for
z.

gl(ﬁ(Y),Y7 Z/) =0
92(B(Y),Y, V) = z.

We solve the second equation for Y as a function of z. The remaining equa-
tion is

g (h(Y (2)),Y (2),v) = 0. (19)

The fact that ‘g—i’ — 0 as v, — 0 implies that gl(il(Y(z))

,Y(z),v) can be
written in the following form (see also the equations (6) and (9)).

g (MY (2)),Y (2),v) = v1 + 10z + az® + o(|ta] + |2]* + |v]?).
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It follows that (19) has two solutions z; and z_, with z_ = o(r;). Implicit

differentiation implies

T = (14 o)

—_— = o(v1)).

dVl 1% !
Hence there exist constants 0 < C'_ < Cy and § > 0, independent of z,, such
that

on, _
C-funl ™ < 5 (z0) < Clonl ™. (20)
"
We also have
dZ+ 1
—=—(1 ) 21
= (L4 o) (21)

We choose C' so that g—i(zo) < Cy|vs|™P. Note that we can choose the
constants C'_ and C; so that the estimates (20) and (21) hold independent
of zg.

We now estimate ﬁny(p(ul)). Let o : {1,---,n} — {&,m} be the
sequence defining p(v;). Let p; = o(j)oo(j —1)o---00(l). In particular
pn, = p. Differentiating 7, with respect to vy gives

d _ (977,, (9771/ ‘ d ‘
d—ylnu(p(yl)) - 81/1 (p(Vl)) + G (p(yl)) dylp(yl)'
ﬁp(vl) can be expressed as follows.
d oa(n - j) Lo (n — k)
d—ylp(ul) = ]z_:l ) (Pr—j-1(11)) - E)T(p"_k_l(yl)) ,
Let ,
7TV
r= a5 @)

Theorem 4 implies that r is arbitrarily small provided that v, is small enough.
Hence

d _ " _ r
o P0n) S Culpal Pk r® e r) S ol e g

29



It follows that for small enough v there exists C' > 0, independent of n, such
that P

g, wpln)) > C.

O

Similar arguments as used in the proof of Theorem 3 imply that for every
small enough vy there exists vy (v2) < 0 such that for every v; < vy (1)
K, = 0. Moreover |v; (15)| < O(|v2]®), which implies that (v; (12),12) € P.
In the subsequent analysis we fix 15 and let v; decrease from 0 to vy .

We analyze the non-wandering set and the bifurcation set of 7,. Observe
that 7! is a well-defined map reminiscent of the quadratic map of the in-
terval. We can define symbolic dynamics of 7, ! in the following way. Given
x € I let S(x) be the infinte sequence of the letters U and D such that

_J U it m(z) €& (])
(@_{Difmﬂ@emuy

We consider the well known ordering on the set of sequences. Let o, 7 be
two sequences. Let j be the first integer such that o; # 7;. Then

o< T if { 09, -..,0j—1 contain an even number of U’s, 0; = D and 7, = U,
00, ..., 0j—1 contain an odd number of U’s, 0; = U and 7; = D.
Note that every periodic point of 7, has a well defined symbolic sequence
given by the corresponding sequence of 7, 1. A periodic orbit of period n
has n different symbolic sequences. We will refer to the minimal of these
sequences as the sequence of the periodic orbit. Fix a small 5. Consider a
periodic orbit of m, with a given symbolic sequence. As vy decreases from
0 the leftmost point on the orbit approaches 0. The value of 14 for which
a, is an element of the periodic orbit marks the parameter point for which
the periodic orbit disappears; when 14 further decreases a periodic orbit
with this itinerary no longer exists. We refer to periodic orbits of 7, which
contain 0 as homoclinic orbits. Clearly such periodic orbits correspond to
homoclinic orbits of the vector field and the disappearance of these periodic
orbits correspond to the bifurcations of homoclinic orbits. We hence refer to

them as homoclinic bifurcations. We have the following lemma.
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Lemma 5 Fiz v5 < 0. Let vy, 72 be periodic orbits of m, and let oy, 09
be minimal symbolic sequences corresponding to v; and . Then, as vy de-
creases, vy disappears first in a homoclinic bifurcation if o1 < 05. Moreover,
the homoclinic bifurcations unfold generically, that is a homoclinic orbit with
a given itinerary exists for a unique value of 1.

(Proof.) o1 < oy if and only if the leftmost point of the orbit 7, is left of
the leftmost point of 75. The second statement of the lemma follows from
Lemma 4. O

Remark 3 Homoclinic orbits of 7, whose symbolic sequences contain an
odd number of U’s correspond to twisted homoclinic orbits of the vector
field. Homoclinic orbits of m, whose symbolic sequences contain an even
number of U’s correspond to nontwisted homoclinic orbits of the vector field.

Let J = (1,(£(0)),€2(0)) (J = (n,(0),&(0)) in the case of outward
twist). Note that 7)*(J) N J = 0 for all positive integers m. It follows
that 7*(J) N 7%J = @ for all choices of positive integers (m, k). In other
words J is a wandering interval. Let w, denote the nonwandering set of
m,. It is clear that w, C I\ Ujen (7 (J)). Moreover Proposition 5 implies
that Ujen (2 (J)) is dense in I. Hence w, C cl(Ujen(7?(8J))). Fix v5 and
let vy decrese from 0 to vi (1o). It is not hard to see that for the values
of v such that 0 € Ujen(n?(J)) f, is structurally stable. Moreover, when
0 passes through a point in cl(U;en(7(07))), a trajectory of m, ' with a
certain symbolic sequence ceases to exist. Let

B, ={wn|0ecl(J m(8J))}

jEN

It is clear from the above discussion that B,, is the set for values of 14 for
which f,|C, s undergoes a bifurcation. We have the following theorem.

Theorem 5 Fix vy. Then
(i) B,, equals the closure of the set of homoclinic bifurcations.

(ii) The homoclinic bifurcations corresponding to twisted homoclinic orbits
are 1solated in B,,. The homoclinic bifurcations corresponding to non-
twisted homoclinic orbits are isolated on the left side and are accumu-
lation points of elements of B, from the right side.
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(iii) Let ©4 be a bifurcation point corresponding to a nontwisted homoclinic
orbit. There exists a converging sequence of isolated bifurcation points
o> DE > pF Tl > o> Dy corresponding to twisted homoclinic orbits.

(iv) B,, is the union of a Cantor set and the set of isolated bifurcation values.
The Lebesgue measure of BB,, s 0.

(Proof.) (i) This follows from the definition of 5,,.

(ii) Consider a bifurcation point 2y corresponding to a bifurcation from
a nontwisted homoclinic orbit. For this value 0 is a periodic point of 7,
and the symbolic sequence of the corresponding periodic orbit contains an
even number of U’s. It follows that 0 is the right boundary of an interval
I'" in 7~ 2(J), where n is the period of the periodic orbit. Hence there ex-
ists 71 > 71 where a homoclinic bifurcation takes place where 0 is the left
boundary of I™. Clearly this bifurcation corresponds to a twisted homoclinic
orbit. Moreover 0 is the right boundary of an interval I?® C 72" 2(J). Re-
peating the above procedure we find 22 > 21 at which 0 is the left boundary
of I?", thus obtaining another bifurcation point corresponding to a twisted
homoclinic orbit. Repeating this procedure we obtain the desired sequence
of bifurcations. Note that in this way we account for all possible twisted
homoclinic orbits.

(ii) It follows from the proof of (iii) that the bifurcation points correspond-
ing to twisted homoclinic bifurcations are isolated in B,, and the bifurcation
points corresponding to nontwisted homoclinic orbits are isolated on the left.
Suppose § is a point of nontwisted homoclinic bifurcation and let o be the
symbolic sequence of the corresponding periodic orbit. We write 0 = A,
where A is a finite sequence. Consider the sequences A™U> for 7, 1. Since
o < AmU> it follows that there exist trajectories of 1 having A™U> as
their itineraries. When m converges to infinity these trajectories come arbi-
trarily close to 0. Moreover it is easy to see that every point in [/ is a starting
point of a trajectory converging to p,. It follows that there exist trajectories
of 7, which are backward and forward asymptotic to p, and pass arbitrarily
close to 0. Clearly these trajectories disappear in a sequence of bifurcation
points converging to 7.

(iv) It follows from the proofs of (ii) and (iii) that B,, is the union of a Cantor
set given by the closure of the bifurcation points corresponding to nontwisted
homoclinic orbits and a set of isolated bifurcation points corresponding to
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twisted homoclinic orbits. To prove the assertion that the Lebesgue measure
of B,, is 0 we first observe that the Lebesgue measure of w,, is 0. By Lemma
4, 0 moves through w, with positive speed. The assertion follows. a

We now describe the structure of w, at a point which is not a bifurcation
value. In the statement of the following proposition we refer to a periodic
sequence as even if it contains an even number of U’s.

Proposition 6 Let (v1,12) € P, 11 & B,,. Suppose 7y is a periodic orbit
of f, whose symbolic sequence is the minimal symbolic sequence among even
periodic sequences of existing periodic orbits. Then w, is a hyperbolic basic
set consisting of the closure of the intersections of W*(yy), W*(v) in C,5s
together with a finite set of periodic orbits.

(Proof.) Observe that there are at most finitely many periodic orbits with
symbolic sequences smaller than the one of 7,. Using similar arguments as
in the proof of Theorem 5 we can show that there exist connecting orbits
from v, to every periodic orbit with larger symbolic sequence and connecting
orbits from every periodic orbit to v,. If the symbolic sequence of 4 is smaller
then that of v, then there are no connecting orbits from 4, to periodic orbits
with larger symbolic sequences. The proposition follows. O

We now consider the case of outward twist and show how it can be un-
derstood using the methods developed for the case of inward twist. Fix
vy < 0. It follows from Theorem 3 and the arguments analogous to the ones
used in the proof of Proposition 6 that f, has a hyperbolic horseshoe for
v1 > vy (12) > 0. Let g, be the fixed point of §,. The number v (12) can
be characterized as the value of v; when 7,(g,) = 0. We now describe a
transformation taking the family of multivalued maps 7,, to a family of mul-
tivalued maps satisfying the conditions of Proposition 5 applying to the case
of inward twist and the condition of Lemma 4. Note that these are the only
results required to prove Theorem 5 and Proposition 6. The transformed
family describes all the bifurcations occuring in the original family except
for the last one determined by 7,(g,) = 0.

Proposition 7 Fix vo small and suppose m, s the family of multivalued
maps arising in the case of outward twist, 0 < v; < vy (va). Then there
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exists a family 7,, and a diffeomorphism h : [0,b,] — [0,1] such that m,, =
h=Yo#, oh. The family %,, satisfies the conditions of Proposition 5 applying
to the case of inward twist and the condition of Lemma 4. Forvy € (0,1 (v2))
the set of homoclinic orbits of 7, is the image under h of the set of homoclinic
orbits of m,, .

(Proof.) The diffcomorphism h is obtained by composing the reflection
through the midpoint of [0,b,] with a rescaling (see Figure 7). A straight-
forward computation shows that |7,(2)|,|€,(z)] = o(1) with respect to s,
where 5,, and 7, are the two component mappings of 7,,. Also 5; (z) < 0 and
7,(z) > 0, z € [0,1]. Using similar arguments as in the proof of Lemma 4
one can show that the condition postulated in Lemma 4 is satisfied, that is
there exists a constant C' > 0 such that for every n € IN and every curve
plv1) € 7(0) 2, (p() > C.

We now establish the correspondence between the sets of homoclinic bi-
furcations. Note that h(b,) = 0. Hence, if 7,, has a homoclinic orbit then,
since b, must be its element, the image of this homoclinic orbit is a homo-
clinic orbit of 7,,. If 7,, has a homoclinic orbit then b, must be an element
of the corresponding periodic orbit of m,,. If 14 < v (1») then b, < ¢,, which
implies that this periodic orbit must be homoclinic. O

Corollary 1 [t follows from Proposition 7 that the dynamics and bifurctions
of the famuly m,, in the case of outward twist correspond to the dynamics and
bifurcations of a family 7,, to which the results of Theorem 5 and Proposition
5 apply. Note that the order of the bifurcations of T,, s given in terms of
decreasing vy, just as described in Theorem 5. Here vy must decrease from
vy (1) to 0. Hence, if vy is viewed as increasing for the original family m,,,
then the order of bifurcations is reversed.
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Figure 7: The conjugacy map h.

6 Remarks and conjectures on the dynam-
ics and bifurcations for parameters outside
the region of the existence of the invariant
foliation.

Through most of the article we have assumed the parameters (v, 1) are
in the set P, where we could prove the existence of the invariant foliation
F*. Outside of the parameter region P the non-wandering set of the map f,
may be non hyperbolic and we expect that complicated dynamics will occur.
To see this consider the case of inward twist, fix 1o < 0 and let v, increase
from 0. According to our results for small values of 14 relatively to v, the
return map f, has a horseshoe. When v, is large enough a tangency will
develop between the side of the cusp and G(W}%.(0)) N Xy, see Figure 8. It
is clear that for this value of the parameters the horseshoe can no longer
exist, so somewhere along the parameter path it has been annihilated. The
mechanism of the disappearance of the horseshoe occurs far away from the
singularity and thus is likely to involve phenomena leading to complicated
dynamics, in particular tangencies between stable and unstable manifolds of
periodic orbits and, related to it, occurrence of infinitely many periodic sinks
and Hénon-like attractors. At present there exists no systematic study of
this mechanism of horseshoe annihilation although a considerable amount of
information is available, see [PT93] and the references therein. Hence there
are two horseshoe annihilation mechanisms present, one which has been an-
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(a) 1, =0 (b) 4 > 0 and beyond the region
of existence of the horseehoe

Figure 8: Tangency between C, and G(W},.(0)) N .

alyzed in this paper, that is annihilation of orbits of the horseshoe through
homoclinic bifurcations involving the saddle equilibrium of the vector field X
and the second one arising through heteroclinic and homoclinic tangencies
of invariant manifolds of the orbits in the horseshoe. Figure 9 represents
the conjectured bifurcation diagram for the case of inward twist (a similar
conjecture can be made for the case of outward twist). The part of the di-
agram occuring for negative v, has been established in this paper. For s
negative and vy positive we conjecture the existence of two bifurcation lines.
The one more to the left would correspond to the first heteroclinic tangency
of the stable and unstable foliations of the horseshoe. The second one would
correspond to a saddle-node bifurcation of periodic orbits. In the region be-
tween the two bifurcation lines complicated dynamics would occur involving
homoclinic and heteroclinic tangencies, Hénon-like attractors, and infinitely
many periodic sinks. In the region between the saddle-node bifurcation line
and the line 1, = 0 the non-wandering set of of f,|C, would be empty.

Another relevant question is what happens when the eigenvalue condi-
tion (EV2) no longer holds. Let A\ = —/’\\— and suppose A is varied as the
third system parameter. Let (v1,10) be in the region of the existence of the
horseshoe for A > 2. It follows from the methods used in the proof of Theo-
rem 3 that for A < 2 the horseshoe can no longer exist. [KKO93a] contains
partial information on this case. Hence a bifurcation sequence leading to the
destruction of the horseshoe must take place as (v, 14) is kept fixed and A
varies from a value larger than 2 to a value less than 2.
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