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Abstract

We develop a qualitative theory for fast-slow systems with one-dimensional slow
variable. Using Conley index theory for singularly pertubed systems, conditions are
given which imply that if one can construct heteroclinic connections and periodic orbits
in system with the derivative of the slow variable set to 0, these orbits persist when
the derivative of the slow variable is small and nonzero.
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1 Introduction

Fast-slow systems of the form
ẋ = f(x, y)

ẏ = εg(x, y)
(1.1)

arise frequently in applications and intuitively one expects that for small ε > 0 the dynamics
of (1.1) can be described in terms of the fast dynamics ẋ = f(x, y) and the slow dynamics
ẏ = g(x, y) restricted to f(x, y) = 0. In fact, a rather powerful technique, often referred to
as geometric singular perturbation theory, has been developed by N. Fenichel, C. Jones, N.
Kopell and others (see [1] for a survey and further references). These techniques are based on
and provide extensions to the classical concepts of normal hyperbolicity and transversality
and when applicable provide sharp results concerning the dynamics for the full system.

However, there are problems for which it is not always possible to satisfy the hyperbolicity
assumptions or verify the transversality conditions. It was, at least in part, with this in mind
that C. Conley promoted the use of isolating neighborhoods and what is now called the
Conley index theory. These ideas have proven useful in the study of differential equations,
and hence, it is natural to ask whether they can be applied in this context. The first
difficulty is that typically for ε = 0 one loses isolation. Conley addressed this issue in [4] and
introduced the notion of a singular isolating neighborhood. These ideas seem to have been
ignored, in part one presumes, because of the second issue; the real interest in dynamical
systems is not in the existence of isolating neighborhoods, but rather in the structure of the
associated isolated invariant set. In typical applications, given an isolating neighborhood the
Conley index theory is used to obtain information about the dynamics of the invariant set.
In [11] K. Mischaikow, M. Mrozek, and J. Reineck showed that it was possible to compute
the index for small ε > 0 from information in the ε = 0 system. The problem with the
approach presented there is that it is extremely geometrical in nature, and thus, difficult to
apply in high dimensional settings. The purpose of this paper is to show that if information
concerning the fast dynamics has been obtained using the Conley index theory, then this
information can be used to compute the index for ε > 0.

Consider the family of differential equations on Rn × R given by

ẋ = f(x, λ)

λ̇ = εg(x, λ)
(1.2)

where f(x, λ) : Rn ×R→ Rn and g(x, λ) : Rn ×R→ R are C1 functions and ε ≥ 0. This is
clearly a special case of (1.1) since λ is taken to be a real number rather than a vector. The
solutions to this equation generate a flow

ϕε : R× Rn × R→ Rn × R.

In the special case ε = 0, (1.2) has a simpler form since λ is a constant. We can view λ as a
parameter for the flows on Rn, and for each λ we define a flow ψλ on Rn by

(ψλ(t, x), λ) = ϕ0(t, x, λ). (1.3)
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If we fix a range of values of λ i.e., λ ∈ Λ = [λ0, λ1], one can define a parameterized flow

ψΛ : R× Rn × Λ → Rn × Λ

by ψΛ(t, x, λ) := (ψλ(t, x), λ).
Because the final result is fairly abstract in nature and involves the introduction of

a considerable amount of technical language, we shall in this introduction use a classical
example, the Nagumo equation (see [14] for a derivation of the equations),

u̇ = v

v̇ = θv − f(u) + λ (1.4)

λ̇ =
ε

θ
u,

to provide a framework for the development of these concepts. Recall that the nonlinearity
f is a cubic-like function as indicated in Figure 1. When discussing these equations ϕε is
the flow on R3 generated by (1.4) for a fixed ε.

u

pq

Figure 1: The nonlinearity of the Nagumo equation.

For ε = 0 we view the Nagumo equation as a parameterized family of differential equations
in the plane with parameter λ. In particular, for each fixed λ we have a flow

ψλ : R× R2 → R2

which as an ensemble captures the dynamics of the fast system.
With regard to the Nagumo equation, for an appropriately chosen value of θ there is an

interval [λ0, λ1] over which the interesting fast dynamics occurs. Over this interval the slow
motion manifold given by {(u, v) | θv − f(u) + λ = 0, v = 0} consists of three branches.
For our purposes only the left and right branches, labeled q(λ) and p(λ) respectively, are
of interest. The slow dynamics is particularly simple on these branches; along q, λ̇ < 0,
while on p, λ̇ > 0. Observe that for each value of λ, q(λ) and p(λ) are fixed points for ψλ.
It is, also, assumed that θ is chosen such that at the parameter values λ∗ and λ∗, where
λ0 < λ∗ < λ∗ < λ1, there are heteroclinic connections from q(λ∗) to p(λ∗) and p(λ∗) to
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q(λ∗), respectively. Combining this information from the fast and slow dynamics leads to
the schematic picture of Figure 2. As will be clear by the end of this introduction, it follows
immediately from the results of this paper that for ε > 0, there is a periodic solution to
the Nagumo equation which is close to the closed curve made up of the heteroclinic orbits
and branches of the slow manifold. However, before the abstract results can be stated some
notions from the Conley index theory must be recalled. General references are [1, 3, 13].

Figure 2: A schematic picture of the periodic orbit for the Nagumo equation.

Consider for the moment an arbitrary flow γ defined on a locally compact metric space
X, a compact set N ⊂ X is an isolating neighborhood if

Inv(N, γ) := {x ∈ X | γ(R, x) ⊂ N} ⊂ intN.

If S = Inv(N, γ) for some isolating neighborhood N , then S is referred to as an isolated
invariant set. The Conley index is an index of isolating neighborhoods with the property
that if Inv(N, γ) = Inv(N ′, γ) then the Conley index of N equals the Conley index of N ′.
In this way one may, also, view the Conley index as an index of isolated invariant sets. We
shall make use of the cohomological Conley index which is denoted by CH∗(S) and is an
Alexander-Spanier cohomology group.

As was mentioned earlier, given an isolating neighborhood its Conley index can be used
to describe the dynamics of the associated isolated invariant set. In our case we will present
theorems which can be used to prove the existence of periodic and heteroclinic orbits.

The first step is to find the appropriate isolating neighborhoods. This is done by choosing
compact neighborhoods of the connecting orbits and segments of the branches of equilibria.
Observe, however, that this cannot produce an isolating neighborhood under the singular
flow ϕ0. For example, if one returns to the Nagumo equation, then one sees that for ε = 0
the branches of fixed points extend to infinity. Thus, no compact set which contains the
equilibria can be isolating. On the other hand, our interest is in the dynamics for ε > 0.
Therefore, it is only important that the constructed neighborhood isolate under ϕε when
ε > 0. That this is the case will be shown in Section 3; for now we concentrate on the
construction.
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The second step is to compute the Conley index of the isolating neighborhood for ε > 0.
Again, the details of this will occupy Sections 3 through 5. However, as will be made clear
in this introduction, the goal is to perform this computation in terms of index information
concerning the connecting orbits and segments of the branches of equilibria. Therefore,
along with the construction of the isolating neighborhood we will need to make assumptions
concerning the index.

The segments around the branches of equilibria are the simplest to define. Let ψλ be as
in (1.3).

Definition 1.1 T ⊂ Rn × R is a tube if:

(1) There exists an interval [a, b] such that T ⊂ Rn× [a, b] and T is an isolating neighbor-
hood for

ψT : R× Rn × [a, b] → Rn × [a, b],

(t, x, λ) 7→ (ψλ(t, x), λ).

(2) There exists δ(T ) ∈ {±1} such that for all (x, λ) ∈ T we have

δ(T )g(x, λ) > 0.

Figure 3: A tube.

See Figure 3. In the setting of the Nagumo equation we can choose T (i), i = 1, 2 to be
tubular neighborhoods of p(λ) and q(λ) over the interval [λ∗, λ∗], respectively. Since, the set
of equilibria over the interval [λ0, λ1] are normally hyperbolic, a tubular neighborhood is an
isolating neighborhood. Furthermore, δ(T (1)) > 0 and δ(T (2)) < 0.

We now turn to the neighborhoods of the connecting orbits and the non-trivial problem
of how to relate the index information between the various tubes. The Conley index theory
provides a variety of techniques for proving the existence of heteroclinic connections. We
shall use the following. Recall that a Morse decomposition

M(S) = {M(p) | p ∈ (P , >)}

of an isolated invariant set S is a finite collection of disjoint compact invariant subsets M(p),
called Morse sets, indexed by a partially ordered set (P , >), with the property that; if
x ∈ S \ ⋃

p∈P M(p), then there exist q > p such that the alpha limit set of x is contained in
M(q) and the omega limit set of x is contained in M(p).
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In the context of a parametrized flow ψΛ : R×X × Λ → X × Λ, a Morse decomposition
is said to continue over Λ if there is an isolated invariant set S = Inv(N,ψΛ) with a Morse
decomposition M(S) = {M(p) | p ∈ (P , >)}. Observe that if one defines

Sλ := S ∩ (Rn × {λ}),

then Sλ is an isolated invariant set for ψλ. Similarly, {Mλ(p) | p ∈ (P , >)} is a Morse
decomposition for Sλ. Since Morse sets are isolated invariant sets, CH∗(Mλ(p)) is defined.
Furthermore, the index of each Morse set remains constant over Λ. Let λ0, λ1 ∈ Λ and
assume that

Sλi
=

⋃

p∈P
Mλi

(p) i = 0, 1.

Then, there exists a lower triangular (with respect to the order >) degree 0 isomorphism

T λ1,λ0 :
⊕

p∈P
CH∗(Mλ1(p)) → ⊕

p∈P
CH∗(Mλ0(p))

called a topological transition matrix (see [8, 9]). Roughly, if the p, q off diagonal entry of
T λ1,λ0 is non-zero, then for some parameter value λ ∈ (λ0, λ1) there exists a connecting orbit
between Mλ(p) and Mλ(q). As will become clear later, these off diagonal entries play a
crucial role in the desired computation of the Conley index.

In order to insure the existence of topological transition matrices in the abstract setting
of the fast-slow systems we introduce the following neighborhoods of the connecting orbits.

Definition 1.2 A set B ⊂ Rn × R is a box if:

(1) There exists an interval [c, d] such that B ⊂ Rn × [c, d] and B is an isolating neighbor-
hood for the parameterized flow ψB defined by

ψB : R× Rn × [c, d] → Rn × [c, d],

(t, x, λ) 7→ (ψλ(t, x), λ).

(2) Let S(B) := Inv(B, ψB). There exists a Morse decomposition

M(S(B)) := {M(p,B) | p = 1, . . . , PB},

with the usual ordering on the integers as the admissible ordering. Let Bλ = B ∩ (R×
{λ}), Sλ(B) := Inv(Bλ, ψλ) and let {Mλ(p,B) | p = 1, . . . , PB} be the corresponding
Morse decomposition of Sλ(B). Then

Sc(B) :=
PB⋃

p=1

Mc(p,B) and Sd(B) :=
PB⋃

p=1

Md(p,B).

(3) There are isolating neighborhoods V (p,B) for M(p,B) such that

V (p,B) ⊂ B and V (p,B) ∩ V (q,B) = ∅
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Figure 4: A box with three Morse components.

for p 6= q and for every λ ∈ [c, d]

Vλ(p,B) ⊂ int(Bλ)

Furthermore, there are δ(p,B) ∈ {±1}, p = 1, . . . , PB, such that

δ(p,B)g(x, λ) > 0 for all (x, λ) ∈ V (p,B)

See Figure 4. Notice that Definition 1.2(2) implies that there are no connecting orbits
between the Morse sets at the parameter values c and d, and by the construction, the sets
Sc(B) and Sd(B) are related by continuation.

From the last property, one can define Min(p,B) and Mout(p,B) as follows:

Min(p,B) =

{
Mc(p,B) if δ(p,B) > 0,
Md(p,B) if δ(p,B) < 0;

(1.5)

similarly,

Mout(p,B) =

{
Md(p,B) if δ(p,B) > 0,
Mc(p,B) if δ(p,B) < 0.

(1.6)

It follows from this that the directional transition matrix

DB :
PB⊕

p=1

CH∗(Mout(p,B)) →
PB⊕

p=1

CH∗(Min(p,B))

can be defined by using the topological transition matrix. See the next section and [7] for
more details. Let

DB(P, 1) : CH∗(Mout(1,B)) → CH∗(Min(P,B))
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denote the (P, 1)-entry of the matrix DB.
Let us review this definition in the setting of the Nagumo equations. There are two

boxes B(i), i = 1, 2, which can be obtained by taking the isolating neighborhoods of Figure 5
over the intervals [λ∗ − µ, λ∗ + µ] and [λ∗ − µ, λ∗ + µ], respectively. The associated Morse
decompositions are

M(S(B(1))) := {Mλ(1,B(1)) = p(λ),Mλ(2,B(1)) = q(λ)},
M(S(B(2))) := {Mλ(1,B(2)) = q(λ),Mλ(2,B(2)) = p(λ)}.

Finally, δ(2,B(1)) < 0, δ(1,B(1)) > 0, δ(2,B(2)) > 0, and δ(1,B(2)) < 0.

u,v

λ∗

λ∗

p(λ)q(λ)

λ

B1

B2

Figure 5: The boxes for the Nagumo equation.

If one is attempting to prove the existence of heteroclinic orbits, an additional type of
neighborhood which surrounds the critical points for the perturbed system is necessary.

Definition 1.3 A set C(R) (C(A)) is a repelling (attracting) cap if:

(1) There exists an interval [e, f ] such that C ⊂ Rn × [e, f ] and C is an isolating neighbor-
hood for

ψC : R× Rn × [e, f ] → Rn × [e, f ]

(t, x, λ) 7→ (ψλ(t, x), λ)

(2)

x ∈ Ce(R) ⇒ g(x, e) < 0
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x ∈ Cf (R) ⇒ g(x, f) > 0

x ∈ Ce(A) ⇒ g(x, e) > 0

x ∈ Cf (A) ⇒ g(x, f) < 0,

where Cλ(R) := C(R) ∩ {λ} and Cλ(A) := C(A) ∩ {λ}.

C(A)C(R)

Figure 6: Attracting and repelling caps.

See Figure 6. Finally, in order to construct a global isolating neighborhood, these boxes,
tubes, and possibly caps must to be related in a consistent manner. The primary requirement
is that the tubes and boxes overlap at the appropriate Morse sets. To simplify the notation
we let Pi = PBi

and M(p, i) := M(p,B(i)).

Definition 1.4 A set of tubes {T (i) | i = 1, . . . , I + 1} and boxes {B(i) | i = 1, . . . , I}
forms a tubes and boxes collection (TB collection) if the following compatibility conditions
are satisfied:

(1) for i = 1, . . . , I

(a) T (i) ∩ (R× [ci, di]) ⊂ V (1,B(i)) and T (i) ∩ B(i) isolates M(1, i).

(b) T (i + 1) ∩ (R× [ci, di]) ⊂ V (Pi,B(i)) and T (i + 1) ∩ B(i) isolates M(Pi, i).

(2) for i = 1, . . . , I either

δ(T (i + 1)) > 0 and δ(Pi,B(i)) > 0 in which case bi+1 = di

or
δ(T (i + 1)) < 0 and δ(Pi,B(i)) < 0 in which case ai+1 = ci

where a, b, c, and d are as in Definitions 1.1 and 1.2.

(3) for i = 1, . . . , I either

δ(T (i)) > 0 and δ(1,B(i)) > 0 in which case ai = ci

or
δ(T (i)) < 0 and δ(1,B(i)) < 0 in which case bi = di

where a, b, c, and d are as in Definitions 1.1 and 1.2.
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λλ

C(R)

C(A)

T4

B3 T3

B2

T2B1

T1

T4

B3T3

B2
T2

B1

T1

Figure 7: Schematic picture of a TBC collection on the left and a TB collection on the right.
The horizontal direction is λ and arrows indicate the sign of λ̇ = εg(x, λ) in a tube ϕε.

(4) If i 6= j, then B(i) ∩ B(j) = ∅.
See Figure 7.

Returning yet again to the Nagumo equations observe that having fixed the boxes B(1)
and B(2), if we choose our tubular neighborhoods sufficiently small in the (u, v) direction
then B(1),B(2) and T (1), T (2), T (3) with T (3) = T (1) form a TB collection.

In the case in which one is looking for heteroclinic orbits the collection must, also, include
caps.

Definition 1.5 A tubes, boxes and caps collection (TBC collection) is a collection of tubes
{T (i) | i = 1, . . . , I + 1}, boxes {B(i) | i = 1, . . . , I}, and caps C(R) and C(A) such that:

(1) the tubes {T (i) | i = 1, . . . , I + 1} and boxes {B(i) | i = 1, . . . , I} form a TB collection;

(2) C(R) ∩ T (I + 1) 6= ∅ and C(A) ∩ T (1) 6= ∅. Furthermore,

C(R) ∩ T (I + 1) ∩ (Rn × {λ}) 6= ∅ ⇒ Cλ(R) = Tλ(I + 1),

C(A) ∩ T (1) ∩ (Rn × {λ}) 6= ∅ ⇒ Cλ(A) = Tλ(1).

We introduce one final bit of notation before stating some of the results of this paper.
Given a TB or TBC collection, let

Di :
Pi⊕

p=1

CH∗(Mout(p, i)) →
Pi⊕

p=1

CH∗(Min(p, i))

denote the directional transition matrix associated with the box B(i) and let

Di(Pi, 1) : CH∗(Mout(1, i)) → CH∗(Min(Pi, i)) (1.7)
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denote the corresponding entry. Again, having fixed the TB or TBC collection, we define a
map

Θ := Θ(I) = DI(PI , 1) ◦DI−1(PI−1, 1) ◦ . . . ◦D2(P2, 1) ◦D1(P1, 1). (1.8)

As stated, this definition obviously makes no sense since CH∗(Min(Pi, i)) 6= CH∗(Mout(1, i +
1)). However, as will be made clear in the next section (see Remark 2.12), the continuation
of the Conley index allows for a natural identification between these spaces. Θ is introduced
at this point to simplify the statements of the following theorems.

Theorem 1.6 Let {T (i) | i = 1, . . . , I +1} and {B(i) | i = 1, . . . , I} be a TB collection where
T (1) = T (I + 1). Let

N :=
I⋃

i=1

B(i) ∪
I⋃

i=1

T (i).

Then, for ε > 0 sufficiently small:

(1) N is an isolating neighborhood for ϕε;

(2) Further, assume that for each i = 1, . . . , I,

CHj(Mci
(1, i);Z2) ∼=

{
Z2 if j = k;
0 otherwise.

Then,
CHj(Inv(N , ϕε)) = 0 if j 6= k, k + 1.

If Θ is an isomorphism, then

CHk(Inv(N , ϕε);Z2) ∼= CHk+1(Inv(N , ϕε);Z2) ∼= Z2;

otherwise
CHk(Inv(N , ϕε)) ∼= CHk+1(Inv(N , ϕε)) = 0.

The importance of this result is that it can be used to prove the existence of periodic
orbits. To do this, however, an additional piece of information is required.

Let Ξ ⊂ Rn and δ > 0. Define a map φδ : Ξ × (−δ, δ) → X by setting φδ(x, t) :=
ϕ(t, x), x ∈ Ξ, t ∈ (−δ, δ). We call Ξ a local section if there is a δ > 0 such that φδ is a
homeomorphism with an open range.

Let N be an isolating neighborhood under the flow ϕ. Ξ is a Poincaré section for N if
Ξ is a local section, Ξ ∩ N is closed, and for every x ∈ N , there exists tx > 0 such that
ϕ(tx, x) ∈ Ξ.

Theorem 1.7 Let {T (i) | i = 1, . . . , I + 1} and {B(i) | i = 1, . . . , I} be a TB collection with
T (1) = T (I + 1). Let

N :=
I⋃

i=1

B(i) ∪
I⋃

i=1

T (i).

Then, for ε > 0 sufficiently small there is an isolating neighborhood N ′ ⊂ N with Inv(N ′, ϕε) =
Inv(N , ϕε) such that N ′ admits a Poincaré section.
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The proof of this theorem is presented in Section 6.

Corollary 1.8 Under the assumptions of Theorem 1.6, if Θ is an isomorphism, then for all
sufficiently small ε > 0, Inv(N , ϕε) contains a periodic orbit.

Proof. This follows immediately from Theorem 1.6, Theorem 1.7 and [10, Theorem 1.3].
2

Corollary 1.9 The Nagumo equations contain a periodic orbit for sufficiently small ε > 0.

The following result can be used to find heteroclinic orbits. We begin with a concept
concerning the dynamics within the isolating neighborhood.

The simplest non-trivial Morse decomposition of an isolated invariant set S consists of
two Morse sets M(1) and M(0) with an admissible ordering 1 > 0. In this case, M(0) is
called an attractor in S and M(1) a repeller. Together, the pair (M(0),M(1)) is referred to
as an attractor repeller pair decomposition of S.

Theorem 1.10 Let {T (i) | i = 1, . . . , I + 1}, {B(i) | i = 1, . . . , I} and C(R), C(A) be a TBC
collection. Let

N :=
I⋃

i=1

B(i) ∪
I+1⋃

i=1

T (i) ∪ C(R) ∪ C(A).

Then, for ε > 0 sufficiently small,

(1) N is an isolating neighborhood for ϕε;

(2) (Inv(C(R), ϕε), Inv(C(A), ϕε)) is an attractor-repeller pair for Inv(N , ϕε);

(3) If Θ 6= 0, then

CH∗(Inv(N , ϕε)) 6∼= CH∗(Inv(C(A), ϕε))⊕ CH∗(Inv(C(R), ϕε)).

Corollary 1.11 Under the assumptions of Theorem 1.10, if Θ 6= 0, then for all sufficiently
small ε > 0 there is a connecting orbit from Inv(C(R), ϕε) to Inv(C(A), ϕε) in N under the
flow ϕε.

Proof. By Theorem 1.10(2) (Inv(C(R)), Inv(C(A))) is an attractor repeller pair. By The-
orem 1.10(3),

CH∗(Inv(C(R), ϕε))⊕ CH∗(Inv(C(A), ϕε)) 6∼= CH∗(Inv(N , ϕε)).

Therefore, by [1, Theorem 3.3.1], there exists a connecting orbit. 2
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2 Preliminaries

This section contains a brief review of relevant portions of the Conley index theory. For the
general theory the reader is referred to [1, 3, 13] and references therein. Throughout this
section we shall let ϕ : R×X → X denote a flow on a locally compact space X.

2.1 Isolating blocks

The Conley index of an isolated invariant set is central to our discussion. As was indicated
in the introduction, it is defined in terms of an index pair.

Definition 2.1 Let S be an isolated invariant set. A pair of compact sets (N, L) with
L ⊂ N is an index pair for S if:

(1) S = Inv(cl(N \ L)) and N \ L is a neighborhood of S;

(2) L is positively invariant in N , i.e. given x ∈ L and ϕ([0, t], x) ⊂ N then ϕ([0, t], x) ⊂ L;

(3) L is an exit set for N , i.e. given x ∈ N and T > 0 such that ϕ(T, x) 6∈ N , there is a
t ∈ [0, T ] such that ϕ([0, t], x) ⊂ N and ϕ(t, x) ∈ L.

The cohomological Conley index of S is given by

CH∗(S) := H∗(N, L).

Since this is usually taken to be fixed we shall simplify the notation and write CH∗(S) =
H∗(N,L).

Given an isolating neighborhborhood N of S its immediate exit and entrance sets are
defined, respectively, as follows

N− := {x ∈ N | ϕ([0, t], x) 6⊂ N for all t > 0},

N+ := {x ∈ N | ϕ([t, 0], x) 6⊂ N for all t < 0}.
The local stable and unstable sets of S in N are given by

W s
N(S) := {x ∈ N | ϕ([0,∞), x) ⊂ N},

W u
N(S) := {x ∈ N | ϕ((−∞, 0], x) ⊂ N}.

The notion of an index pair as defined above is very general. While this flexibility
simplifies some aspects of the index theory, from the point of view of computation it is less
than ideal. In particular, given an arbitrary isolating neighborhood N of S it is not in
general true that there exists a set L such that (N,L) is an index pair. Furthermore, even if
L exists determining it is typically a nontrivial task since in essence one is required to obtain
estimates for a global nonlinear problem. On the other hand, these computations can be
greatly simplified if very special index pairs, known as isolating blocks, are used.
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Definition 2.2 An isolating neighborhood N is an isolating block if ∂N = N+ ∪ N− and
N+ and N− are subsets of local sections of the flow.

The following theorem indicates that for every isolated invariant set there exists an iso-
lating block.

Theorem 2.3 [2, Theorem 3.4] Given an isolated invariant set S and its isolating neigh-
borhood N there exists an isolating block B ⊂ N such that S = InvB.

Let N be an isolating block for S. Observe that (N, N−) is an index pair for S and hence
CH∗(S) ∼= H∗(N,N−). A fundamental result is that different choices of index pairs give rise
to isomorphic indices. A particular case which we will encounter repeatedly is that of two
isolating blocks, N1 and N0, where Inv(N1, ϕ) = Inv(N0, ϕ) and N0 ⊂ N1. Observe that for
each x ∈ N0 \W s

N0
(S) there exists tx > 0 such that ϕ([0, tx], x) ⊂ N1 and ϕ(tx, x) ∈ N−

1 . Let

τ := sup
x∈N−

0

{tx}.

Define Φ : (N0, N
−
0 ) → (N1, N

−
1 ) by

Φ :=
{

ϕ(tx, x) if tx ≤ τ
ϕ(τ, x) otherwise.

(2.1)

Proposition 2.4 [2] Φ is continuous and

Φ∗ : H∗(N1, N
−
1 ) → H∗(N0, N

−
0 )

is an isomorphism.

We shall refer to Φ∗ as the index isomorphism.
Observe that W u

N(S) ∩ ∂N ⊂ N−. There is a very strong relation between the topology
of the local unstable set of S and the Conley index of S as is indicated by the following
result.

Lemma 2.5 [2, Lemma 4.3] Let N be an isolating block for S and let

cN : (W u
N(S),W u

N(S) ∩N−) → (N, N−)

be inclusion. Then

c∗N : H∗(N, N−) → H∗(W u
N(S), W u

N(S) ∩N−)

is an isomorphism, called the Churchill isomorphism.

We shall also make use the following proposition.

Proposition 2.6 [5, Lemma 5] Let (N, L) be an index pair for S. Then

H∗(N, L ∪W u
N(S)) = 0.
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2.2 Parameterized flows

Recall the discussion and notation of parameterized flows presented in the introduction.
Given K ⊂ Λ and N ⊂ X × Λ, let NK := N ∩ (X ×K). The following theorem is at the
heart of the continuation theory for the Conley index.

Theorem 2.7 [13, Theorem 6.7] Let (N,L) be an index pair for an isolated invariant set S
under ϕΛ. Then for every λ0 ∈ Λ there is a compact neighborhood K ⊂ Λ of λ0 such that
the natural inclusion map

jλ : Nλ/Lλ → NK/LK

is a homotopy equivalence for every λ ∈ K.

Corollary 2.8 Under assumptions of Theorem 2.7 the map jλ induces an isomorphism

j∗λ : H∗(NK , LK) → H∗(Nλ, Lλ)

for all λ ∈ K.

Corollary 2.9 Under the assumptions of Theorem 2.7 the map

F ∗
λ′,λ(S) : H∗(Nλ′ , Lλ′) → H∗(Nλ, Lλ)

defined by F ∗
λ′,λ(S) := j∗λ ◦ (j∗λ′)

−1, is an isomorphism for all λ, λ′ ∈ K.

2.3 Transition matrices

In this section we review some basic facts about the topological transition matrices which
were first introduced in [8]. To simplify the presentation we begin by setting the parameter
space Λ = [0, 1], and assume that the Morse decomposition M(S) := {M(p) | p ∈ (P , >)}
continues over all of Λ. Since each Morse set M(p) continues over Λ, there are isomorphisms

F ∗
1,0(p) : CH∗(M1(p)) → CH∗(M0(p))

(compare Corollary 2.9). Similarly, since S continues over Λ there is an isomorphism

F ∗
1,0(S) : CH∗(S1) → CH∗(S0).

If Sλ =
⋃

p∈P Mλ(p) i.e. the set of connecting orbits is empty, then there exists an index
isomorphism

Φ∗
λ : H∗(Nλ, Lλ) →

⊕

p∈P
CH∗(Mλ(p)). (2.2)

Suppose there are no connections at either λ = 0 or λ = 1, then we can construct the
following diagram

⊕

p∈P
CH∗(M1(p))

⊕

p∈P
F ∗

1,0(p)

→ ⊕

p∈P
CH∗(M0(p))

Φ∗
1 ↑ Φ∗

0 ↑
CH∗(S1)

F ∗
1,0(S)→ CH∗(S0)
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Remark 2.10 Even though every map is an isomorphism this diagram is not, in general,
commutative. Furthermore, it is the failure to commute which gives information concerning
connecting orbits. Therefore, it is important to express this lack of commutativity in the
most obvious manner. We shall do this by choosing generators. Fix a set of generators G1

of
⊕

p∈P CH∗(M1(p)). Define the generators of
⊕

p∈P CH∗(M0(p)) to be

G0 :=
⊕

p∈P
F ∗

1,0(p)(G1).

With this identification,
⊕

p∈P F ∗
1,0(p) takes the form of the identity matrix.

From this point on we shall assume that this identification has been made and we refer
to it as the natural Morse continuation identification.

The topological transition matrix is

T 1,0 :
⊕

p∈P
CH∗(M1(p)) → ⊕

p∈P
CH∗(M0(p)),

where the natural Morse continuation identification has been made and is defined by

T 1,0 = Φ∗
0 ◦ F ∗

1,0 ◦ (Φ∗
1)
−1.

Note that the diagram

⊕

p∈P
CH∗(M1(p))

T 1,0→ ⊕

p∈P
CH∗(M0(p))

Φ∗
1 ↑ Φ∗

0 ↑
CH∗(S1)

F ∗1,0→ CH∗(S0)

(2.3)

commutes by definition. The topological transition matrix is lower triangular, and has the
property that its off diagonal nonzero entry implies the existence of connecting orbits between
appropriate Morse sets for various λ ∈ (0, 1).

Remark 2.11 Following in the spirit of Remark 2.10, observe that each tube T (i) defines a
continuation between the invariant sets Mout(1, i+1) and Min(Pi, i). Thus, by Corollary 2.9,
CH∗(Mout(1, i + 1)) ∼= CH∗(Min(Pi, i)). Since the boxes are disjoint, we can use this contin-
uation to choose basis for these linear spaces in such a way that the matrix representing the
continuation is the identity matrix. We shall refer to this choice of bases as the natural tube
continuation identification.

Remark 2.12 At this point the validity of the definition of Θ (see (1.8)) should be apparent.
In particular, given the natural Morse and tube continuation identifications what is missing
from (1.8) are identity matrices corresponding to the continuation isomorphisms generated
by the tubes and the Morse decompositions.

If the index set P is decomposed to two disjoint sets P− and P+, i.e. P = P−∪P+, P−∩
P+ = ∅, then we can construct the directional transition matrix

D :
⊕

p∈P
CH∗(Mo(p)(p)) → ⊕

p∈P
CH∗(Mi(p)(p)),
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where

i(p) =

{
0 p ∈ P+,
1 p ∈ P−,

and o(p) =

{
1 p ∈ P+,
0 p ∈ P−.

Notice that, in this paper, the decomposition is given by the direction of flow on slow
manifolds in a box B, namely P− = {p|δ(p,B) < 0} and P+ = {p|δ(p,B) > 0}, hence in our
case i(p) = in(p) and o(p) = out(p).

The directional transition matrix is defined as follows: If the sets of basis of CH∗(M0(p))
and CH∗(M1(p)) for any p ∈ P are given, one obtains the basis of

⊕
p∈P CH∗(Mi(p)(p))

and
⊕

p∈P CH∗(Mo(p)(p)). From the definition, the topological transition matrix deter-
mines an invertible correspondence between the basis elements of

⊕
p∈P CH∗(M0(p)) and⊕

p∈P CH∗(M1(p)). Since the topological transition matrix is lower-triangular, it also im-
plies an invertible correspondence between the basis elements of

⊕
p∈P CH∗(Mi(p)(p)) and⊕

p∈P CH∗(Mo(p)(p)), and hence it gives an isomorphism

D :
⊕

p∈P
CH∗(Mo(p)(p)) → ⊕

p∈P
CH∗(Mi(p)(p)),

which is the directional transition matrix.
In this paper, we only need an algebraic map D(P, 1) given as the (P, 1)-entry of the

directional transition matrix. However, in general, off diagonal nonzero entries of the di-
rectional transition matrix have similar consequences for the existence of connecting orbits
between the Morse sets as topological transition matrix. See [7] for more details.

2.4 Singular isolating neighborhoods and singular index pairs

To simplify the notation we let y = (x, λ) ∈ Rn+1 and write

ẏ = F (y) = F0(y) + εF1(y) + . . . + εkFk(y) + . . . (2.4)

in place of equation (1.2). As will be seen, it is not necessary that F be analytic or C∞ in
ε, only that F have enough derivatives to apply Theorem 2.18 below.

Definition 2.13 A compact set N ⊂ Rn+1 is called a singular isolating neighborhood if N
is not an isolating neighborhood for ϕ0, but there is an ε̄ > 0 such that for all ε ∈ (0, ε̄], N
is an isolating neighborhood for ϕε.

Definition 2.14 A pair of compact sets (N, L) with N ⊂ L is a singular index pair if
cl(N \L) is a singular isolating neighborhood and there is an ε̄ > 0 such that for all ε ∈ (0, ε̄]

H∗(N, L) ∼= CH∗(Inv(cl(N \ L), ϕε)).

Observe that the last two definitions are most useful if we find a way to construct singular
isolating neighborhoods and singular index pairs using primarily the ϕ0 flow, along with
minimal information about the higher order terms of F . The conditions for the existence of
a singular isolating neighborhood were given by Conley [4] and the construction of a singular
index pair was done in [11]. We shall follow the latter paper in our exposition.
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Let N be a compact set and let S = Inv(N, ϕ0). Observe that if N is not an isolating
neighborhood for ϕ0, then by definition there exists x ∈ S ∩ ∂N . If N is to be a singular
isolating neighborhood, then such an x has to leave in forward or backward time under ϕε

for all ε > 0. This leads to the following definition.

Definition 2.15 Let N be a compact set and let x ∈ S. x is a slow exit (entrance) point
if there exists a neighborhood U of x and an ε̄ > 0 such that for all ε ∈ (0, ε̄] there exists a
time T (ε, U) > 0 (T (ε, U) < 0) satisfying

ϕε(T (ε, U), U) ∩N = ∅.

Theorem 2.16 [11, Theorem 1.5] Let N be a compact set. If S ∩ ∂N consists of slow
entrance and slow exit points, then N is a singular isolating neighborhood.

It follows from the last theorem that in order to construct a singular isolating neighborhood
it is important to be able to recognize slow exit and slow entrance points. Before we quote
a theorem which does just that, we introduce some notation. We let S−(S+) denote the set
of slow exit (entrance) points. Set S∂ := S ∩ ∂N and S±∂ := S∂ ∩ S±. Given an invariant set
K, let R(K) denote the chain recurrent set of K under ϕ0.

Definition 2.17 The average of h on S, Ave(h, S), is the limit as t → ∞ of the set of
numbers {1

t

∫ t
0 h(ϕ0(s, x))ds | x ∈ S}. If Ave(h, S) ⊂ (0,∞) then h has strictly positive

averages on S.

Theorem 2.18 [4] x ∈ S is a slow exit point if there exists a compact set Kx ⊂ S invariant
under ϕ0, a neighborhood Ux of R(Kx), an ε̄ > 0 and a function l : cl(Ux)× [0, ε̄] → R such
that the following conditions are satisfied.

(1) ω(x, ϕ0) ⊂ Kx;

(2) l is of the form
l(z, ε) = l0(z) + εl1(z) + . . . + εmlm(z);

(3) If L0 = {z | l0(z) = 0} then

Kx ∩ cl(Ux) = S ∩ L0 ∩ cl(Ux),

and furthermore l0|S∩cl(Ux) ≤ 0;

(4) Let
hj(z) = ∇zl0(z) · Fj(z) +∇zl1(z) · Fj−1(z) + . . . +∇zlj(z) · F0(z).

Then for some m, hj ≡ 0 if j < m, and hm has strictly positive averages on R(Kx).

A slow exit point which satisfies the conditions of Theorem 2.18 is called a C-slow exit point.
If we reverse time we can use the Theorem 2.18 to test for slow entrance points. Slow
entrance points of this form will be called C-slow entrance points.
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Now, given a singular isolating neighborhood N , we want to identify a singular index
pair. We need a few definitions. The immediate exit set for N is defined by

N− := {x ∈ ∂N | ϕ0((0, t), x) 6⊂ N for all t > 0}.

Given Y ⊂ N its push-forward set in N under the flow ϕ0 is defined to be

ρ(Y,N, ϕ0) := {x ∈ N | ∃z ∈ Y, t ≥ 0 such that ϕ0([0, t], z) ⊂ N,ϕ0(t, z) = x}.

Finally, the unstable set of an invariant set Y ⊂ N under ϕ0 is

W u
N(Y ) := {x ∈ N | ϕ0((−∞, 0), x) ⊂ N and α(x, ϕ0) ⊂ Y }.

A slow entrance point x is a strict slow entrance point if there exists a neighborhood Ux of
x and an ε̄ > 0 such that if y ∈ Ux ∩N and ε ∈ (0, ε̄], then there exists ty(ε) > 0 for which

ϕε([0, ty(ε)], y) ⊂ N.

We will let S++
∂ denote the strict slow entrance points.

Theorem 2.19 [11, Theorem 1.16] Let N be a singular isolating neighborhood. Assume

(1) S−∂ consists of C-slow exit points;

(2) S∂ ⊂ S++
∂ ∪ S−∂ ;

(3) (S++
∂ \ S−∂ ) ∩ cl(N−) = ∅.

For each x ∈ S−∂ , let Kx denote a compact invariant set as in Theorem 2.18. Define

L := ρ(cl(N−), N, ϕ0) ∪W u
N(

⋃

x∈S−
∂

R(Kx)).

If L is closed, then (N,L) is a singular index pair for the family of flows ϕε.
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3 Construction of a singular index pair

The point of this section is to construct a singular isolating neighborhood and from that
a singular index pair for TB or TBC collections. The construction and proofs are quite
similar with or without the caps, thus only the proofs for TB collections are provided. Of
course, a few comments concerning TBC collections are included. The actual computation
of the index is left to the next section. We will adhere strictly to the notation established in
Subsection 2.4 concerning the singular index theory.

We begin by fixing a TB or TBC collection with tubes {T (i) | i = 1, . . . , I + 1}, boxes
{B(i) | i = 1, . . . , I} and, possibly, caps C(R) and C(A). In order to simplify the notation let
M(p, i) denote the Morse set M(p,B(i)).

The definition of tubes and boxes was given in terms of isolating neighborhoods. As was
mentioned in the introduction these sets need not have much structure. Thus, the first step
is to replace isolating neighborhoods with isolating blocks. By Theorem 2.3 for each i we
may choose an isolating block B(i) with the property that

B(i) ⊂ B(i) and Inv(B(i), ψB(i)) = Inv(B(i), ψB(i)).

Observe that B(i) is a box where the sets V (p,B(i)) are given by B(i) ∩ V (p,B(i)) for
p ∈ PB(i).

Remark 3.1 Recall that by Definition 1.2(2) there are no connecting orbits between the
Morse sets in box B(i) at parameter values λ = ci, di. From this, a simple argument based
on the continuity of the flow shows that one may choose the sets V (p,B(i)) such that if
x ∈ V∗i

(p,B(i)) and ψ∗i
([0, t], x) ⊂ B∗i

(i), then ψ∗i
([0, t], x) ∩ V∗i

(q,B(i)) = ∅ for q 6= p
where ∗ = c, d. From now on we assume that the V (p,B(i)) have been chosen to satisfy this
property for all p and all i.

Again, using Theorem 2.3 for each V (p,B(i)) we may choose an isolating block V(p, i)
with the property that

V(p, i) ⊂ V (p,B(i)) and Inv(V(p, i), ψV (p,B(i))) = Inv(V (p,B(i)), ψV (p,B(i))).

Finally, observe that

T0(i) := (T (i) \ (B(i) ∪B(i− 1))) ∪ V (1,B(i)) ∪ V (Pi−1,B(i− 1))

is a tube. So again, by Theorem 2.3 for each i we may choose an isolating block T(i) with
the property that

T(i) ⊂ T0(i) and Inv(T(i), ψT (i)) = Inv(T (i), ψT (i)).

It is now left to the reader to check that {T(i) | i = 1, . . . , I +1} and {B(i) | i = 1, . . . , I}
form a TB collection.

In the setting of a TBC collection, one should also modify the caps as follows. Choose
C(R) ⊂ C(R) and C(A) ⊂ C(A) such that C(R)∪T(I + 1) and C(A)∪T(1) form isolating
blocks for the appropriate parameterized flows.

21



The reason for switching to a construction based on isolating blocks is that the boundary
of the sets which have been created consist of strict entrance and exit sets or level sets with
respect to the slow variable λ.

In the case of a TB collection, define

N :=

(
I⋃

i=1

T(i)

) ⋃ (
I⋃

i=1

B(i)

)

and for a TBC collection, let

N :=

(
I+1⋃

i=1

T(i)

) ⋃ (
I⋃

i=1

B(i)

) ⋃ (
C(R)

⋃
C(A)

)
.

The goal is now to show that N is a singular isolating neighborhood. Perhaps the first
observation that needs to be made is that N is not an isolating neighborhood. To see this
let

S := Inv(N, ϕ0).

Now fix a parameter value λ. Observe that Sλ = Inv(Nλ, ψλ). Let x ∈ ∂Nλ. Now assume
that λ 6∈ {ci, di | i = 1, . . . , I}. Then, x ∈ ∂Tλ(i) or x ∈ ∂Bλ(i) for some i. Because
Tλ(i) and Bλ(i) are isolating neighborhoods under ψλ, x 6∈ Sλ. On the other hand, if
λ ∈ {ci, di | i = 1, . . . , I}, then x ∈ cl(B(i) \ (T (i) ∪ T (i + 1)). In particular, if x ∈ Mλ(p, i)
and x 6∈ (T (i) ∪ T (i + 1)) then x ∈ ∂N ∩ S. Therefore, N is not an isolating neighborhood.
Theorem 2.16 will be used to show that N is a singular isolating neighborhood. In particular
it will be shown that if x ∈ ∂N ∩ S, then x is a slow entrance or exit point.

Let

Ŝ−∂ (i) :=
Pi⋃

p=2

Mout(p, i) and Ŝ+
∂ (i) :=

Pi−1⋃

p=1

Min(p, i).

Recall that Mout(p, i) and Min(p, i) are defined in (1.6).

Lemma 3.2 For a TB collection where T(1) = T(I + 1),

(1) N is a singular isolating neighborhood;

(2) The set of slow exit points is

S−∂ =
I⋃

i=1

Ŝ−∂ (i)

and, in fact, consists of C-slow exit points;

(3) The set of slow entrance points is

S+
∂ =

I⋃

i=1

Ŝ+
∂ (i)

and, in fact, consists of strict slow entrance points;

(4) S∂ ⊂ S++
∂ ∪ S−∂ .
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Proof. We begin with the proof of (2) and (3). Let S∂ := S ∩ ∂N . From the previous
discussion it is clear that if (x, λ) ∈ S∂ then λ ∈ {ci, di} for some i and x ∈ Mλ(p, i). In fact,
because of the tubes,

x ∈
Pi⋃

p=1

Mλ(p, i) \ (Min(Pi, i) ∪Mout(1, i)) .

Observe now that l(z, ε) := ±λ − ci and l(z, ε) := ±λ − di are slow Lyapunov functions
defined on the sets Vci

(p,B(i)) and Vdi
(p,B(i)), respectively. (2) and (3) now follow.

Since S∂ = S−∂ ∪ S+
∂ , N is a singular isolating neighborhood.

Definition 1.2(3) implies that the slow entrance points are strict slow entrance points. 2

The proof of the following lemma is similar.

Lemma 3.3 For a TBC collection:

(1) N is a singular isolating neighborhood;

(2) The set of slow exit points is

S−∂ =
I⋃

i=1

Ŝ−∂ (i) ∪ Sa(R)

and, in fact, consists of C-slow exit points;

(3) The set of slow entrance points is

S+
∂ =

I⋃

i=1

Ŝ+
∂ (i) ∪ Sb(A)

and, in fact, consists of strict slow entrance points;

(4) S∂ ⊂ S++
∂ ∪ S−∂ .

The next step is to construct a set L such that (N,L) is a singular index pair. For this
the immediate exit set for N needs to be identified.

Lemma 3.4 For a TB collection the immediate exit and entrance sets of N under ϕ0 are:

N− =

((
I+1⋃

i=1

T−(i)

)
∪

(
I⋃

i=1

B−(i)

))
\

(
I⋃

i=1

{
B(i) ∩

(
T−(i) ∪T−(i + 1)

)})
,

N+ =

((
I+1⋃

i=1

T+(i)

)
∪

(
I⋃

i=1

B+(i)

))
\

(
I⋃

i=1

{
B(i) ∩

(
T+(i) ∪T+(i + 1)

)})
.
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Proof. Since we are working with the flow ϕ0, it is sufficient to consider ψλ for each
relevant value of λ.

First consider a tube T(i). Choose λ ∈ [ai, bi] such that λ 6∈ [ci, di]∪ [ci−1, di−1]. Because
Tλ(i) is an isolating block, x ∈ Tλ(i) ∩N− if and only if x ∈ T−

λ (i). On the other hand for
λ ∈ [ci, di]∪ [ci−1, di−1], Tλ(i) ⊂ Bλ(i) or Tλ(i) ⊂ Bλ(i−1). In either case x is an immediate
exit point for N .

Now consider a box B(i). Choose λ ∈ [ci, di]. Then x ∈ Bλ(i) is in N− if and only if
x ∈ B−

λ (i). 2

A similar argument, in which one only needs to consider the caps, in addition, leads to
the following lemma.

Lemma 3.5 For a TBC collection the immediate exit and entrance sets of N under ϕ0 are:

N− =

((
I+1⋃

i=1

T−(i)

)
∪

(
I⋃

i=1

B−(i)

)
∪C−(A) ∪C−(R)

)
\

(
I⋃

i=1

{
B(i) ∩

(
T−(i) ∪T−(i + 1)

)})
,

N+ =

((
I+1⋃

i=1

T+(i)

)
∪

(
I⋃

i=1

B+(i)

)
∪C+(A) ∪C+(R)

)
\

(
I⋃

i=1

{
B(i) ∩

(
T+(i) ∪T+(i + 1)

)})
.

Using Lemmas 3.2, 3.3, 3.4 and 3.5, it follows that

(S++
∂ \ S−∂ ) ∩ cl(N−) = ∅. (3.1)

Proposition 3.6 Given a TB collection where T(1) = T(I + 1), let

L := ρ(cl(N−), N, ϕ0) ∪



I⋃

i=1

Pi⋃

p=2

W u
B(i) (Mout(p, i))


 .

Then, (N, L) is a singular index pair.

Proof. By Lemma 3.2 and (3.1) all that remains to be shown is that L is closed.
We begin by considering the set ρ(cl(N−), N, ϕ0). Observe that if (x, λ) ∈ N−, then

ρ((x, λ), N, ϕ0) = {(x, λ)}. So consider (x, λ) ∈ cl(N−) \ N−. Then, x ∈ Tci−1
(i)−, x ∈

Tdi−1
(i)−, x ∈ Tci

(i)−, or x ∈ Tdi
(i)−, depending on the sign of δ(1,B(i)) or δ(Pi,B(i− 1)).

Assume x ∈ Tci−1
(i)− (the other cases follow by the same argument). By Definition 1.4(1),

x ∈ Vci−1
(Pi,B(i)). However, by Remark 3.1 the forward orbit of x leaves Bci−1

(i − 1) in
finite time without intersecting Vci−1

(q,B(i)) for all q 6= Pi. Therefore, ρ((x, λ), N, ϕ0) is
closed, which in turn implies that ρ(cl(N−), N, ϕ0) is closed.

Observe now that the same argument shows that W u
B(i)(Mout(p, i)) is closed for each i

and p. Therefore, L is closed. 2

A similar argument leads to:

Proposition 3.7 Given a TBC collection, let

L := ρ(cl(N−), N, ϕ0) ∪



I⋃

i=1

Pi⋃

p=2

W u
B(i) (Mout(p, i))


 ∪W u

C(R)(S∗(R)),

where S∗(R) = Inv(C(R) ∩ {λ = ∗}, ϕ0) and ∗ is e or f depending on how T (I) attaches to
C(R). Then, (N, L) is a singular index pair.
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4 The Algebra Behind the Index Computation

In the previous section it was shown that (N,L) is a singular index pair. Therefore, to
compute CH∗(Inv(N, ϕε)) it is sufficient to determine H∗(N,L). This is done via a series of
Mayer-Vietoris sequences which will be described in this section. We begin by defining the
basic units of the decomposition of (N, L).

Let si ∈ (ai, bi) such that Tsi
(i) ∩ (B(i) ∪B(i− 1)) = ∅. If δ(T(i)) > 0, let

Tin(i) := T(i) ∩ (R× [si, bi])

and
Tout(i) := T(i) ∩ (R× [ai, si]).

If δ(T(i)) < 0, let
Tin(i) := T(i) ∩ (R× [ai, si])

and
Tout(i) := T(i) ∩ (R× [si, bi]).

Let

N(i) := Tout(i) ∪B(i) ∪Tin(i + 1)

L(i) := L ∩N(i)

and define, for l < k,

N(l, k) :=
k⋃

i=l

N(i),

L(l, k) :=
k⋃

i=l

L(i).

Set

L̂(i) :=
Pi⋃

p=2

W u
B(i)(Mout(p, i)).

One of the goals of this section is to prove the following proposition.

Proposition 4.1 For each k = 2, . . . I,

H∗(N(1, k), L(1, k)) ∼= CH∗(Mout(1, 1)).

The key step is to fully understand the following exact sequence:

. . . → H∗(N(i) ∪N(i + 1), L(i) ∪ L(i + 1))
ι∗→ H∗(N(i + 1), L(i + 1))⊕H∗(N(i), L(i))
η∗→ H∗(N(i) ∩N(i + 1), L(i) ∩ L(i + 1)) → . . .

(4.1)

See Figure 9. As will become clear in Section 5, the computation of H∗(N,L) is straightfor-
ward, once (4.1) is understood.

Observe that (N(i) ∩N(i + 1), L(i) ∩ L(i + 1)) = (Tsi+1
(i + 1),T−

si+1
(i + 1)).
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Proposition 4.2

H∗(Tsi+1
(i + 1),T−

si+1
(i + 1)) ∼= CH∗(Min(P, i)) ∼= CH∗(Mout(1, i + 1)).

Proof. Since, under the appropriate restrictions T(i + 1) is an isolating block for both
Min(P, i) and Mout(1, i + 1) the result follows from the continuation theorem for the Conley
index. 2

Remark 4.3 Proposition 4.2 implies that there exists a continuation induced isomorphism

F i,i+1(T (i + 1)) : CH∗(Mout(1, i + 1)) → CH∗(Min(P, i)).

In light of Remark 2.11 we always choose bases such that F i,i+1(T (i + 1)) is represented
by the identity matrix, and therefore, in an attempt to prevent an overwhelming growth in
notation, is ignored.

We now turn to the computation of H∗(N(i), L(i)). Again, a Mayer-Vietoris argument
is used. Choose µi ∈ (ci, di) such that Sµi

= ∪Pi
p=1Mµi

(p, i). Define

Z(i) := N(i) ∩ (Rn × (−∞, µi])

Y (i) := N(i) ∩ (Rn × [µi,∞))

and

LZ(i) := L ∩ Z(i)

LY (i) := L ∩ Y (i).

Note that Z(i) ∪ Y (i) = N(i).
At this point we are focussing on the computation of H∗(N(i), L(i)) for a fixed i. There-

fore, to simplify the notation we shall, for the most part, ignore the indexing argument i,
i.e. B = B(i), Z = Z(i), P = Pi, c = ci, etc. This simplification is not always possible since
both T(i) and T(i + 1) are involved in the definition of N(i), so we will include the index i
when it might otherwise be ambiguous. With this in mind the following sequence needs to
be understood:

. . . → H∗(N(i), L(i))
%∗→ H∗(Z,LZ)⊕H∗(Y, LY )

κ∗→ H∗(Z ∩ Y, LZ ∩ LY ) → . . . (4.2)

Observe that (Z ∩ Y, LZ ∩ LY ) = (Bµ,B
−
µ ). Thus, to understand (4.2), we need to

compute H∗(Z,LZ), H∗(Y, LY ) and the maps %∗ and κ∗ which are induced homomorphisms
from natural inclusion maps. We begin with the computation of H∗(Z,LZ) which, yet again,
is done using a set of Mayer-Vietoris arguments.

First we establish some notation. Let

TZ := cl (Z \B)
TZ− := (T−(i) ∪T−(i + 1)) ∩ TZ

26



and
BZ := B ∩ Z
BZ− := B− ∩BZ.

Finally, set
L̂Z := L̂ ∩ Z

LZB := LZ ∩B.

The definitions of TY , TY −, BY , BY −, L̂Y and LY B are similar.
Observe that TZ ∩ BZ = Tc and that L̂Z ⊂ T−

c . This leads to the following Mayer-
Vietoris sequence.

. . . → H∗(Z,LZ) → H∗(TZ, TZ−)⊕H∗(BZ,LZB) → H∗(Tc,T
−
c ) → . . . (4.3)

Also observe that there is a flow defined homotopy equivalence between (BZ,LZB) and
(BZ, BZ− ∪ L̂Z). Thus, (4.3) can be reduced to

. . . → H∗(Z,LZ)
α∗→ H∗(TZ, TZ−)⊕H∗(BZ, BZ− ∪ L̂Z)

β∗→ H∗(Tc,T
−
c ) → . . .

Recall from Corollary 2.8 that the inclusion induced map j∗c : H∗(TZ, TZ−) → H∗(Tc,T
−
c )

is an isomorphism. Therefore, β∗ is an epimorphism and α∗ is a monomorphism. This and
similar arguments in the other settings lead to the following result.

Proposition 4.4 For the inclusion maps αz : (BZ, BZ− ∪ L̂Z) ↪→ (Z, LZ) and αy :
(BY, BY − ∪ L̂Y ) ↪→ (Y, LY ), the induced homomorphisms

α∗z : H∗(Z, LZ) → H∗(BZ, BZ− ∪ L̂Z)

α∗y : H∗(Y, LY ) → H∗(BY,BY − ∪ L̂Y )

are in fact isomorphisms.

Proof. Since β∗ is an epimorphism, α∗ is a monomorphism. Therefore H∗(Z,LZ)
is isomorphic to Im α∗ = Ker β∗ which is isomorphic to H∗(BZ,BZ− ∪ L̂Z), because
H∗(TZ, TZ−) and H∗(Tc,T

−
c ) are isomorphic. The claim follows since α∗z is the composi-

tion of α∗ and the projection to the second component of H∗(TZ, TZ−)⊕H∗(BZ,BZ−∪L̂Z).
The same argument shows that α∗y is an isomorphism. 2

Via the isomorphism α∗z, we have reduced the problem of determining H∗(Z, LZ) to the
computation of H∗(BZ, BZ− ∪ L̂Z). With this in mind consider the following diagram.
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0

‖
- H∗(BZ, BZ− ∪ L̂Z)

ν∗z- H∗(BZ,BZ−)⊕H∗(L̂Z, L̂Z) - H∗(L̂Z, BZ− ∩ L̂Z) -

¡
¡ª

j∗c ‖
H∗(Bc,B

−
c ) H∗(L̂c,B

−
c ∩ L̂c)

?Φ
∗
c ‖

P⊕

p=1

H∗(Vc(p),V−
c (p))

⊕

out=c
p>1

H∗
(
W u

Bc
(Mout(p)),B−

c ∩W u
Bc

(Mout(p))
)

‖
?
⊕P

p=1c
∗
Vc(p)

P⊕

p=1

CH∗(Mc(p)) -
proj

⊕

out=c
p>1

CH∗(Mout(p))

Observe that along the top we have a Mayer-Vietoris sequence. Furthermore, Φ∗
c is an

index isomorphism, j∗c is a continuation isomorphism, and c∗Vc(p) is the Churchill isomorphism
of Lemma 2.5. Therefore, the diagram commutes.

Since proj is an epimorphism and all the vertical arrows represent isomorphisms, ν∗z is a
monomorphism. Thus, by the same reasoning as in the proof of Proposition 4.4, we have
the following proposition.

Proposition 4.5 The maps

Φ∗
c ◦ j∗c ◦ ν∗z : H∗(BZ, BZ− ∪ L̂Z) → CH∗(Mc(1))⊕ ⊕

in=c
p>1

CH∗(Min(p))

and
Φ∗

d ◦ j∗d ◦ ν∗y : H∗(BY, BY − ∪ L̂Y ) → CH∗(Md(1))⊕ ⊕

in=d
p>1

CH∗(Min(p))

are isomorphisms.

We now turn to our attention to the map κ∗ in (4.2). From the definition of a Mayer-
Vietoris sequence

κ∗ : H∗(Z,LZ)⊕H∗(Y, LY ) → H∗(Bµ,B
−
µ )

is given by κ∗ =
(
κ∗z,−κ∗y

)
, where

κ∗z : H∗(Z,LZ) → H∗(Bµ,B
−
µ ) and κ∗y : H∗(Y, LY ) → H∗(Bµ,B

−
µ ).

Furthermore, κ∗z and κ∗y are induced by the inclusion maps κz and κy, respectively. We may
view these maps as being induced by the following inclusion maps

αz ◦ νz ◦ jµ,z : (Bµ,B
−
µ ) ↪→ (BZ, BZ−) ↪→ (BZ, BZ− ∪ L̂Z) ↪→ (Z, LZ),
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and
αy ◦ νy ◦ jµ,y : (Bµ,B

−
µ ) ↪→ (BY,BY −) ↪→ (BY, BY − ∪ L̂Y ) ↪→ (Y, LY ),

respectively. Therefore, κ∗z = j∗µ,z ◦ ν∗z ◦ α∗z and κ∗y = j∗µ,y ◦ ν∗y ◦ α∗y.
Combining Propositions 4.4 and 4.5 and making the appropriate identifications, the exact

sequence (4.2) reduces to

. . . → H∗(N(i), L(i))

%̃→


CH∗(Mc(1))⊕ ⊕

in=c
p>1

CH∗(Min(p))




⊕

CH∗(Md(1))⊕ ⊕

in=d
p>1

CH∗(Min(p))




κ̃→ CH∗(Mµ(1))⊕ ⊕

in=c
p>1

CH∗(Mµ(p))⊕ ⊕

in=d
p>1

CH∗(Mµ(p)) → . . .

(4.4)

In this exact sequence κ̃ = (κ̃z,−κ̃y) is given by

κ̃z = Φ∗
µ ◦ κ∗z ◦ (α∗z)

−1 ◦ (ν∗z )
−1 ◦ (j∗c )

−1 ◦ (Φ∗
c)
−1

and
κ̃y = Φ∗

µ ◦ κ∗y ◦ (α∗y)
−1 ◦ (ν∗y)

−1 ◦ (j∗d)
−1 ◦ (Φ∗

d)
−1.

Notice that (ν∗z )
−1 is well-defined if κ̃z is restricted to CH∗(Mc(1)) ⊕ ⊕

in=c
p>1

CH∗(Min(p)).

Using the above representation of κ∗z, we have

κ̃z = Φ∗
µ ◦ j∗µ,z ◦ (j∗c )

−1 ◦ (Φ∗
c)
−1,

which is nothing but the topological transition matrix T µc restricted to CH∗(Mc(1)) ⊕⊕
in=c
p>1

CH∗(Min(p)). Since the topological transition matrix is lower triangular, its restriction

κ̃z is a monomorphism whose image is

CH∗(Mµ(1))⊕ ⊕

in=c
p>1

CH∗(Mµ(p)).

Similarly, κ̃y is also a restriction of the transition matrix T µd, and hence it is a monomorphism
whose image is

CH∗(Mµ(1))⊕ ⊕

in=d
p>1

CH∗(Mµ(p)).

Furthermore, both κ̃z restricted to CH∗(Mc(1)) and κ̃y restricted to CH∗(Md(1)) are identity
matrices given the generators defined by the natural Morse continuation identifications.
Therefore the map κ̃ = (κ̃z,−κ̃y) is an epimorphism, and hence, in view of the exact sequence
(4.4), %̃ is a monomorphism. By the same argument as in the proof of Propositions 4.4
and 4.5, we obtain

H∗(N(i), L(i)) ∼= Im %̃ ∼= Ker κ̃,

which is isomorphic to the diagonal ∆ ⊂ CH∗(Mc(1))⊕CH∗(Md(1)). This is also isomorphic
to CH∗(Mout(1)) by the projection π : CH∗(Mc(1))⊕ CH∗(Md(1)) → CH∗(Mout(1)) applied
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to ∆, where out = d if δ(1) > 0, otherwise out = c. The isomorphism ψ(i) : H∗(N(i), L(i)) ∼=
CH∗(Mout(1)) is thus given by

ψ(i) = π ◦ %̃out = π ◦ Φ∗
out(i) ◦ θ∗out(i)

where θout(i) : (Bout(i),B
−
out(i)) ↪→ (N(i), L(i)) is the inclusion map. Up to the natural tube

continuation identification, the map ψ(i) is in fact induced from the inclusion

ξout(i) : (Tsi
(i),T−

si
(i)) ↪→ (N(i), L(i)).

Therefore, we have shown

Proposition 4.6 For each i,

ψ(i) : H∗(N(i), L(i)) ∼= CH∗(Mout(1, i)).

The isomorphism ψ(i) is the inclusion-induced map ξ∗out(i) up to the natural tube continuation
identification.

Recall the original Mayer-Vietoris sequence (4.1):

. . . → H∗(N(i, i + 1), L(i, i + 1))
ι∗→ H∗(N(i + 1), L(i + 1))⊕H∗(N(i), L(i))
η∗→ CH∗(Min(Pi, i)) → . . .

Here the maps ι∗ = ι∗1 ⊕ ι∗2 and η∗ = (η∗1,−η∗2) are induced from inclusion maps as follows:

ι1 : (N(i + 1), L(i + 1)) ↪→ (N(i, i + 1), L(i, i + 1)),

ι2 : (N(i), L(i)) ↪→ (N(i, i + 1), L(i, i + 1)),

η1 : (Tsi+1
(i + 1),T−

si+1
(i + 1)) ↪→ (N(i + 1), L(i + 1)),

η2 : (Tsi+1
(i + 1),T−

si+1
(i + 1)) ↪→ (N(i), L(i)).

Note that η∗1 = ξ∗out(i + 1) = ψ(i + 1). Using Proposition 4.6 and natural Morse and tube
continuation identifications (see Remarks 2.10 and 2.11), this sequence can be rewritten as

. . . → H∗(N(i, i + 1), L(i, i + 1))
ι̃→ CH∗(Min(Pi, i))⊕ CH∗(Mout(1, i))
η̃→ CH∗(Min(Pi, i)) → . . .

(4.5)

where
ι̃ = ι̃1 ⊕ ι̃2 and η̃ = (η̃1,−η̃2)

are given by

ι̃1 = ψ(i + 1) ◦ ι∗1,

ι̃2 = ψ(i) ◦ ι∗2,

η̃1 = η∗1 ◦ (ψ(i + 1))−1 = id,

η̃2 = η∗2 ◦ (ψ(i))−1.

This implies that η̃ is an epimorphism and thus ι̃ is a monomorphism. In particular, we
obtain the following result.
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Proposition 4.7

ι̃2 : H∗(N(i, i + 1), L(i, i + 1)) → CH∗(Mout(1, i))

is an isomorphism. Furthermore ι̃2 = ψ(i)◦ι∗2 where ι2 : (N(i), L(i)) ↪→ (N(i, i+1), L(i, i+1))
is the inclusion map.

Proof of Proposition 4.1. The proof is by induction. Observe that for k = 2, the result
follows from Proposition 4.7 with i = 1. Therefore, we make the following induction as-
sumption:

Ψ(k) = ψ(1) ◦ l∗(k) : H∗(N(1, k), L(1, k)) → CH∗(Mout(1, 1)) (4.6)

is an isomorphism, where l(k) : (N(1), L(1)) ↪→ (N(1, k), L(1, k)) is the inclusion.
Consider now the following Mayer-Vietoris sequence,

. . . → H∗(N(1, k + 1), L(1, k + 1))
ι∗→ H∗(N(k + 1), L(k + 1))⊕H∗(N(1, k), L(1, k))
η∗→ H∗(N(k + 1) ∩N(1, k), L(k + 1) ∩ L(1, k)) → . . .

(4.7)

Proceeding by the same arguments that follow the Mayer-Vietoris sequence (4.1), we can
replace (4.7) with

. . . → H∗(N(1, k + 1), L(1, k + 1)) → CH∗(Min(Pk, k))⊕H∗(N(1, k), L(1, k))

→ CH∗(Min(Pk, k)) → . . .

Now, using the induction step, this becomes

→ H∗(N(1, k + 1), L(1, k + 1))
ι̃→ CH∗(Min(Pk, k))⊕ CH∗(Mout(1, 1))
η̃→ CH∗(Min(Pk, k)) → . (4.8)

As before, η̃ is an epimorphism and ι̃ is a monomorphism, and hence H∗(N(1, k+1), L(1, k+
1)) is isomorphic to Ker η̃, which is in fact CH∗(Mout(1, 1)). The isomorphism is given by
the second component of ι̃ which is the composition of ψ(1) ◦ l∗(k) followed by the second
component of ι∗. Since the second component of ι is the inclusion (N(1, k), L(1, k)) ↪→
(N(1, k + 1), L(1, k + 1)), the desired isomorphism is ψ(1) ◦ l∗(k + 1) = Ψ(k + 1). Therefore,
the result follows. 2

Finally we relate the isomorphism Ψ(k) : H∗(N(1, k), L(1, k)) → CH∗(Mout(1, 1)) to the
map Θ(k) introduced in (1.8).

Proposition 4.8 Let ξin(k) : (Tsk+1
(k + 1),T−

sk+1
(k + 1)) ↪→ (N(1, k), L(1, k)) be the inclu-

sion. Then
ξ∗in(k) : H∗(N(1, k), L(1, k)) → CH∗(Min(Pk, k))

is equal to the composition map

Θ(k) ◦Ψ(k) : H∗(N(1, k), L(1, k)) → CHout(1, 1) → CH∗(Min(Pk, k)),

where Ψ(k) is defined in (4.6).
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Proof. The proof is again by induction. Recall Θ(k) is the composition

Θ(k) = Dk(Pk, 1) ◦Dk−1(Pk−1, 1) ◦ . . . ◦D2(P2, 1) ◦D1(P1, 1)

where
Di = Di(Pi, 1) : CH∗(Mout(1, i)) → CH∗(Min(Pi, i))

is the (Pi, 1)-entry of the directional transition matrix. The case k = 2 follows from the
commutative diagram:

H∗(N(1, 2), L(1, 2))
l∗(1)−→ H∗(N(1), L(1))

↓ ↙ ↓ ψ(1)

CH∗(Min(P1, 1))
D1←− CH∗(Mout(1, 1))

where arrows without name are inclusion-induced maps. Supposing that the claim is true
up to k, we consider the commutative diagram:

CH∗(Min(Pk+1, k + 1)) ¾

Dk+1
CH∗(Mout(1, k + 1))

‖
CH∗(Min(Pk, k)) ¾

Θ(k)
CH∗(Mout(1, 1))

?

?
@

@R
Ψ(k)

H∗(N(1, k + 1), L(1, k + 1)) - H∗(N(1, k), L(1, k))

where all arrows without name are inclusion-induced maps. This clearly shows the assertion,
since Dk+1 ◦Θ(k) = Θ(k + 1). 2

5 Computation of the Index

The exact sequences of Section 4 are true in complete generality. In this section we will
specialize and prove Theorems 1.6 and 1.10.

Proof of Theorem 1.6. We begin with the proof that

N =
I⋃

i=1

B(i) ∪
I⋃

i=1

T (i)

is an isolating neighborhood for ϕε. By Lemma 3.2.1, N is an isolating neighborhood for
ϕε. Observe that Inv(N,ϕ0) = Inv(N , ϕ0). Let x ∈ cl(N \N). Then, x 6∈ Inv(N , ϕ0), and
hence, leaves N in a finite time tx under ϕ0. Since cl(N \N) is compact, there is a uniform
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T > 0 such that |tx| < T for all x ∈ cl(N \ N). Therefore, for sufficiently small ε > 0,
x 6∈ Inv(N , ϕε). This implies that N is a singular isolating neighborhood, and furthermore,
that Inv(N , ϕε) = Inv(N,ϕε).

Since the Conley index of an isolated invariant set is independent of the isolating neigh-
borhood used to compute it, the fact that Inv(N , ϕε) = Inv(N,ϕε) implies that

CH∗(Inv(N , ϕε),Z2)) ∼= CH∗(Inv(N, ϕε),Z2)).

Since (N, L) is a singular index pair it is sufficient to compute H∗(N,L). Now recall that
T (1) = T (I + 1). Thus, we can, without loss of generality, assume that T(1) = T(I + 1).
At the same time, however, let us assume that s1 and sI+1 have been chosen such that
N(I) ∩N(1) ∩T(1) = ∅. In this case there exists a1 < q1 < q2 < b1 such that

N \N(1, I) =
⋃

q1<λ<q2

Tλ(1).

Let
Q :=

⋃

q1≤λ≤q2

Tλ(1) and Q− :=
⋃

q1≤λ≤q2

T−
λ (1)

This sets up yet another Mayer-Vietoris sequence

. . . → H∗(N, L) → H∗(Q,Q−)⊕H∗(N(1, I), L(1, I))

→ H∗(Tq1(1),T−
q1

(1))⊕H∗(Tq2(1),T−
q2

(1)) → . . . (5.1)

By Corollaries 2.8 and 2.9

Hj(Q,Q−;Z2) ∼= Hj(Tqi
(1),T−

qi
(1);Z2) ∼= CHj(Mout(1, 1);Z2) ∼= CHj(Min(PI , I);Z2).

By Proposition 4.1

Hj(N(1, I), L(1, I)) ∼= CHj(Mout(1, 1);Z2) ∼=
{
Z2 if j = k;
0 otherwise.

Therefore, using the isomorphisms and applying Corollary 2.9 to Hj(Tqi
(1),T−

qi
(1);Z2), (5.1)

reduces to

0 → Hk(N, L;Z2)
W→ Hk(Q,Q−;Z2)⊕Hk(N(1, I), L(1, I);Z2)

X→ CHk(Min(PI , I);Z2)⊕ CHk(Mout(1, 1);Z2)
δ∗→ Hk+1(N, L;Z2) → 0 (5.2)

To determine the map X observe that Corollary 2.9 implies that the matrix representing

Hk(Q,Q−;Z2) → CHk(Min(PI , I);Z2)⊕ CHk(Mout(1, 1);Z2)

is the transpose of (1, 1). Similarly, Proposition 4.1 implies that

Hk(N(1, I), L(1, I);Z2) → CHk(Mout(1, 1);Z2)

is the isomorphism Ψ(I). Therefore, we only need to consider

Hk(N(1, I), L(1, I);Z2) ∼= CHk(Mout(1, 1);Z2) → CHk(Min(PI , I);Z2).

However, from Proposition 4.8, this is clearly Θ ◦ Ψ(I). Since X is an isomorphism if and
only if Θ = 0, the result follows. 2
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Remark 5.1 The hypotheses of Theorem 1.6 are rather restricitive compared with those of
Theorem 1.10 which will be proven next. This deserves a brief comment. First, it should be
obvious that all the information needed to compute H∗(N, L) is contained in the sequence
(5.1) and that X is completely determined by the directional transition matrices. However, in
the final analysis the usefulness of Theorem 1.6 is via Corollary 1.8. In particular, one needs
a theorem which translates the Conley index information into useful information concerning
the dynamics. The crucial result [10, Theorem 1.3] allows for more general Conley indices
than those computed by Theorem 1.6. Unfortunately, it is not clear what are the most
general form of indices of Morse sets and conditions on the directional transition matrices
that lead to the hypothesis of [10, Theorem 1.3]. A more important question, however,
is the need for further theorems which translate Conley index information into structural
information about the dynamics.

Proof of Theorem 1.10.
Proof of (1): The proof that N is a singular isolating neighborhood proceeds as in the

proof of Theorem 1.6.
Proof of (2): From Definitions 1.1(2), 1.2(2), and 1.2(3), it follows that

Inv(N(1, I), ϕε) = ∅
for all ε > 0 sufficiently small. Furthermore, from Definitions 1.1(2) and 1.3(2), it follows
that, under the flow ϕε for any ε > 0, points in Inv(N,ϕε) which leave C(R) flow into B(I)
and points leave B(1) into C(A). Hence (Inv(C(R), ϕε), Inv(C(A), ϕε)) is an attractor-
repeller decomposition of Inv(N, ϕε) for all ε > 0.

Proof of (3): Let NA := N(1, I) ∪ C(A) and LA := L(1, I) ∪ C−(A). This leads to the
following Mayer-Vietoris sequence

. . . → H∗(NA, LA) → H∗(C(A),C−(A))⊕H∗(N(1, I), L(1, I))

→ H∗(C(A) ∩N(1, I),C−(A) ∩ L(1, I)) → . . .

It is left to the reader to check that this implies that

H∗(NA, LA) ∼= H∗(N(1, I), L(1, I)).

The final Mayer-Vietoris sequence that we need to consider is

. . . → H∗(N,L)

→ H∗(C(R),C−(R) ∪W u
C(R)(S∗(R)))⊕H∗(NA, LA)

→ H∗(C(R) ∩NA, (C−(R) ∪W u
C(R)(S∗(R))) ∩ LA) → . . .

(5.3)

By Corollary 2.9 and Proposition 2.6, H∗(C(R),C−(R) ∪W u
C(R)(S∗(R))) = 0. Obviously,

H∗(C(R) ∩NA, (C−(R) ∪W u
C(R)(S∗(R))) ∩ LA) ∼= CH∗(Min(PI , I)).

Therefore, by Proposition 4.1, (5.3) reduces to

. . . → H∗(N,L) → CH∗(Mout(1, 1))
X→ CH∗(Min(PI , I)) → . . .
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From Proposition 4.8, the map X is equal to Θ. However, CH∗(Inv(C(A), ϕε)) ∼= CH∗(Mout(1, 1)),
CH∗+1(Inv(C(R), ϕε)) ∼= CH∗(Min(PI , I)) and CH∗(Inv(N , ϕε)) ∼= H∗(N, L). Therefore, the
necessary condition for

CH∗(Inv(N , ϕε)) ∼= CH∗(Inv(C(A), ϕε))⊕ CH∗(Inv(C(R), ϕε))

is X = Θ = 0. Indeed, one can show the following lemma:

Lemma 5.2 For an exact sequence of finitely generated Abelian groups:

X→ C
α→ A

β→ B →,

if X 6= 0, then A cannot be isomorphic to the direct sum B ⊕ C.

Proof. Let T (A) and F (A) denote the torsion and free part of A, respectively. Since
0 → T (A) → A → F (A) ∼= A/T (A) → 0 is an exact sequence, one has the following
commutative diagram:

0 0 0
↓ ↓ ↓

0 → T (C)
α′→ T (A)

β′→ T (B) → 0
↓ ↓ ↓

0 → C
α→ A

β→ B → 0
↓ ↓ ↓

0 → F (C)
ᾱ→ F (A)

β̄→ F (B) → 0
↓ ↓ ↓
0 0 0

where the vertical arrows are exact, whereas the horizontal arrows are not in general exact
but are merely chain maps, hence one has the homology long exact sequence as follows:

0 → Ker α′ → Ker α → Ker ᾱ

→ Ker β′/Im α′ → Ker β/Im α → Ker β̄/Im ᾱ

→ Coker β′ → Coker β → Coker β → 0.

Suppose A ∼= B ⊕ C were true, then F (A) ∼= F (B) ⊕ F (C), which implies Ker ᾱ = 0
and therefore Ker α′ ∼= Ker α. Since C → A → B is exact, Ker β/Im α = 0, and
hence Ker β′/Im α′ = 0 from the above long exact sequence. This means that, under the
assumption A ∼= B⊕C, the sequence T (C) → T (A) → T (B) is exact, and therefore Ker β′ ∼=
Im α′. Since T (A), T (B), T (C) are all finite groups, their orders |T (A)|, |T (B)|, |T (C)| satisfy

|T (B)| ≥ |Im β′| = |T (A)|/|Ker β′| = |T (A)|/|Im α′|

and
|Im α′| = |T (C)|/|Ker α′|,
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and hence
|T (A)| ≤ |T (B)| · |T (C)|/|Ker α′|.

On the other hand, A ∼= B ⊕ C implies T (A) ∼= T (B) ⊕ T (C) as well, thus |T (A)| =
|T (B)| · |T (C)|. Combining this with the above, one obtains

|Ker α′| ≤ 1,

and therefore 0 = Ker α′ ∼= Ker α. This shows the injectivity of α, and hence X = 0. This
completes the proof of Lemma and hence of Theorem 1.10. 2
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6 Existence of a Poincaré Section

Proof of Theorem 1.7. Since N is an isolating neighborhood, by Theorem 2.3 there is an
isolating block B with Inv(B, ϕε) = Inv(N,ϕε). If Inv(B, ϕε) were empty then B− would be
the required section. We need to add something to B− to take care of the points which stay
in B.

For any time T > 0 there is an isolating block B′ such that B′ ⊂ int(B), x ∈ B′ implies
ϕε([0, T ], x) ⊂ B, and Inv(B′, ϕε) = Inv(N, ϕε) (see [13]). So fix such a T > 0 and a
B′. Let K ′ be a piece of the tube T1 with K ′ homeomorphic to [0, 1]n × (q1, q2), where
a1 < q1 < q2 < b1. We have already used this construction in the proof of Theorem 1.6.
By making q2 − q1 sufficiently small, we may assume that x ∈ B′ ∩ K ′ implies that either
ϕε([0,∞), x) ⊂ B′ or that ϕε([0,∞), x)∩ (B ∩ [0, 1]n×{q1, q2}) 6= ∅. Using the identification
of K ′ with [0, 1]n × (q1, q2), let Π = [0, 1]n × {(q1 + q2)/2} and let

Ξ = Π ∪ cl(B− \ (B− ∩K ′) ∪ cl((B′)− \ ((B′)− ∩K ′).

We claim that Ξ is the required Poincaré section for B′. It is clearly closed, and it is
transverse to the flow because the disjoint pieces B−, (B′)− and Π are. Finally, we must
show that the forward orbit of every point in B′ intersects Ξ. Clearly if x stays in B′ for all
forward time under ϕε its forward orbit intersects Π. Without loss of generality, assume the
direction of flow in the tube T1 is from q1 to q2. If x ∈ B′ ∩ \((B′)− ∩K ′), then follow the
orbit forward. Either the orbit stays in B′ until it reaches B′ ∩ ([0, 1]n × {q1}), or it leaves
via (B′)− ⊂ Ξ. If the orbit reaches B′ ∩ [0, 1]n × {q1}, then by the choice of B′, the orbit
must continue and intersect Π ⊂ Ξ since B′ ∩ [0, 1]n×{(q1 + q2)/2} ⊂ B. In either case, the
forward orbit of x intersects Ξ, so Ξ is a Poincaré section for B′. 2
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Figure Captions

Figure 1 The nonlinearity of the Nagumo equation.

Figure 2 A schematic picture of the periodic orbit for the Nagumo equation.

Figure 3 A tube.

Figure 4 A box with three Morse components.

Figure 5 The boxes for the Nagumo equation.

Figure 6 Attracting and repelling caps.

Figure 7 Schematic picture of a TBC collection on the left and a TB collection on the right.
The horizontal direction is λ and arrows indicate the sign of λ̇ = εg(x, λ) in a tube ϕε.

Figure 8 A box with two neighboring tubes attached.

Figure 9 Tubes and boxes collection for the homology computation.
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Figure 8: A box with two neighboring tubes attached.
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Figure 9: Tubes and boxes collection for the homology computation.

41


