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Abstract

We show the existence of a set of periodic traveling waves in a
system of two scalar reaction diffusion equations, which is in one-to-
one correspondence with a full shift on two symbols. We use a novel
combination of rigorous numerical computations and the topological
techniques of the Conley index theory. This approach is quite general,
and this paper is intended as a demonstration of its usefulness and
applicability.

On the occasion of Pavol Brunovsky’s 70th Birthday.

1 Introduction

Nonlinear problems with two different time scales are often modeled by singu-
larly perturbed ODEs called fast-slow systems, which can display interesting
phenomena including periodic, heteroclinic or chaotic dynamics. Analytic
and geometric methods have been successfully applied to study dynamics in
fast-slow systems, provided certain properties are known, such as the basic
structure of the fast and slow subsystems, hyperbolicity and transversality
of relevant invariant manifolds, etc. See [6] for a survey of geometric singular
perturbation theory. In practice, however, it is not always possible to verify
these crucial properties by analytical methods.

In [5] a purely topological approach to fast-slow systems was developed.
These techniques allow for the proof of existence of periodic, heteroclinic, and
chaotic solutions. Unfortunately the level of abstraction easily obscures the
essential topological ideas underlying the method. Therefore in this paper
we formulate concrete geometric hypotheses which can be rigorously verified
using existing numerical methods. Though in Section 2 a brief review is pro-
vided, the expectation is that the reader is familiar with concepts developed
in [5].

The particular example considered in this paper is motivated by the work
of Gardner and Smoller [4] on the existence of periodic traveling waves for a
system of reaction diffusion equations of the form

€Uy = Ugy +uf(u,v) (11)
Uy = gy +vg(u,v) ’

where v and v are population densities of a prey and a predator species and
€ > 0 is small. They also assume that % < 0, % > 0, and that the zero

2



(b)

Figure 1: (a) General shape of the zero sets for the functions f and g in [4].
(b) Zero sets for the particular problem (1.3) considered in this paper. The
v-axis and the right branch of f = 0 are branches of the slow manifolds M;
and My, respectively.

sets of f and ¢ are as indicated in Figure 1. Choosing the traveling wave
coordinate £ = (z — 0t) /¢, the system (1.1) reduces to the fast-slow system

U = w

11'1 = —0w —uf(u,v) (1.2)
v = ez

z = —e(0z+4vg(u,v))

where the derivatives are taken with respect to &.

Under the above, fairly general hypotheses on f and g and using the
Conley index, Gardner and Smoller proved the existence of a periodic solu-
tion to (1.2) for € > 0, but sufficiently small. In this paper we consider a
simplification of this problem, but using more sophisticated index techniques
developed in [5] we prove the existence of not only periodic orbits but also
a set of infinitely many bounded trajectories which are encoded by symbolic
sequences. In particular, we define

flu,v) = (1 —u)(u—wv) (1.3)

g(u,v) = au—b—v

and set § = £0.25, a = 1.65, and b = 0.25. Our justification for considering
this simplified set of equations is that it provides us with an easily under-
stood system in which to demonstrate that these new index techniques can
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be combined in a straightforward manner with computational techniques to
provide rigorous results about the dynamics of systems with two time scales.
With regard to the methods, to a large extent the particular choices of 6,
a, and b are arbitrary, though obviously the particular form of the dynamics
depends on these parameters.

Theorem 1.1 Consider (1.1) for the particular choice of nonlinearities (1.3),
where a = 1.65, and b = 0.25. For ¢ > 0 sufficiently small there exist two
periodic traveling wave solutions with wave speed 8 = —0.25 whose profiles
with respect to the v-variable are indicated in Figure 2.

Theorem 1.2 Consider (1.1) for the particular choice of nonlinearities (1.3),
where a = 1.65, and b = 0.25. For ¢ > 0 sufficiently small there exist two
periodic traveling wave solutions with wave speed 6 = 0.25 whose profiles with
respect to the v-variable are indicated in Figure 3.

05\/ 7 045\
> >

o -
e E

Figure 2: Plot of the two primitive periodic solutions to (1.2) for the partic-
ular choice of nonlinearities (1.3) with § = —0.25, a = 1.65, and b = 0.25.

In what follows we only discuss the case § = —0.25. All the computations
for # = 0.25 have been performed and show that this case can be treated in
a similar manner. The proof of Theorem 1.1 is provided in Sections 3 and 4.
In particular, in Section 3 we consider the fast system which is obtained by

setting € = 0,
Uu=w
{ w=—b0w —u(l—u)(u—v). (1.4)
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Figure 3: Plot of the two primitive periodic solutions to (1.2) for the partic-
ular choice of nonlinearities (1.3) with § = 0.25, @ = 1.65, and b = 0.25.

We use numerical methods to find an isolating block for this system and to
obtain bounds on the unstable manifolds of an equilibrium at different values
of v.!' As Theorem 3.1 indicates this is sufficient information to compute the
associated topological transition matrix.

In Section 4 we consider the slow system which is obtained by rescaling
time and restricting to the slow manifolds defined by u =0 or u = 1,

{ Z:iZ_QZ—U(CLU—b—U) u€{0,1}. (1.5)

In this case we use numerics to obtain bounds for finite time trajectories
for several points and check that they satisfy certain geometric constraints.
In combination with the results of Section 3, Theorem 1.1 follows from [5,
Theorem 1.6].

In Section 5, we prove Theorem 5.1 that allows us to extend Theorem 1.1
to the following result.

Theorem 1.3 Consider (1.1) for the particular choice of nonlinearities (1.3),
where a = 1.65, and b = 0.25. For € > 0 sufficiently small there exists a full

'In principle, for this particular problem this set could be obtained analytically. How-
ever an important goal of this paper is to demonstrate that currently available numerical
methods can be combined with the topological tools of [5] to prove results for these two-
time scale problems.



two-shift of traveling wave solutions with wave speed 6 = —0.25. The pro-
files with respect to the v-variable of these solutions are well approximated by
arbitrary concatenations of the profiles indicated in Figure 2.

As we mentioned above, a similar extension of Theorem 1.2 applies to the
case of § = 0.25.

In the context of fast-slow systems, the existence of various types of dy-
namics including chaotic solutions has already been proven and/or discussed
by different approaches, see [7] and references therein.

Though the results of this paper are obtained by a careful interweaving
of numerical and topological methods, for the sake of clarity in Sections 3
and 4 we treat the numerical results as if they had been obtained by rigorous
analytical methods. The justification for the use of the numerical results is
postponed to Section 6.

2 Preliminaries

In this section, we recall some of the basic terminology of the Conley index
theory and summarize the main results of [5].

Consider, for the moment, an arbitrary flow v : Rx X — X defined on X,
a locally compact metric space. A compact set N C X is called an isolating
neighborhood if

Inv(N,v) :={z € X | y(R,z) C N} C int(N)

where int(N) denotes the interior of N. If S = Inv(N,~) for some isolating
neighborhood N, then S is referred to as an isolated invariant set. The
cohomological Conley index of S is defined as the relative Alexander-Spanier

cohomology B
CH*(S) := H*(N, L)

of a pair of topological spaces (NN, L), called an index pair, where N is an
isolating neighborhood of S and L is referred to as an ezit set of N. See [15]
for a precise definition.

Now consider a family of differential equations on R” = R* x R given by

i = f(z,y), 9§ = eg(z,y), (2.1)



where f: RF x R — R¥ and ¢ : RF x R® — Rf are C' and ¢ > 0. For fixed
€ > 0, the solutions to system (2.1) generate a flow

R xR" — R™

In the special case € = 0, (2.1) has a simpler form, since y becomes a constant,
and hence, can be viewed as a parameter for the flows on R¥. Namely, for
each y € R, there exists a flow ¢, : R x R* — R* given by

(wy(t>$)7y) = gao(t,at,y). (22)
For a fixed bounded region Y C R’ the parameterized flow
Py RxRFxY - RFxY

is defined by ¥y (¢, z,y) = (Y, (t,z),y) for y € Y.
Another way to simplify (2.1) is to first rescale time by 7 = et and then
in the new equations let ¢ = 0:

The set of points (z,y) € R¥* with f(z,y) = 0 is called a slow manifold
of the problem (2.1). If % is invertible for y in some bounded set Y, then
by the Implicit Function Theorem, there is a function x = m(y) such that
f(m(y),y) = 0. The set M := {(x,y) € R*¥* |z =m(y),y € Y} is a branch
of the slow manifold over Y. Solutions of

y=g(m(y),y)

determine the slow flow @5¢% : R x M — M. If the branch M is clear from
the context, the slow flow is denoted by ™% (y, t).

In general, an isolating neighborhood and, hence, an index pair cannot
be obtained for the singular flow ¢°. Conley [3] resolved the first part of this
problem by providing a characterization of a singular isolating neighborhood,
that is, a compact neighborhood which is an isolating neighborhood for (¢ for
all sufficiently small € > 0. The latter issue was addressed by Mrozek, Reineck
and the fifth author with a description [13, Theorem 1.15] of a singular index
pair; that is, a pair of sets (N, L) such that

CH*(Inv(cl(N'\ L)), ¢°) & H*(N, L)
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for all sufficiently small € > 0.2

To apply the theory to a fast-slow system, we choose a singular orbit
made up of parts that lie in the slow manifold and parts that are heteroclinic
orbits of the fast flow. Along the singular orbit, the following two ingredients
are required:

(1) we need to be able to construct the sets N and L, and

(2) we need to be able to identify the Conley indices of the elements on dif-
ferent branches of the slow manifold that are connected by heteroclinic
orbits of the fast dynamics.

The construction of N over a branch of the slow manifold M is in some
sense the easiest. Let ¥ be an (/—1)-dimensional disc which is a local section
for a slow flow ©*°% on a slow manifold M. A slow sheet is a normally
hyperbolic subset £ C M defined by

E:=J ¢ (0,T(2)), 2)

IS

where T': ¥ — (0,00) is a bounded continuous function. The requirement
that the slow manifold be normally hyperbolic simplifies the construction of
a singular isolating neighborhood.

In practice, each slow sheet contains a segment of the singular orbit that
lies on a branch of the slow manifold. For technical reasons, the slow sheets
may be too large and thus for each, we must choose a subdomain U C FE.
To produce a neighborhood in R* x Rf a tube

U:=[-nrr"xU

is defined where 0 < r < 1. In the region containing the segments of singular
solutions on the slow manifold, sets of this form define N. The choice of the
corresponding exit set restricted to U is more subtle; it depends on how the
individual tubes are related to each other. For the precise expression, the
reader is referred to the definition of TV in [5] and [5, Proposition 5.12].
The construction of N also involves neighborhoods that contain the hete-
roclinic orbits of the fast flow that join the singular segments in the slow flow.

2The bold face script is introduced at this point to be consistent with the notation
appearing in Section 5.



However, the existence of the heteroclinic orbits is not in itself sufficient. It is
necessary that these fast orbits carry the index information from one tube to
the next. This additional information is encoded in the topological transition
matriz described below. (See [11] for more details.)

Let S be an isolated invariant set. Recall that a Morse decomposition

M(S) ={M(p) |p € (P,>)}

of an isolated invariant set .S is a finite collection of disjoint compact invariant
subsets M (p), called Morse sets, indexed by a partially ordered set (P, >),
with the property that; if € S\ U,ep M(p), then there exist p,q € P with
q > p such that the alpha limit set of = is contained in M (q) and the omega
limit set of = is contained in M(p). In particular, a Morse decomposition
consisting of only two Morse sets (M(1),M(2)) with 1 < 2 is called an
attractor repeller pair decomposition of S. In the context of a parameterized
flow ¥y : RxR* x Y — RF x Y, a Morse decomposition continues over Y, if
there is an isolated invariant set S = Inv(V, ¥y ) with a Morse decomposition
{M(p)}. Observe that if one defines

Sy = SN (R" x {y}),

then S, is an isolated invariant set for v,. Similarly, {M,(p)} is a Morse
decomposition for S,.

Since S is an isolated invariant set for iy, there exists an index pair
(N,L) and CH*(S) = H*(N,L). It can be checked that (N,,L,) is an
index pair for S,. Furthermore, the continuation theory of the Conley index
guarantees that for all y € Y the inclusion map j, : (N,, L,) — (N, L)
induces an isomorphism j» : H*(N,L) — H*(Ny, L,). The same result
applies to attractors and repellers.

We codify this discussion into the context of the fast-slow systems via the
following definition (see Figure 4).

Definition 2.1 A set B C R* x R’ is a boz, if the following conditions are
satisfied:

(1) B is an isolating neighborhood for the parameterized flow 15 defined
by
g - RxRFxB — RFxB
(t7$7y) = <¢y(t7$)7y)7
where B :=II(B).



(2) Let S(B) := Inv(B, ¢5). There exists an attractor-repeller decomposi-
tion

M(S(B)):={M(p,B)[p=12 (2> 1)}

(3) There are isolating neighborhoods V' (p, B) for M(p,B), p = 1,2, such
that
V(p,B)CintB and V(1,B)NV(2,B)=10.

(4) Let B, = BN(R*x {y}), S,(B) := Inv(B,, ¢,) and let {M,(p,B) | p =
1,2} be the corresponding attractor-repeller decomposition of S,(B).
There are subsets B° and B! open relative to the subset topology on
B such that for fixed i = 0,1 the invariant sets S,(B) are related by
continuation for all y € B'.

(5) For each y € B, the set B, is a k-dimensional disc.

Figure 4: Construction of boxes. A box is formed in part by the intersection
of tubes contained in a shaft. A shaft is a two-dimensional rectangle with
no heteroclinic orbits for the fast flow associated with the slow variable on
the two vertical boundaries (for a precise definition see [5, Definition 5.1]).
Boxes for the slow system (1.5) are constructed in Figure 9, with close-ups
in Figure 10.

Notice that Definition 2.1 (4) implies that there are no heteroclinic or-
bits between the Morse sets at the parameter values y € B° U B. By the
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construction, the sets S,,(B), yo € B° and S, (B), y; € B' are related by
continuation. It follows that a topological transition matrix

Ty, + CH* (M, (1,B)) ® CH*(M,,(2,B))
— CH*(M,,(1,B)) ® CH*(M,,(2,B))

is defined for every y, € B® and y; € B!. We note that by the continuation
argument, topological transition matrices between yo and yj € B° or between
y1 and y; € B! are identity maps, therefore, T, 4, does not depend on the
choice of yy € B® and y; € B', and hence may be denoted by T%.

In this way, given a particular singular orbit we can construct a finite
collection of tubes and boxes. A compatible collection of these objects is
called a periodic corridor. As one might expect the precise description of
these compatibility conditions is fairly technical and the reader is referred
to [5, Definition 5.3 |. We conclude with the statement of one of the main
results of [5].

Theorem 2.2 Consider the fast-slow system (2.1) and a periodic corridor
containing boxes {Bi}i—1 ... If T5,(2,1) is an isomorphism for all i =
1,...,1, then for sufficiently small ¢ > 0, there exists a periodic solution
to (2.1).

3 Fast Dynamics

In this section we discuss constructions involving the fast system (1.4). All
these constructions have been performed numerically and the details of these
computations are described in Section 6. For relevant definitions of these
constructions we refer the reader to [5]. We have two basic goals in this
section. The first is to construct a box, or rather a series of boxes, which
are the sets possibly containing a heteroclinic solution between equilibrium
points. Such a heteroclinic solution in the fast system, if it exists, corresponds
to an inner layer of the periodic solutions of the entire fast-slow system. The
second goal is to compute a particular entry in the topological transition
matrix which, when nontrivial, indicates that such a heteroclinic solution
does exist in the box. It will be more convenient to reverse the order and
compute first the topological transition matrix.
Our general setting is a family of differential equations

i =h(x,)\), R} XN€EA, (3.1)
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which generates a flow ¢, : R x R? — R?, where A C R2. In our case the fast
system (1.4) nominally generates such a two-parameter family of flows 1, .y,
where v, 2z are parameters corresponding to the slow variables. However it is
clear from the form of the equations that ¢ depends only on the parameter
v and thus, in an abuse, but simplification of notation, in what follows, we
will often make the identification A\ = v.

Given a compact set X C R2, the immediate exit set and immediate
entrance set of X under the flow v, are defined respectively as

Xy = {xe€edX |n((0,t),2) ¢ X Vt >0} and
XF o= {z e dX | a((t,0),2) ¢ X Vt <0}.

In what follows we refer to a compact set X which is a simply-connected
region in the (u,w) plane. This region is a result of a numerical computa-
tion and is identified as a list of edges (i.e. pairs of points) in R? and the
two-dimensional polygon they bound. The important property of X is that
it allows one to compute the topological transition matrix. Therefore we
formulate a set of assumptions on the set X which allows us to conclude that
a off-diagonal entry, namely the (2,1) entry, of the topological transition
matrix is an isomorphism. This is the key to the existence of heteroclinic
solutions, namely inner layers, as shown in [5].

A1 X is homeomorphic to the closed unit disk.

A2 The immediate exit and immediate entrance sets of X are independent
of A for A € A, that is, there are sets X~ = X and Xt = X for all
A € A, and it holds that 0X = X~ U X . Furthermore,

X~ =X UX;,

where each of X (i = 1,2) is a single or a union of compact connected
components of X~ such that X; N X; = 0.

A3 There exists a continuous Lyapunov function V' : X x A — R with the
property that
V(¢A(t> $)7 )‘) < V(ZL‘, /\)

for every t > 0 with equality if and only if x is an equilibrium point for
(3.1).
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A4 For each A € A there exist exactly three hyperbolic equilibria M) (i) €
X,1=1,2,3, of (3.1) which vary continuously as a function of A. With
regard to the Lyapunov function of A3, i > j implies V(M,(i),\) >
V(Mx(j), ). Furthermore, M,(3) is a source and M,(2) and M, (1)
are saddles.

The final assumption involves measuring the difference in the dynamics
at A\g and A; (see Figure 5). Let W"(M,(2)) denote the unstable manifold of
M, (2) under the flow 1. Let W} (M,(2)) denote the connected component
of W*(M,(2)) N X which contains M, (2).

A5 W (My,(2))N X~ = {z$ a5 } for i = 0,1. Furthermore, {5 ,25 } C
Xy, while € X[ and xl/’\l € X,.

Theorem 3.1 Given assumptions A1-A5, let Sy = Inv(X,v,). A Morse
decomposition for Sy is given by

M(Sy) == {My(i) | i =1,2,3)

with admissible ordering 3 > 2 > 1. Furthermore, S\ and the Morse decom-
position M(S)) continue over A. Let

T+ CHY (M, (1); Zo) @CH™ (M, (2); Zn) — CH™ (M), (1); Zo)BCH™ (M, (2); Zo)
be the topological transition matrix defined over the interval A. Then,

Tripo(2,1) : CHY (Mo (1); Zg) — CH™ (M), (2); Z)
18 an isomorphism.

Proof. Assumptions A3 and A4 guarantee that M(S)) := {M,(:) | i = 1,2,3}
is a Morse decomposition for S, with admissible ordering 3 > 2 > 1. Thus,
{2,1} is an interval in the admissible ordering for all A\ € A. By Assumption
A5,

M)\i(27 1) = MM(2) U M)\z(l)

for i = 0,1. Thus, the topological transition matrix T}, , is defined, cf. [11].

It follows directly from assumptions A2 and A5 that W} (M,,(2)) and
W .(My,(2)) lie in different homotopy classes of the pointed topological space
(X/X~,[X~]) which is the homotopy Conley index of Sy. This implies that
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Figure 5: Ilustration of assumption A5. The dynamics for )\, is depicted
in (a) and for A; in (b). In both cases the rectangle represents the set X,
the solid portion of the boundary represents X* and the dashed portion
represents X ~. The sets X; are as labeled. The corresponding figures for
the fast system (1.4) are Figures 7 and 8.

the connecting orbit structure changes between the parameter values \g and
A1, or more formally, the connected simple systems at Ag and A; differ. (See
[11] for a precise treatment.) Thus, by [11, Proposition 3.5] T}, , is not
the identity map. Since it must be lower triangular and we are using Z,
coefficients, the only option is Ty, ,(2,1) = 1. Hence, T\, ,(2,1) is an
isomorphism. O

We now show that Assumptions A1-Ab are satisfied for equations (1.4).
Recall that we identify A = v here, as in the remark after Equation (3.1).

Lemma 3.2 Let X be the simply connected region defined in Figure 6. Then,
Assumptions Al and A2 are satisfied for the fast system (1.4) for v €
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[0.275,0.7), that is A = [0.275,0.7] x R.

Proof. Using interval arithmetic it was shown that the vector field associated
with (1.4) is transverse to the boundary edges for all values of v € [0.275,0.7]
and there are no internal tangencies at a vertex. This implies that each
boundary edge is either an element of X~ or of X*. Those boundary edges
which belong to X ~ are indicated in black (dashed) and those boundary edges
which belong to X are indicated in red (solid). Clearly X~ consists of two
connected components, and this is confirmed in the numerical construction
of X. The list of edges forming d.X is shown in Table 1. U

0.4

1

-
"""""
- ~

0.3

T

T

0.1 ~

|
o
w
T
AY

I

o

[3)]
T

Figure 6: Isolating block X for (1.4) for all v € [0.275,0.7]. The exact list of
vertices forming 0X is in Table 1. The black (dashed) portion of 0.X is the
immediate exit set, X, and red (solid) portion is the immediate entrance
set, XT.

A straightforward calculation implies the following two lemmas.

15



Lemma 3.3 The function V : R? x A — R defined by

2 2 1
V(u,w,v,z)z—% + u? (u——( +U)u+g)

4 3 2
satisfies A3 for A =[0.323,0.326] x R and A = [0.674,0.677] x R.

Lemma 3.4 For v € [0.323,0.326] U [0.674,0.677] the equilibria of (1.4) are
{(0,0), (v,0),(1,0)}. Forwv € [0.323,0.326],

M(3) = (v,0), M(2)=1(0,0), M(1)=(1,0).
For v € [0.674,0.677],

M(3) = (v,0), M(2)=(1,0), M(1)=(0,0).
In both cases, A4 is satisfied.
Lemma 3.5 Let [vg,v1] = [0.323,0.326] and for i = 0,1 let

Wige(M, (2) N X = {a, oy,
Then
{alp 2t} © X0

Uo’ ’l)()
and
a — b —
r, €X; and =z, € X,.

Proof. The lemma follows directly from Figure 7. The unstable manifolds
in Figure 7 are rigorously computed. A detailed discussion of how these
computations were performed can be found in Section 6. O

In a similar manner the proof of the following lemma follows from Fig-
ure 8.

Lemma 3.6 Let [vy,v;] = [0.674,0.677] and for i = 0,1 let W}".(M,,(2)) N
X~ ={a2 25 }. Then
T, € X; and ZL’ZO € Xy
and
{al w0, } C AT

U17 v1
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0.4

Figure 7: Unstable manifolds of the fixed point (0,0) for (1.4). The red
(bottom) curve correspond to v = 0.323 and the blue (top) curve to v =
0.326.

We now turn to the construction of boxes. Let
V= (Rx (=00, —08)) U ((6,1—6) x (—00,0)) U((0.323—-6,0.326+4) x [0,4))
and
Y, = (R x (6,00)) U((6,1—46) % (0,00)) U ((0.674 —6,0.677 + ) x (—6,0]).

Define X, as the connected component of X \ Y; that contains the saddle
equilibrium points, and similarly X, as the connected component of X \ Y,
containing the saddle equilibria. Observe that the sets X \ Y; and X \ Y,
may not be connected but cannot have “holes” in any connected component,
since X is homeomorphic to the unit disk by its construction and since Y]
and Y, are simply connected unbounded domains. Thus, if § is sufficiently
small, X; and X, are well-defined and homeomorphic to the unit disk.
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1.2

Figure 8: Unstable manifolds of the fixed point (1,0) for (1.4). The red
(bottom) curve correspond to v = 0.674 and the blue (top) curve to v =
0.677.

Let ¢, : R x R? — R? be the slow flow on the associated slow manifold
defined by (1.5) and u € {0,1}. For appropriate choice of z, let Z(1,z) C
[0.323,0.326] x R denote the unique orbit segment of ¢ that connects the
point (0.323, z) to the line 0.326 x R.

Proposition 3.7 Choose —co < z, < z* < —0.1 and define B C R? to be
the region bounded by the curves 0.323 xR, 0.326 xR, Z(1, z,), and Z(1, z*).
Then, B := X; x B C R* is a box.

Proof. The first step is to check that X; is well defined. From the form of
the vector field it is sufficient to check that Z(1,—0.1) is defined. However,
this follows from the Mean Value Theorem. It remains to check conditions
(1)-(5) of [5, Definition 1.5].

(1) We need to show that B is an isolating neighborhood for ), . for
all (v,z) € B. Observe that by Lemmas 3.3 and 3.4, for fixed (v,z) € B,

18



Inv (X, ¢(,z)) consists of the equilibria (0,0) and (1,0) and possibly a con-
necting orbit from (0,0) to (1,0). Also, notice that for fixed (v, z) the vector
field associated with the fast dynamics (1.4) is transverse to the bound-
ary of X; except near the equilibria (0,0), (1,0) and (v,0). For 6 > 0,
but sufficiently small, we can use the Unstable Manifold Theorem to con-
clude that there are no internal tangencies of a connecting orbit from (0, 0)
to (1,0) near (0,0) and (1,0). Furthermore, given (u,w) in a sufficiently
small neighborhood of (v,0) for v € [0.323,0.326], V(u,w,v) > V(0,0,v)
precluding the possibility of a (0,0) to (1,0) connecting orbit passing near
[0.323 — 6,0.326 + §] x [0, 4].

(2) This follows from Lemma 3.4 where M (2) = (0,0) and M(1) = (1,0).

(3) This is a triviality since M (2) and M (1) remain constant for all values
of (v,2) € B.

(4) For p > 0 but sufficiently small, let B° = [0.323,0.323 + u) x RN B
and B° = (0.326 — p1, 0.326] x RN B. The result now follows from Lemma 3.6.

(5) By construction X; is homeomorphic to a two-dimensional disk. [
The proofs of the following two propositions are similar.

Proposition 3.8 Choose 0.1 < z, < 2* < oo and define B C R? to be the
region bounded by the curves 0.323 x R, 0.326 x R, Z(1, z,), and Z(1, z*).
Then, B := X; x B C R* is a box.

For appropriate choice of z, let Z(0,z) C [0.674,0.677] x R denote the
unique orbit segment of ¢y that connects the point (0.674,z) to the line
0.677 x R.

Proposition 3.9 Choose —00 < z, < z* < —0.1 and define B C R? to be
the region bounded by the curves 0.674 xR, 0.677 xR, Z(0, z,), and Z(0, z*).
Then, B := X, x B C R* is a box.

4 Slow dynamics

In this section we study the slow flows ¢y and ¢ given by (1.5) with u = 0
and u = 1, respectively. In order to compare these two flows we project them
to flows 1y and ¢, on the (v, z) space. The main data we use as input is

19



depicted in Figure 9 with close-ups of regions of interest in Figure 10. All
curves in these figures have been computed numerically and details of these
computations can be found in Section 6. For the purposes of this section it
is sufficient to assume that the red, green, and blue curves are flow lines of
one of the flows vy, 1.

0.8

0.6 4

0.4

« Green
0.2¢ i

N O Red — < .

S &6
» N
o
C
D
\J

|
o
[e2]
T
I

Figure 9: Orbits of (1.5). The blue and red curves are for v = 0 and the
green curves are for u = 1. We refer to the regions between these curves

as the blue, red, and green regions. The vertical black lines are the lines
v=0.323, v = 0.326, v = 0.674 and v = 0.677.

In the following construction we refer to Figure 9. Let
Ry = [0.323,0.326] x [0.1,0.2] and Ry := [0.323,0.326] x [~0.1, —0.4]

be two regions between the two black lines given by v = 0.323 and v = 0.326.
Let
R':=10.674,0.677] x [—0.4,—0.6]

be a region between the two black lines given by v = 0.674 and v = 0.677.
Further, we let
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Figure 10: Close-ups of Figure 9 near the regions where the orbits “connect”.

e &g be a 1y flow box starting at some section ¥g C {v = 0.677} and
ending at the black line {v = 0.323};

e &g be a 1)y flow box starting at some section ¥g C {v = 0.677} and
ending at the black line {v = 0.326};

o & be a 9y flow box starting at some section ¥ C {v = 0.323} and
ending at the black line {v = 0.674};

o & C & be a 1y flow box starting at some section X, C {v = 0.326}
and ending at the black line {v = 0.674}.

The sections X and Xy are selected so that they lie strictly between the
computed blue and red curves respectively. Also the sections ¥ and X are
selected so that they lie strictly between the computed green curves. These
curves are computed using interval arithmetic and they enclose a true orbit
of the system. We choose these orbits as the boundaries of our sets, see
Figure 9 and Figure 10.

The goal of this section is to verify conditions [5, (H1)-(H4)] and the
conditions of [5, Definition 5.3]. We show in Theorem 4.2 that the following
conditions (B1)-(B6) are sufficient for this purpose. These conditions relate
to collections of the form {(v;, &, Ri)}_,, where ¢; : R x R? — R? is a flow
on &; and indices are cyclic, i.e I +1 = 0.

B1 The sets R; are homeomorphic to J; X [a;, b;], where J; is an interval.
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B2 For all i, the flow v; is transverse to interval J;,1 x {t;41} for all ¢, €
[@i+1,bi+1], as well as to the interval J; x {t;} for all t; € [a;, b;].

B3 The flow ¢; enters the set R; through J; x {a;} and leaves R; through
the set J; x {b;}, for j = 4,7+ 1.

B4 The set &; has the form
52' = U @Z([O,T(Z)],Z)

Z€EY;

where ¥; C Ji11x{a;11} is an interval and T'(z) is given by ¢(T'(z), z) €
Ji X {(IZ}

B5 (gz N Ri—l) g (51'—1 N Ri—l) for all <.
B6 Flows ;.1 and 1); are transverse to each other in R; for all 7.

We consider two regions: the union of the red and green regions and the
union of the blue region with part of the green region in Figure 9. Note that
these regions contain the primitive periodic orbits in Figure 2.

Theorem 4.1 The collections
{(¥0,&r, Ri), (1, &, R)} and {(vo, &8, Rp), (¢1, &5, R')}
satisfy (B1)-(B6).
Proof. For the first collection we set
& =&, R =R, & :=Er, Ro:= Rg.
For the second collection let
& =&, Ri =R, & =&, Ro:=Rs.

We will provide a detailed argument for the first collection and leave the
analogous proof for the second collection for the reader. We set

ay = 0.323, by := 0.326, as := 0.677 and by := 0.674.

With this identification (B1) and (B3) follow immediately. The assumption
(B4) follows from the construction of the sets &;, since the side boundaries

22



are flow lines of the flow ;, i = 0,1. The assumption (B5) follows by
inspection from Figure 10.
To verify (B2) we take a dot product of the vector fields (1.5)

(z,—0z+v(b+v) —av) and (z,—0z 4+ v(b+v)),

corresponding to 1y and 1)y, respectively, with the normal (1,0) to the curves
defined by constant v. In both cases this dot product is z, which is nonzero
in R; with ¢ =0, 1.

To verify the transversality condition (B6) we take the dot product of
the first vector field (z, —0z + v(b+ v)) and the normal of the second vector
field (0z — v(b+ v) 4+ av, z). This dot product is

(z, =0z 4+v(b+v))  (0z—v(b+v)+av,z) =avz
which is nonzero in R; with ¢ = 0,1, since v # 0 in R;. 0]

Let II be the projection onto slow variables (u, w, v, z) — (v, z). We have
the following general theorem.

Theorem 4.2 Consider a collection {(1;, &, Ri) Y, satisfying (B1)-(B6).
For any i, let

If B; = II(B;), namely the projection of a box B;, then the set Ule E; U
Ule B, contains a periodic corridor. (Compare Propositions 3.7, 3.8 and
3.9.)

Proof. We need to verify [5, (H1)-(H4)] and the assumptions of [5, Defi-
nition 5.3]. The assumption (H1) is the same as (4.1), (H2) is (B1) and
(H3) is (B3). Assumption (H4) follows from the transversality assumption
(B6).

The first condition of [5, Definition 5.3] is the assumption that B; = I1(B;)
is a projection of a box. We set B¢ := cl(0B; \ (R; X {a;,b;})). Further,
let V" C &; be the collection of points z such that 1;(t, z) N B; = (), where
we restrict the flow 1; to &. These points will not enter the next set &_;
and will exit the collection Ule &. Let V7 C E; with the property that
V. =1II(V;"). Notice that by assumption (B5)

gide c Y- (4.2)
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where €79 := J, 45 1i(T(2), 2) is the side boundary of the set &;.
The second condition of [5, Definition 5.3] is

id id -
B\ UM C VL.

To verify this condition it is enough to observe that by (4.1), (B3) and (B5)
we have Bgide C &9, The result now follows from (4.2). Notice thet we did
not have to define the set U to obtain this result. For the definition of
this set, the reader is referred to [5, after (5.2) and after Remark 5.2].

The next condition of [5, Definition 5.3] is

Uside C inty, VT Uinty, Vi

The set V" is the set of those points in E; whose projections to &; never
enter & 1. By (B5) V,© =0 for all i. The set

Uiside C Eiside
where £719° = TI(E5'9°). Thus we get by (4.2) and (B5)
Uside ¢ B C VT Cinty, VT = inty, Vit Ulinty, V.

This finishes verification of the second condition of [5, Definition 5.3].
The last two assumptions we need to verify is the existence of homotopy
equivalences of pairs (see [5, Definition 5.3])

ho: (BP,BEOVL,) < (U U™ N V),
hy o (B, B NV, ,) = (zjiiglﬁzjiigl NViZ).
It follows immediately from the definition of these sets in [5] that in our
setting these are equivalent to
ho (B BEAVE,) — (€95 NV)),

[

i (B BINVL) = (61,65 NV

where Y* 1= Y N (R; x {A\}) for Y = B;,&;,E_1. Observe that by (4.2)
(B, B NV_,) = (B,0B;") and that B;" is an interval. The set £" is
an interval with B;" C &' and & \ B* C V;. Thus a deformation retract
of £&" to B{" induces the desired homotopy equivalence hg. Similarly, a
deformation retract of the interval £ | onto its proper subinterval B induces
the homotopy equivalence h. O]

(4.3)
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Corollary 4.3 Consider the collections
{(¥0, s, Re), (V1, €L, R} and {(vo, Er, Rr), (1, &g, R}
For the first collection let
Bg =& NRsgNE;, By =& NR NE
and for the second collection let
Br :=ENRrNEL, Br:=ENR NER.
Then there are periodic corridors
PCp C Eg UBg U E; UBy and PCg C Fr UBR U Ei UBg,
where B; and B, i = R, B are boxes with I1(B;) = B; and I[I(B) = B..

Proof. By Propositions 3.7, 3.8 and 3.9, the sets B;, B, with i = R, B are
projections of boxes. By Theorem 4.1 these collections satisfy (B1)-(B6).
The result now follows from Theorem 4.2. O

Corollary 4.4 For all sufficiently small ¢ > 0 there are two periodic solu-
tions I'g and T'r of the system (1.2), whose projections to slow variables lie
in &g U EL and Eg U &L respectively.

Proof. Corollary 4.3 verifies the existence of a periodic corridor containing
boxes B;, B, with ¢ = R, B, and Theorem 3.1 guarantees that the relevant
entries of the topological transition matrices are all isomorphisms. Thus, [5,
Theorem 1.6], there exist the desired periodic solutions for sufficiently small
e > 0. U

5 Topological Horseshoes of Traveling Waves

Theorem 5.1 For a sufficiently small € > 0 and any symbolic sequence
o € {R,B}?, the system (1.2) has a solution

xZ(t) = (u(t), v (), wl(t), 2 (1))
which satisfies the following condition: there exists a sequence of intervals
(t7,t] for i € Z such that, for alli € Z,

U (6, 41) € By, and T (8] 1 0,]) € .

177

25



Proof. Recall that we have constructed the sets Er, Ep, and Eg, Ef, as well
as the boxes By, Bp, and By, By. Note Ej C EL. We have showed in

Corollary 4.3 that there are periodic corridors
PCr C Er UBR U E UBj

and
PCp C Eg UBg U E; UBg

that contain the basic periodic orbits I'r and I'g, respectively (Corollary 4.4).
Using the results in [5], we can then construct, for each PC, with a = R, B,
a singular isolating neighborhood N, ([5, Lemma 5.8]) and a singular index
pair (N, L,) ([5, Proposition 5.12]). Moreover, from the construction of
these sets given in [5], we have that

(1) there exists £ > 0 such that, for any 0 < e < &, N, and cI(N, \ L,) are
isolating neighborhoods of (1.2) of the invariant set S = Inv(cl(N,));

(2) for any 0 < € < &, the flows on Ny and Ny are identical on E' :=
([=r,r]> x F5) N Np for a sufficiently small » > 0. See [5, (5.7)] for
relevant definitions;

(3) for any 0 < & < &,
H"(Nq, Lo) = CH"(S, ¢%),
where ¢° is the flow of (1.2);

(4) by Theorem 3.1 the (2,1)-entry of the transition matrices associated
with the boxes Bgr, Bg, By, B} are all isomorphisms;

(5) there are sets N, L, such that pairs (N, L,) and (N,, L,) are homo-
topically equivalent, and hence H*(N,, L,) and H*(N,, L,) are isomor-
phic.

Given a positive integer .J, let o/ be a finite truncation o/ = (o_y,...,0)
of o € {R, B}~2. We construct an index pair corresponding to o/ as follows.

Let (N,(7),La(¢)) and (Ng(i), L,(7)) be 2J + 1 copies of these pairs and
the flows on them. Define



and

J
L = |J La.(i) /~,
i=—J

where ~ is an equivalence relation generated by a natural identification of
the flows on N,_,(—.J) and N,,(J). Since the flows of the copies of Ny
and Ny are identical on the corresponding E’-part, this identification is well-
defined. More precisely, letting ¥ be a cross section for the flow on E’ given
by v = 0.677 and 3(7) be the corresponding copies for N, (i), we can identify
the flows on E/ (J) at ¥(J) and B,_,(—J) at ¥(—.J), hence the flow on N’
is well-defined and it automatically satisfies the conditions for an isolating
neighborhood. Moreover, by the Mayer-Vietoris theorem, we have

H*(N’,L7) 2 H*(N,,L,) = H*(N,, L,),

which is isomorphic to the Conley index of the basic periodic orbits. There-
fore, we can conclude that there exists a periodic orbit ¢/ in NY, whose
projection goes through E,, (i = —J,...,J) with the prescribed order by o”/.
Observe that the projection of 1)/ to the original (u,v,w, z)-space is a true
periodic orbit ¢7 of (1.2).

Let £/ be the projection of 1)/ N X(—1), which is an initial point of the
periodic orbit 1. Since the collection of the points {¢/ | J =1,2,3,...} lies
in a compact set 2 NN, it contains a convergent subsequence, whose limit
&2 gives an initial point of the desired orbit satisfying the condition of the
theorem. 0

6 Numerics

In this section we describe the numerical computations used in this paper. We
performed essentially two kinds of numerical computations: computation of
isolating blocks and rigorous computation of trajectories. These are discussed
in the next two subsections.

6.1 Rigorous Computation of Trajectories

We compute rigorous approximations for the orbits of (1.5) using the CAPD
Library [1]. This library uses a Lohner algorithm [10] to compute rigorous
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enclosures for the solutions of ODEs. Consider the initial value problem

v = f(x)
{ x(0) = xo. (6.1)

Given a rectangle containing the initial point zy and a time step At, the
basic idea of Lohner algorithm is to numerically integrate (6.1) and return
a new rectangle which is guaranteed to contain the solution of (6.1) at time
At.

4.0012

4.001

4.0008

4.0006

4.0004

4.0002F

3.9998 ! - ! - ;
g 0 1 2 3 4 5

Figure 11: The first ten rectangles representing one of the solutions in Fig-
ure 7, computed using the CAPD Library. It is worth mentioning that each
solution curve in Figure 7 consists of about 200,000 rectangles.

This process can then be repeated to obtain rigorous enclosures for so-
lutions of (6.1). At each step rigorous error bounds and interval arithmetic
are employed to guarantee that the returned rectangle contains the true so-
lution of (6.1). The main difference between the method described above
and the algorithms used in the CAPD Library is that the latter do not com-
pute a rectangle enclosure for the solution at each step, rather they represent
the solution by other types of set (called interval set, doubleton, etc.). This
guarantee tighter enclosures and reduces the so called wrapping effect. The
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CAPD Library can also compute a rectangle containing the entire trajectory
on the time interval [0, At] (see [16, 14] for further details). The computed
trajectories are thus given by a collection of overlapping rectangles, as shown
in Figure 11.

x 10

3.5F

u x 10~

Figure 12: Close-up of Figure 7 near the point (0,0) showing the two com-
puted solutions which must enclose the unstable manifold for (1.4) with
v = 0.323.

Using the CAPD Library we computed rigorous enclosures for solutions
of (1.5) as shown in Figure 9 and Figure 10. We also computed the un-
stable manifolds of (1.4) using the CAPD Library. To describe how the un-
stable manifolds were computed, consider the unstable manifold of Figure 7
corresponding to v = 0.323 (red curve). We rigorously computed two tra-
jectories using the CAPD Library with initial conditions (0,w*) and (u*,0),
with w* = 4/10000 and u* = 4/10000, as shown in Figure 12. We then use
the fact that w > 0 on the set {(0,w) | 0 < w <w*} and w > 0 on the set
{(©,0) | 0 <u < u*} to conclude that the two red curves in Figure 12 pro-
vide outer bounds for the unstable manifold. Therefore notice that the red
curve in Figure 7 is in fact formed by two red curves. The other unstable
manifolds were computed analogously. The total time for the computation
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of the unstable manifolds and the trajectories in Figure 9 was 15.5 minutes
on a 1.0 GHz P3 machine.

6.2 Computation of Isolating Blocks

In [2], we describe a theoretical foundation for algorithms to compute global
qualitative information about the dynamics of flows generated by a system of
ordinary differential equations. The main idea is to approximate the dynam-
ics on a compact polygon 2 C R" by a multivalued mapping on a polygonal
decomposition of 2. This approximation is determined from the vector field
without numerically integrating to approximate specific trajectories. The re-
sulting multivalued map on polygons is a finite, combinatorial representation
of the flow from which specific qualitative information can be extracted using
topological ideas from the Conley index theory. A general description of such
techniques for maps can also be found in [9, 12].

To construct an appropriate polygonal decomposition, we first triangu-
late €2 by a simplicial complex I with simplices which are aligned with the
flow. Then simplices are aggregated into polygonal regions by removing
(n — 1)-faces which are not transverse to the vector field, yielding a polyg-
onal decomposition P of 2. This transversality is verified rigorously using
interval arithmetic. Thus, on every remaining interior (n — 1)-face the vec-
tor field points out of a polygon P and into a polygon ). The multivalued
map F : P =P is then defined by Q C F(P). The main property of such
polygonal decompositions that we will utilize here is stated in the following
theorem. For a more detailed description of this construction and properties
of such decompositions see [2].

Theorem 6.1 If Q is a collection of recurrent polygons in P and the geo-
metric realization X = | Up>o F(Q)| N | Upso F"(Q)| C int(Q2), then X is
an 1solating block for the flow. In particular, if Q is the set of polygons con-
taining the equilibrium points, then X contains all connecting orbits between
equilibria.

Proof. Follows from the proofs of [2, Theorems 2.18 and 2.20]. OJ

Now we briefly describe the specific computations performed on the fast
system (1.4). First we generate a triangulation in the rectangle [—0.4, 1.4] x
[—0.7,0.7]. The polygonal decomposition resulting from this triangulation
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Figure 13: Coarse polygonal decomposition with 2200 vertices and 1308 poly-
gons from 4336 simplices. The gray shaded region is an isolating block X.
The black (dashed) portion of 0X is the immediate exit set, and red (solid)
portion is the immediate entrance set.

is shown in Figure 13. The details of the algorithms used to generate this
triangulation are beyond the scope of this paper and will be the subject of
future work [8]. The polygonal decomposition in Figure 13 was rigorously
computed by checking the transversality of each edge for the entire interval
of parameter values v € [0.275,0.7] using interval arithmetic, then the mul-
tivalued map was rigorously constructed. Notice that the multivalued map
is valid for all parameter values v € [0.275,0.7], since all the edges are trans-
verse for all v € [0.275,0.7]. Finally the set X was computed starting from
the three polygons containing the three equilibria (0,0), (0.3,0), and (1,0),
and so X contains these equilibria as shown in Figure 14. By Theorem 6.1, X
is an isolating block for all parameter values v € [0.275,0.7]. The boundary
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of the isolating block X has an exit set with two components as shown in
Figure 13.

0.02

0.015F

0.011

0.005F

H of

-0.005p
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-0.015¢

-0.02 - - -0.04, ; . - -
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
u

Figure 14: Close-ups of Figure 13 near the fixed points (0,0) and (1, 0).

We should note that the triangulation used is very coarse and only about
half of the resulting edges are flow transverse. If a finer triangulation were
computed, the number of transverse edges would increase. However, such a
finer triangulation, while computable, is not necessary for the results of this
paper, which is one of the strengths of the Conley index theory. The total
time for these computations, including interval arithmetic, was 2.8 minutes
on a 3.0 GHz P4 machine.
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(-2.925800e-02,-7.789300e-02)
(-8.797000e-03,-8.419100e-02)
(1.411700e-02,-9.529300e-02)
(5.296400e-02,-1.079950e-01)
(4.768200e-02,-1.383070e-01)
(-9.043000e-03,-1.711440e-01)
(4.181000e-02,-1.749900e-01)
(-6.780000e-04,-1.880520e-01)
(9.928000e-03,-2.041890e-01)
(6.938000e-03,-2.294320e-01)
(8.109000e-03,-2.511840e-01)
(8.824300e-02,-2.673380e-01)
(-2.521200e-02,-3.154580e-01)
(6.073000e-03,-3.328580e-01)
(-6.538100e-02,-3.866160e-01)
(-1.745800e-02,-3.981900e-01)
(-1.935200e-02,-4.333460e-01)
(2.918400e-02,-4.575130e-01)
(1.073850e-01,-4.844560e-01)
(2.676750e-01,-4.859080e-01)
(3.664710e-01,-4.954640e-01)
(3.611380e-01,-5.487200e-01)
(5.637840e-01,-5.353800e-01)
(6.500690e-01,-4.557820e-01)

(3.903000e-03,-9.349000e-03)
(1.798000e-03,-1.266700e-02)
(1.477000e-03,-1.704800e-02)
(2.240000e-03,-2.011900e-02)
(-9.160000e-03 -2.979300e-02
(-1.341800e-02,-3.672500e-02
(-4.725000e-03 -4.644800e-02
(-3.834500e-02,-7.005200e-02
(-2.925800e-02,-7.789300e-02
(-8.797000e-03,-8.419100e-02
(1.411700e-02,-9.529300e-02)
(5.296400e-02,-1.079950e-01)
(4.768200e-02,-1.383070e-01)
(-9.043000e-03,-1.711440e-01)
(4.181000e-02,-1.749900e-01)
(-6.780000e-04 -1.880520e-01)
(9.928000e-03,-2.041890e-01)
(6.938000e-03,-2.294320e-01)
(8.109000e-03,-2.511840e-01)
(8.824300e-02,-2.673380e-01)
(-2.521200e-02,-3.154580e-01)
(6.073000e-03,-3.328580e-01)
(-6.538100e-02,-3.866160e-01)
(-1.745800e-02,-3.981900e-01)
(-1.935200e-02,-4.333460e-01)
(2.918400e-02,-4.575130e-01
(1.073850e-01,-4.844560e-01
(2.676750e-01,-4.859080e-01
(3.664710e-01,-4.954640e-01
(3.611380e-01,-5.487200e-01
(
(
(

N

5.637840e-01,-5.353800e-01
6.500690e-01,-4.557820e-01
9.013000e-01,-3.288230e-01

NN N AN N N AN AN

(1.798000e-03,-1.266700e-02)
(1.477000e-03,-1.704800e-02)
(2.240000e-03,-2.011900e-02)
(-9.160000e-03,-2.979300e-02
(-1.341800e-02,-3.672500e-02
(-4.725000e-03,-4.644800e-02
(-3.834500e-02,-7.005200e-02
(-2.925800e-02,-7.789300e-02
(-8.797000e-03,-8.419100e-02
(1.411700e-02,-9.529300e-02)
(5.296400e-02,-1.079950e-01)
(4.768200e-02,-1.383070e-01)
(-9.043000e-03,-1.711440e-01)
(4.181000e-02,-1.749900e-01)
(-6.780000e-04,-1.880520e-01)
(9.928000e-03,-2.041890e-01
(6.938000e-03,-2.294320e-01
(
(
(-
(
(-
(-
(-
(
(
(
(
(
(
(
(
(

— — — — ~— ~—

8.109000e-03,-2.511840e-01
8.824300e-02,-2.673380e-01
2.521200e-02,-3.154580e-01)
6.073000e-03,-3.328580e-01)
6.538100e-02,-3.866160e-01)
1.745800e-02,-3.981900e-01)
1.935200e-02,-4.333460e-01)
2.918400e-02,-4.575130e-01

— — — —

)
1.073850e-01,-4.844560e-01)
2.676750e-01,-4.859080e-01)
3.664710e-01,-4.954640e-01)
3.611380e-01,-5.487200e-01)
5.637840e-01,-5.353800e-01)
6.500690e-01,-4.557820e-01)
9.013000e-01,-3.288230e-01)
8.895690e-01,-3.050800e-01)

Table 1: List of vertices for the edges forming the boundary of the isolating
block X in Figure 6 in order from left to right.

35



