
A degenerate singularity generating

geometric Lorenz attractors

Freddy Dumortier

Departement Wiskunde� Limburgs Universitair Centrum

Universitaire Campus� B����� Diepenbeek� BELGIUM

Hiroshi Kokubu

Department of Mathematics� Faculty of Science�

Kyoto University� Kyoto ������� JAPAN

and

Hiroe Oka

Department of Applied Mathematics and Informatics

Faculty of Science and Technology� Ryukoku University

Seta� Otsu ������� JAPAN

January ��� ����

Abstract

A degenerate vector �eld singularity in IR� can generate a geometric

Lorenz attractor in an arbitrarily small unfolding of it� This enables us

to detect Lorenz�like chaos in some families of vector �elds� merely by

performing normal form calculations of order ��

�



� Introduction

The local bifurcation theory for vector �elds deals with changes of dynamical
structure of a vector �eld germ under perturbation� The Hartman�Grobman
Theorem �Palis and de Melo ����� tells us that a hyperbolic vector �eld singu�
larity is locally structurally stable	 namely	 it has the same dynamical structure
as a nearby vector �eld singularity does 
 no bifurcation occurs after pertur�
bation� Singularities other than hyperbolic ones	 on the contrary	 do undergo
bifurcations and hence they are called �degenerate singularities��

Bifurcations appearing from such degenerate singularities strongly depend
on the singularity itself� A singularity having a simple zero eigenvalue in its
linear part as well as non�degenerate higher order terms generates a pair of
equilibria after perturbation	 which is called the saddle�node bifurcation� A sin�
gularity having one pair of pure imaginary eigenvalues in the linear part together
with non�degenerate nonlinear terms gives rise to a limit cycle bifurcating o
from the singularity	 which is known as the Andronov�Hopf bifurcation �e�g�
�Dumortier ������� More complicated bifurcations occur from more degenerate
singularities	 by which a homoclinic orbit	 an invariant torus	 or chaotic dy�
namics can be generated �Guckenheimer and Holmes ������ Those degenerate
singularities have been studied extensively but many important cases are still
left for further investigation�

The purpose of this paper is to show that even a strange attractor can
be generated from certain degenerate singularities� Namely	 we shall prove the
following�

Theorem ���� Let v be a vector �eld singularity in IR� whose ��jet is given by

y
�

�x
� x�

�

�y
� x�

�

�z
��x� y� z� � IR���

Then there exists an arbitrarily small unfolding of the singularity which contains
a geometric Lorenz attractor�

Here a geometric Lorenz attractor ��Guckenheimer �����	 �Guckenheimer
and Williams �����	 �Williams ������ is a mathematically formulated geomet�
ric model of the Lorenz attractor ��Lorenz ������ which is a strange attractor
observed by computer simulation of the following ordinary dierential equation�

�x � ��y � x��
�y � rx� y � xz�
�z � �bz � xy�

�����

�



with � � ��� r � ��� b � �
�
� The above theorem shows that an unfolding of cer�

tain degenerate singularities contains a �miniature of� strange attractor which
satis�es the de�nition of geometric Lorenz attractors given by Guckenheimer
and Williams� More precise statement is given in x�� Important is that the ex�
istence of such a geometric Lorenz attractor in an unfolding can be veri�ed
by a simple normal form calculation of equations up to terms of order �	 and
therefore it may be possible to use the result as a criterion for the existence
of �Lorenz�like chaos� in given systems 
 in a similar way as the Andronov�
Hopf bifurcation theorem has been used for a criterion to detect an oscillatory
motion�

For the rest of this paper	 we shall give a proof of the above theorem� In
x�	 the singularity is heuristically introduced from the original Lorenz equation
����� according to �Ushiki	 Oka and Kokubu �����	 and in x�	 the main result is
stated in a more precise manner by specifying the necessary unfolding terms� In
x�	 we shall give several additional properties of the singularity� x� is devoted
to a preliminary rescaling argument by which the unfolding is reduced to a cer�
tain type of homoclinic bifurcation problem� This particular homoclinic orbit is
called an �inclination��ip� homoclinic orbit studied by �Yanagida �����	 �Kisaka	
Kokubu and Oka �����	 and �Rychlik ������ The precise de�nition will be given
in x� together with a theorem due to �Rychlik ����� which plays an important
role for our result� He showed that a symmetric pair of such inclination��ip
homoclinic orbits with a certain eigenvalue condition can generate a geometric
Lorenz attractor in its perturbation� In order to apply Rychlik�s theorem to our
case	 we need to perturb our system in order to verify the eigenvalue condition	
and therefore we need to study the persistence of inclination��ip homoclinic
orbits� This task will be carried out in x� by introducing a new Melnikov�like
integral adapted to the inclination��ip homoclinic orbits� In x� we compute the
integrals for our unfolding family	 and �nally in x� we conclude the proof of our
main result� We discuss several related results in x���
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� The Lorenz equation and its scaling limit

We start from the original Lorenz equation ����� with dierent notation for
convenience�

X � � ��Y �X��
Y � � rX � Y �XZ�
Z � � �bZ �XY�

�
� �

d

d�

�
�

and make a change of coordinates as follows ��Ushiki	 Oka and Kokubu �������

�X �
Xp

�
� �Y �

�p
�

�Y �X�� �Z �
�

�� � b

�
Z � X�

��

�
�

which embeds the Lorenz equation into

�X � � �Y �
�Y � � a �X � �X� � p �Y � q �X �Z�
�Z � � �b �Z � �X��

�����

In fact	 when

a � ��r � ��� p � ��� � ��� q � ���� � b��

then the system ����� is reduced back to the original Lorenz equation� No�
tice that the transformed equation still preserves the same symmetry as of the
Lorenz equation�

Then we make further rescaling of the system as follows�

x � � �X� y � �� �Y � z � � �Z� t �
�

�
�

which brings ����� into

�x � y�
�y � ��ax� x� � �py � �qxz�
�z � ��bz � x��

�
� �

d

dt

�
� �����

and therefore	 taking the limit �� �	 we obtain the degenerate system

�x � y�
�y � �x��
�z � x��

�����

From this	 one can observe that any dynamics appearing in the original Lorenz
equation including a numerically generated Lorenz attractor for the standard
parameters � � ��� r � ��� b � �

�
can be put into some but arbitrarily small

perturbation of the degenerate system ������ Of course this does not show the
existence of a chaotic attractor in an unfolding of the degenerate singularity
�����	 because there is no rigorous proof for the existence of chaotic attractors
in the original Lorenz equation	 up to now�
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� The main result

We shall give a de�nition of the geometric Lorenz attractor� Throughout this
paper	 vector �elds are assumed to be in three dimension and have the symmetry

given by the linear map g �

�
B� �� � �

� �� �
� � �

�
CA	 namely	 a vector �eld v on IR� is

assumed to satisfy

v�gx� � gv�x�� �x � �x� y� z� � IR��

We call such a vector �eld a g�equivariant vector �eld�
Consider a g�equivariant vector �eld v on IR� satisfying the following con�

ditions�

�GL��

v�O� � � and Dv�O� �

�
B�
�u � �
� �ss �
� � �s

�
CA

where
� � ��s � �u � ��ss�

In particular the z�axis is the eigendirection to the stable eigenvalue �s

and at the same time it is invariant under the symmetry g�

�GL�� There exists a rectangular cross section R transverse to the �ow gener�
ated by v which intersects the z�axis	 such that the rectangle R is mapped
back into itself by the �ow� The image of R consists of two cusp shaped
regions�

�GL�� There exists a local coordinate ��� 	� on R such that the Poincar�e map
� � R� R generated by the �ow takes the form

���� 	� � ������������ 	�� �����

for � �� �	 with smooth functions ����� satisfying

� ������	� � ����� 	� 

� f� � �g corresponds to the stable manifold W s�O� �R 

� ��
���� 


p
� and lim

���
��
���� � �� 

�



� There exists a constant c with � � c � � such that

� �
���

�	
��� 	� � c � � for � �� �

and

lim
���

���

�	
��� 	� � ��

A g�equivariant vector �eld v satisfying these conditions is called a geo�
metric Lorenz model� Intuitively these conditions seem to �t nicely with the
computer picture from the original Lorenz equation� However	 two strong con�
ditions are imposed here� one is that the Poincar�e map is assumed to preserve
lines � � constant due to the form of the map �����	 and then the other require�
ment is the hyperbolicity	 namely	 expansion in ��direction and contraction in
	�direction� This is equivalent to say that the Poincar�e map � on R admits
an invariant foliation	 on each leaf of which the map is contracting while it
is expanding in the transverse direction of the leaves� These strong conditions
are used to reduce the study of the entire Poincar�e map � to that of the one�
dimensional map ������ Since the one�dimensional map is uniformly expand�
ing and monotone increasing with a single discontinuity at � � �	 its dynam�
ics is very well understood ��Guckenheimer and Williams �����	 �Rand �����	
�Keller �����	 �Robinson ������� In particular	 we can conclude that the geomet�
ric Lorenz model has an attractor whose dynamics is essentially described by
the reduced one�dimensional mapping ��� This attractor is called the geometric
Lorenz attractor� One of the important consequences of this is that the geometric
Lorenz attractor is not structurally stable	 although it is Cr�persistent for large
enough r� This follows from the fact that the kneading sequence determines its
topological conjugacy class for the one�dimensional mappings of this type� See
�Guckenheimer and Williams �����	 �Rand ����� for details� Note also that a
similar result was obtained by �Afraimovich	 Bykov and Shil�nikov ����� inde�
pendently where an analogous description of the dynamics of Lorenz attractor
was given based on a continuous invariant foliation� See also �Afraimovich and
Pesin ������

Though these assumptions �GL����GL�� are not easily veri�able for a given
vector �eld in general	 it is possible to show the existence of the geometric Lorenz
attractor in the context of homoclinic bifurcations� In x�	 we shall brie�y explain
an idea given by �Rychlik ������

Our main result of this paper is the following�

Theorem ���� There exist arbitrarily small values of the parameters
��� ��A�B�C� with �

�
� � �p

�
� � and A � � such that any three�dimensional

ordinary di�erential equation whose third order truncation takes the form

�



�x � y�
�y � �x� x� �Ay �Bxz �Cyz�
�z � �z � x��

�����

contains a geometric Lorenz attractor�

Needless to say that the equation ����� gives an unfolding of the degenerate
singularity having the ��jet

y
�

�x
� x�

�

�y
� x�

�

�z

given in x�� Hereafter we call such a degenerate singularity a Lorenz singularity�

� Properties of the Lorenz singularity

In this section	 we give two properties of �Lorenz singularities�� First we calcu�
late the codimension among g�equivariant vector �eld singularities and second
we show that a Lorenz singularity cannot be found among quadratic vector
�elds in IR�� Both properties are proved by using the usual normal form theory
�See e�g� �Vanderbauwhede ����� or �Dumortier ������� Before this	 let us give
a precise de�nition of �Lorenz singularity�	 emphasizing that the de�nition is
aimed at characterizing	 among g�equivariant vector �elds	 the largest class of
singularities of which we can prove �with the techniques used in this paper� that
they can give birth to a geometric Lorenz attractor�

De�nition ���� A vector �eld germ in �IR�� O� is called a Lorenz singularity if
its ��jet at O is C��equivalent to

y
�

�x
� ��x� � bx�y � cyz��

�

�y
� �x� � ex�z � fz��

�

�z

for some �b� c� e� f� � IR��

The �normal form� for C��conjugacy would be

y
�

�x
� �ax� � bx�y � cyz��

�

�y
� �dx� � ex�z � fz��

�

�z

with a � �	 d �� � and �b� c� e� f� arbitrary but using a linear coordinate change
and a linear time scale	 we can normalize the coe!cients a� d to ��� �	 respec�
tively�

�



In the next proposition	 we will not aim at giving a precise calculation of
the codimension of a Lorenz singularity	 but we will only obtain an upper bound
by means of the standard normal form theory�

Proposition ���� The Lorenz singularities have codimension at most � among
g�equivariant vector �eld germs�

Proof�
We work on the jet space of g�equivariant vector �elds�

Hg � Hg
� 	Hg

� 	Hg
� 	 � � � �

where Hg
k stands for the vector space consisting of all g�equivariant homogeneous

vector �elds of degree k� The linear part L of a Lorenz singularity v yields the
image of the adjoint operator ad�L�� � Hg

� � Hg
� as given by

Bg
� � Imad�L�� � spanIR

�
yz

�

�x
� xz

�

�x
� yz

�

�y
� xy

�

�z
� y�

�

�z

�
�

and hence we can take the complementary space of Bg
� in Hg

� to be

Gg
� � spanIR

�
xz

�

�y
� yz

�

�y
� x�

�

�z
� z�

�

�z

�
�

Since the singularity v does not contain terms with xz �
�y

	 yz �
�y

and z� �
�z

	 we
have � codimensions from the second order part of v�

We proceed in the same way for the third order part� We obtain the com�
plementary space

Gg
� � spanIR

�
x�

�

�y
� x�y

�

�y
� xz�

�

�y
� yz�

�

�y
� x�z

�

�z
� z�

�

�z

�
�

where only xz� �
�y

disappears in the singularity v�
Therefore	 counting � more codimensions from the linear part	 we conclude

that the singularity v has at most codimension �� �

Proposition ���� A quadratic vector �eld in IR� cannot have a Lorenz singu�
larity�

Proof� The quadratic vector �eld Y will have a Lorenz singularity at O if and
only if there exists a local dieomorphism f with f�X � Y for some �normal
form�

�



X � �y �O����
�

�x
� ��x� � yO���� �O����

�

�y
� �x� �O����

�

�z

like in De�nition ���� If f � A�I � P � with A linear and P � O���	 then
Y � f�X will be quadratic if and only if �I � P ��X is�

Let now �u � X�u� represent a Lorenz singularity in normal form and take
u � �I �Q��v� with v � �I � P ��u� � �I �Q����u�	 with Q � O���	 P � O���
and with Y � �I � P ��X quadratic� We denote u � �x� y� z� and v � �"x� "y� "z��
Then

Y �v� � �I �DP ���I � Q��v�� �X��I �Q��v��

�

�
B�

� �O��� O��� O���
O��� � �O��� O���
O��� O��� � � O���

�
CA
�
B�

"y �O���
O���

"x� �O���

�
CA

� �"y�� �O����� �
��x

� "yO��� �
��y

� �"x� � "yO���� �
��z
�

since Y is assumed to be quadratic� This last equation cannot have an isolated
zero� �

� Rescaling of an unfolding of the Lorenz singularity

When studying unfoldings of a Lorenz singularity	 like the one in �����	 we will
use the following rescaling�

x � ��x� � � ����� A � � �A�
y � ���y� � � ���� B � � �B�
z � ��z� C � �C�
t � ����t�

�����

Then the result of the transformation of ����� together with arbitrary higher
order terms	 and possibly other irrelevant terms in the normal form	 takes again
the same form	 except that all the higher order terms and the other irrelevant
terms are put into terms of order at least �� Therefore taking the limit of �� �	
we have the limit system

�x � y�
�y � ��x� x� � �Ay � �Bxz � �Cyz�
�z � ��z � x��

�����

which is a ��parameter family of polynomial vector �elds of degree �� Since
we have made a rescaling of parameters as well	 in general the parameters
��� ��� �A� �B� �C are no longer small� It is known by �Guckenheimer and Williams

�



����� and �Robinson ����� that the geometric Lorenz attractor is persistent
under Cr�perturbation for large enough r	 although it is structurally unstable�
Therefore	 if one has a geometric Lorenz attractor in ����� with certain param�
eter values	 then it keeps existing in nearby vector �elds with � �� �	 and hence
in an unfolding of a Lorenz singularity� In what follows we assume that

�� 
 �� �� � ��
�

�
� � ��p

��
� �

and �A� �B� �C are still small	 so that we regard the equation ����� as a ��parameter
perturbation of the vector �eld�

�x � y�
�y � ��x� x��
�z � ��z � x��

�����

This equation plays a crucial role throughout this paper� For the sake of sim�
plicity of the notation	 we will suppress the bars over the parameters in the
sequel�

� Inclination��ip homoclinic orbits

Consider a vector �eld v on IR� and suppose the vector �eld admits a homo�
clinic orbit # to a hyperbolic equilibrium point O� Here we assume that the
linearization matrix Dv�O� at the equilibrium point has three real eigenvalues
�u� �s� �ss with

�ss � �s � � � �u�

This implies the dimension of the unstable and stable manifolds of O being

dimW u�O� � � and dimW s�O� � ��

and	 in particular	 one of the branches of the one�dimensional unstable manifold
is nothing but the homoclinic orbit #�

In order to give the de�nition of the inclination��ip homoclinic orbit	 we �rst
consider an invariant manifold which is tangent to the eigendirections associated
with �u and �s� Such an invariant manifold exists due to the general theory from
�Hirsch	 Pugh and Shub �����	 but it is not necessarily unique� In this paper we
call this manifold an extended unstable manifold and denote it by W eu�O�� By
de�nition	 the extended unstable manifold contains the unstable manifold	 and
hence we can prolong it	 by the time�reversed �ow	 along the homoclinic orbit
#�

��



De�nition ���� The homoclinic orbit # of the vector �eld v is called inclination�
�ip	 if the two invariant manifolds W s�O� and W eu�O� are tangent along #	 and
moreover	 as non�degeneracy conditions	 the following is satis�ed�

�Ev�	 �u �� j�sj 
�Asy�	 # is tangent at O to the eigendirection associated to �s�

Note that	 in spite of the non�uniqueness of the extended unstable manifolds	
their tangent space along the homoclinic orbit is uniquely determined	 and hence
the above de�nition is well�de�ned�

For a generic homoclinic orbit	 one can de�ne its twistedness� Namely in our
context	 a homoclinic orbit is said to be twisted �resp� non�twisted� if the stable
manifold forms a M$obius band �resp� a cylinder� in a tubular neighborhood of
the homoclinic orbit� The inclination��ip homoclinic orbit is then a degenerate
situation in such a way that it lies in transition between twisted and non�twisted
homoclinic orbits �Figure ����� For a historical note	 see the following Remark�

Let v be a g�equivariant vector �eld on IR� satisfying �GL�� and	 instead of
�GL�	��	 we assume that it admits an inclination��ip homoclinic orbit #� to the
origin O� The symmetry then implies that there exists another inclination��ip
homoclinic orbit #� � g�#��� We call such a pair #� an inclination��ip double
homoclinic loop� The following remarkable theorem is due to �Rychlik ������

Theorem ���� �Rychlik� Let v be a g�equivariant vector �eld with an inclination�
�ip double homoclinic loop to a hyperbolic equilibrium point whose eigenvalues
�ss � �s � � � �u satisfy

�

�
� ��s

�u
� � � ��

ss

�u
� �����

and let v� be its generic unfolding with v� � v� Then there exists an arbitrarily
small  such that v� possesses a geometric Lorenz attractor�

Here we can take  as a two�dimensional parameter�

Remark ���� The inclination��ip homoclinic orbit was	 to the authors� knowl�
edge	 �rst introduced by �Yanagida ����� for the study of homoclinic doubling
bifurcations	 although he did not use the terminology �inclination��ip� sug�
gested by B� Deng later� In fact Yanagida introduced three types of codimension
two degenerate homoclinic orbits which are now called

�� a homoclinic orbit with resonance 
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(a) Non-twisted (b) Twisted

(c) Critically twisted with respect to the unstable manifold

Figure ���� An inclination��ip homoclinic orbit�
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�� an inclination��ip homoclinic orbit 

�� an orbit��ip homoclinic orbit	

each of which undergoes a homoclinic doubling bifurcation ��Chow�Deng�Fiedler
�����	 �Kisaka�Kokubu�Oka �����	 �Sandstede ������� Such homoclinic doubling
bifurcations turn out to be closely related to a homoclinic bifurcation giving
rise to geometric Lorenz attractors� Indeed	 the above theorem due to Rych�
lik shows the creation of geometric Lorenz attractors from an inclination��ip
double homoclinic loop	 and	 following Rychlik�s work	 Robinson proved the
birth of geometric Lorenz attractors from a double homoclinic loop with reso�
nance ��Robinson ����	 ������� More recently	 it is shown an analogous result
for an orbit��ip double homoclinic loop ��Kokubu and Oka��	 which completes
the similarity of homoclinic doubling bifurcations and homoclinic bifurcations
generating geometric Lorenz attractors� In this paper we use the Rychlik�s the�
orem because it is easier to construct an inclination��ip homoclinic loop in an
unfolding of a degenerate singularity� See also �Oka ������

The following is the fundamental observation given by �Rychlik ������ The
equation ����� admits a symmetric pair of inclination��ip homoclinic orbits�
Indeed	 the �rst two equations are independent on the z�variable and are inte�
grable due to the Hamiltonian structure� Thus we can obtain the explicit double
homoclinic solution �x�t�� y�t�� to the hyperbolic equilibrium point ��� �� where
the linearization has the eigenvalues 
p�� Then we substitute the known func�
tion x�t� into the third equation of ����� and solve it using the variation of
constants formula yielding

z�t� � e�t
�
z��� �

Z t

�
e��sx�s��ds

�
�

Take z��� � �
Z ��

�
e��sx�s��ds	 namely	 we take

z�t� � e�t
Z t

��
e��sx�s��ds� �����

We claim that this solution h�t� � �x�t�� y�t�� z�t�� is an inclination��ip homo�
clinic orbit to the equilibrium point O � ��� �� ��� In fact	 since the eigenvalues at
O is given by �u �

p
�� �s � �� �ss � �p� from the assumption � � �� � p

�	
the condition �Ev� is satis�ed� Then the orbit h�t� is indeed homoclinic to O	
since x�t� has the following asymptotic behavior�

jx�t�j � O�e
p
�t� as t� �� and jx�t�j � O�e�

p
�t� as t� ���

��



from which it is easy to show that z�t� � � as t� 
�� The same estimate in
fact shows that jz�t�j � O�e�t� as t � ��	 which veri�es the condition �Asy��
Finally in order to check the inclination��ip condition	 it su!ces to see that the
surface given by the direct product of the homoclinic orbit �x�t�� y�t�� in the
�x� y��plane with the z�axis is invariant under the �ow� This implies that the
surface is nothing but the stable manifold and at the same time the extended
unstable manifold� However	 the system ����� does not satisfy the condition
����� in the Rychlik�s theorem	 since �u � j�ssj �

p
�	 and hence we cannot

directly apply the theorem to ������ Therefore we need to add more parameters
to perturb the equation so that it recovers the desired eigenvalue condition
�u � j�ssj without breaking the inclination��ip double homoclinic loop� In the
next section we derive a persistence condition for inclination��ip homoclinic
orbits	 which plays an essential role in our perturbation argument�

� Persistence of inclination��ip homoclinic orbits

Let �x � v�x� � be a k�parameter family �k � �� of vector �elds on IR� such that	
for  � �	 the vector �eld �x � v�x� �� possesses an inclination��ip homoclinic
orbit h�t� to a hyperbolic equilibrium point O� Namely the extended unstable
manifold W eu�O� is tangent to the stable manifold W s�O� along the homoclinic
orbit h�t�� Let �s� �ss� �u be corresponding eigenvalues at O� In this section	 we
shall study the condition for the persistence of the inclination��ip homoclinic
orbit under the perturbation by �

Consider the variational equation along h�t� for  � ��

�u � Dv�h�t�� ��u

and take the three linearly independent solutions q��t� � �h�t�� q��t�� q��t� to the
variational equations satisfying the following asymptotic behavior�

jq��t�j � O�e�
ut� as t� �� and jq��t�j � O�e�

st� as t� ���
jq��t�j � O�e�

st� as t� �� and jq��t�j � O�e�
sst� as t� ���

jq��t�j � O�e�
sst� as t� �� and jq��t�j � O�e�

ut� as t� ���

For the proof of the existence of such solutions	 see �Gruendler ����� and
�Kokubu ������ Note that these fundamental solutions span tangent spaces of
the invariant manifolds along the inclination��ip homoclinic orbit as follows�

Th�t	W
s�O� � Th�t	W

eu�O� � spanfq��t�� q��t�g� Th�t	W
u�O� � spanfq��t�g�

We regard these solutions as column vector functions and de�ne the funda�
mental matrix solution to the variational equation by

��



V �t� � �q��t�� q��t�� q��t���

Also we take the projection matrix

P �

�
B� � � �

� � �
� � �

�
CA

and de�ne the column vector function

X�t� � V �t�

	
P
Z t

��
V �s���

�v

�
�h�s�� ��ds � �I � P �

Z t

�
V �s���

�v

�
�h�s�� ��ds



�

Theorem 
��� The inclination��ip homoclinic orbit persists along a codimen�
sion two submanifold B in the �space� provided the following two vectors are
linearly independent	

M� �
Z �

��
%b�t� �v

��
�h�t�� ��dt�

M� �
Z �

��
%b�t�

n
D�v�h�t�� ��X�t� � �

��
Dv�h�t�� ��

o
q��t�dt�

where %b�t� is a unique 
up to constant multiple� bounded solution to the adjoint
variational equation

�%u � �%u �Dv�h�t�� ��

along the homoclinic orbit h�t��
Furthermore the submanifold B is perpendicular to M� and M� at  � ��

Sometimes	 it is more convenient to take advantage of special form of equa�
tions	 namely	 the following Corollary holds�

Corollary 
��� Suppose the unperturbed system �x � v�x� �� at  � � takes the
form

�x � v��x� y��
�y � v��x� y��
�z � �z � v��x� y��

where the � �x� �y��equation is a Hamiltonian equation with a homoclinic orbit to
a hyperbolic saddle point� say O� and � � � is a weaker stable eigenvalue at
O so that the corresponding homoclinic orbit in the entire vector �eld becomes
an inclination��ip one� Then the second integral M� for the persistence of the
inclination��ip homoclinic orbit is simpli�ed to

��



M� �
Z �

��
%b�t�

�

�
Dv�h�t�� ��e�t�dt�

where e�t� � ��� �� e�t�T and %b�t� � � �y�t��� �x�t�� ���

Proof of Theorem ���� The proof mainly follows the idea of Theorem A in
�Kokubu ������ Indeed the derivation of the integral M� has been done there	
however we give an outline of it here since it is used for the derivation of the
other integral M��

Take the inverse of the fundamental matrix

V �t� � �q��t�� q��t�� q��t���

then it gives a fundamental matrix for the adjoint variational equation

�%u � �%u �Dv�h�t�� ��� �����

where %u stands for a three�dimensional row vector� Let the row vector functions
%qi�t� �i � �� �� �� be de�ned by

V �t��� �

�
B� %q��t�

%q��t�
%q��t�

�
CA �

which are fundamental solutions to ������ In particular	 the solution %q��t� is a
unique �up to constant multiple� non�trivial bounded solution�

The main idea of the proof of Theorem ��� is to take a cross section

& � spanfq��t�� q��t�g
transverse to the homoclinic orbit h�t� and to draw perturbed invariant man�
ifolds W u�O ��W s�O ��W eu�O � on this section &� For this purpose	 it is
convenient to make the change of variable

x � h�t� � z�

and to rewrite the original equation as

�z � Dv�h�t�� ��z � N�t� z� �� �����

where
N�t� z� � � v�h�t� � z� � � v�h�t�� �� �Dv�h�t�� ��z� �����

Furthermore	 take the initial condition of z as

��



z��� � ��q���� � ��q���� �����

and denote the solution with such an initial condition by

z�t �� �� � � ���� ����

If there is no confusion	 we sometimes identify the initial point z�� �� � with
� itself� Since V �t� is a fundamental matrix	 the variation of constants formula
convert the equation ����� to the following equivalent integral equation�

z�t� � V �t�
�
V �����z��� �

Z t

�
V �s���N�s� z�s�� �ds

�
� �����

The next lemma immediately follows from the de�nition of the fundamental
matrix V �t� and the asymptotic behavior of the fundamental solutions qi�t� �i �
�� �� ���

Lemma 
��� �exponential dichotomy�

i� Let P� be the projection matrix given by

P� � diag��� �� ���

then there exists positive constants K�� such that

jV �t��I � P��V �s���j � Ke���s�t	� �t � s � ���
jV �t�P�V �s���j � Ke���t�s	� �s � t � �� 


ii� Let P� be the projection matrix given by

P� � diag��� �� ���

then there exists positive constants K�� such that

jV �t�P�V �s���j � Ke���t�s	� �� � s � t��
jV �t��I � P��V �s���j � Ke���s�t	� �� � t � s��

Note that I �P� is the projection to Th��	W
u�O� and P� is the projection

to Th��	W
s�O��

For t � �	 we decompose ����� into

z�t� � V �t��I � P��
�
V �����z��� �

Z t

�
V �s���N�s� z�s�� �ds

�

�V �t�P�
�
V �����z��� �

Z t

�
V �s���N�s� z�s�� �ds

�
�

��



From the estimate in the previous lemma	 we can show that the �rst term of the
integral equation stays bounded as t � �� whereas the second term diverges
to � unless

P�
�
V �����z��� �

Z ��

�
V �s���N�s� z�s�� �ds

�
� �� �����

Denote the left hand side by E���� �	 then the above condition shows in fact
that E���� � � � if and only if � �W u�O �� By the implicit function theorem	
we can solve the equation E���� � � � as�

� � ���� � ���� ��� ��� ���

which gives a point of intersection in & with the unstable manifold W u�O ��
Similarly for t � �	 we obtain the condition of the stable manifold W s�O �

as�

E���� � � �I � P��
�
V �����z��� �

Z �

�
V �s���N�s� z�s�� �ds

�
� ��

which has a solution of the form�

�� � ��� ���� �

corresponding to the intersection curve of the stable manifold W s�O � with
the section &�

Now the set of persistence for a homoclinic orbit is given by

H � f j ��� �� � ��� ���� ��� � � �g

and its gradient vector at  � � is indeed

M� �
Z �

��
%b�t�

�v

�
�h�t�� ��dt�

This proves the �rst half of Theorem ���� For more detail	 see �Kokubu ������
For the persistence of the inclination��ip condition	 let us �rst take functions

given by
h��t� � � h�t� � z�t ����� �

where
���� � ���� ��� ��� ���
���� � ���� ��� ��� ���� ��� ���

These functions h��t � converge to the equilibrium point exponentially as
t� 
�	 respectively	 since h��� � � W u�O � and h��� � �W s�O ��

��



Consider the variational equation along these half orbits�

�u � Dv�h��t �� �u
� fDv�h�t�� �� �R��t� �gu� �����

where
R��t� � � Dv�h��t �� � �Dv�h�t�� ���

Taking the initial condition

u��� � ��q���� � ��q�����

we denote the solution to ����� by u��t �� �� Then the similar argument as
before yields that � � ���� ��� � Th�����	W

s�O � if and only if

�I � P��
�
V �����u��� �� � �

Z ��

�
V �s���R��s� �u��s �� �ds

�
� ��

Since u��s �� � is linear in �	 the latter condition takes the form

K����� � �� � L������ � �� �����

On the other hand	 for Th�����	W
eu�O �	 it is more convenient to consider

w��t �� � � e��tu��t �� ��

where � is a real number satisfying �ss � � � �s � �� Clearly � �
Th�����	W

eu�O � if and only if w��t �� � � � as t � ��	 or equivalently
jw��t �� �j remains bounded as t� ���

The equation ����� with minus�sign then takes

�w��t� � ��e��tu��t� � e��t �u��t�
� ��w��t� � fDv�h�t�� �� �R��t� �gw��t�
� f�Dv�h�t�� �� � �I� �R��t� �gw��t��

which has a fundamental matrix

W �t� � e��tV �t�

when  � �	 since R��t� �� � �� In particular	 we have the following exponential
dichotomy estimate�

jW �t��I �Q��W �s���j � Ke���s�t	� �t � s � ���
jW �t�Q�W �s���j � Ke���t�s	� �s � t � ���

��



for some K�� 
 �	 where Q� � diag��� �� ��	 that is I �Q� is the projection to
Th�����	W

eu�O � which is spanned by q���� and q�����
Now the same argument works for this case as well and we see that � �

���� ��� � Th�����	W
eu�O � if and only if

Q�
�
W �����w��� �� ��

Z �

��
W �s���R��s� �w��s �� �ds

�

� Q�
�
V �����u��� �� � �

Z �

��
V �s���R��s� �u��s �� �ds

�
� ��

From the linearity of u��s �� � with respect to �	 the last condition takes the
form

K����� � �� � L������ � �� �����

Note that Q� � I � P��
The condition for the inclination��ip is therefore given by the equation

� K���

� � L���
� � K���

� � L���
������

which de�nes a set T in the parameter space� Then the set

C � H � T
gives the desired set of parameters for which the original equation �x � v�x� �
has an inclination��ip homoclinic orbit� Our remaining task is to show that the
set T de�nes a local submanifold of codimension one whose gradient vector at
 � � is spanned by the integrals M� and M�� Then the conclusion of Theorem
��� immediately follows from the implicit function theorem�

From the de�ning equation ������ of T 	 its gradient vector at  � � is given
by

��K������ � �K�������

We shall compute the derivatives �K������ as follows� First we have

�

�


�
�

Q�
�
V �����u��� �� � �

Z �

��
V �s���R��s� �u��s �� �ds

�

� �Q�
Z �

��
V �s���

�R�

�
�s� ��u��s �� ��ds

�Q�
Z �

��
V �s���R��s� ��

�u�

�
�s �� ��ds�

Then from the de�nition of the initial condition

u��� �� � � ��q���� � ��q����

��



and from

R��s� ��  ��
�R�

�
�s� �� � D�v�h�s�� ��

�h�

�
�s� �� �

�

�
Dv�h�s�� ���

we have

�K������ �
Z �

��
%q��s�

�
D�v�h�s�� ��

�h�

�
�s� �� �

�

�
Dv�h�s�� ��

�
q��s�ds�

Similarly	 we have

�K������ � �
Z ��

�
%q��s�

�
D�v�h�s�� ��

�h�

�
�s� �� �

�

�
Dv�h�s�� ��

�
q��s�ds�

Lemma 
���

i� The function �h�

��
�t� �� coincides with the column vector function X�t��

namely�

�h�

�
�t� ��

� V �t�

	
P
Z t

��
V �s���

�v

�
�h�s�� ��ds � �I � P �

Z t

�
V �s���

�v

�
�h�s�� ��ds



�

where P � P��

ii�

�h�

�
�t� ��� �h�

�
�t� �� � V �t�

�
B�

�
�
M�

�
CA �

From this Lemma	 the conclusion of Theorem ��� immediately follows	 since

��K������ � �K������ � �M� � �const��M��

Below we shall prove Lemma ����

Proof� Recall that the function h��t� � satis�es

d

dt
h��t� � � v�h��t� �� ��

and hence d
dt

�h�

��
�t� �� satis�es the linear inhomogeneous equation

��



d

dt

�h�

�
�t� �� � Dv�h�t�� ��

�h�

�
�t� �� �

�v

�
�h�t�� ���

Therefore we have

�h�

�
�t� �� � V �t�

�
V �����

�h�

�
��� �� �

Z t

�
V �s���

�v

�
�h�t�� ��

�
� ������

which yields

�h�

�
�t� �� � �h�

�
�t� �� � V �t�V �����

�
�h�

�
��� ��� �h�

�
��� ��

�

� V �t�

�
B� �

�
M�

�
CA

from the de�nition of h��t� �� This proves the statement �ii��
We shall show the statement �i�� Since �h�

��
�t� �� converges to � as t� ��	

the same argument for obtaining ����� applied to ������ yields

P

�
V �����

�h�

�
��� �� �

Z ��

�
V �s���

�v

�
�h�s�� ��ds

�
� ��

Here we have used that

V �����
�h�

�
��� �� �

�
B� �
���� ���
���� ���

�
CA � PV �����

�h�

�
��� ���

From this together with ������	 we obtain the desired equality� This completes
the proof of Lemma ��� and hence of Theorem ���� �

Now we proceed to the proof of Corollary ����

Proof of Corollary ��� The special form of the equation implies that we can
choose

q��t� � �h�t� � c � e�t�
where c is a constant�

Lemma 
���

%q��t�

�
D�v�h�t�� ��

�h�

�
�t� �� �

�

�
Dv�h�t�� ��

�
�h�t�

�
d

dt

�
%q��t� � d

dt

�
�h�

�
�t� ��

��
�

��



Proof� Straightforward computation using

d

dt
%q��t� � �%q��t�Dv�h�t�� ��

and
d

dt

�h�

�
�t� �� � Dv�h�t�� ��

�h�

�
�t� �� �

�v

�
�h�t�� ��

prove the desired equality� �

From this lemma with q��t� � �h�t� � c � e�t�	 we have

Z ��

�
%q��s�

�
D�v�h�s�� ��

�h�

�
�s� �� �

�

�
Dv�h�s�� ��

�
q��s�ds

�
Z ��

�

d

dt

�
%q��t� � d

dt

�
�h�

�
�t� ��

��
dt

�c
Z ��

�
%q��s�

�
D�v�h�s�� ��

�h�

�
�s� �� �

�

�
Dv�h�s�� ��

�
e�t�ds�

������

The �rst term can be written as

Z ��

�

d

dt

�
%q��t� � d

dt

�
�h�

�
�t� ��

��
dt

�

	
%q��t� � d

dt

�
�h�

�
�t� ��

�
��
�

� lim
t���

%q��t� � d
dt

�
�h�

�
�t� ��

�
� %q���� � d

dt

�
�h�

�
��� ��

�

� �%q���� � d
dt

�
�h�

�
��� ��

�
�

since	 as t� ��	 %q��t� and d
dt

�
�h�

�� �t� ��
�

both converge to � exponentially�
From the special form of the vector �eld	 we have

D�v�h�t�� ��e�t�  ��

and hence	 for the second term of ������	

Z ��

�
%q��t�

�
D�v�h�t�� ��

�h�

�
�t� �� �

�

�
Dv�h�t�� ��

�
e�t�dt

�
Z ��

�
%q��t�

�

�
Dv�h�t�� ��e�t�dt�

Thus we have obtained

��



�K������ � �c
Z ��

�
%q��t�

�

�
Dv�h�t�� ��e�t�dt

�%q���� � d
dt

�
�h�

�
��� ��

�
�

Similarly	 we have

�K������ � c
Z �

��
%q��t�

�

�
Dv�h�t�� ��e�t�dt

�%q���� � d
dt

�
�h�

�
��� ��

�
�

Therefore the gradient vector to the set T at  � � is given by

��K������ � �K������ � �c
Z ��

��
%q��t�

�

�
Dv�h�t�� ��e�t�dt

�%q���� �
�
d

dt

�
�h�

�
��� ��

�
� d

dt

�
�h�

�
��� ��

��
�

the �rst term of which is nothing but the desired simpli�ed form of M�	 since	
for the special form of vector �eld	 it is easy to see that bounded fundamental
solution %q��t� is given by

%q��t� � %b�t� � � �y�t��� �x�t�� ���

Finally we compute

%q���� �
�
d

dt

�
�h�

�
��� ��

�
� d

dt

�
�h�

�
��� ��

��
�

From
d

dt

�h�

�
�t� �� � Dv�h�t�� ��

�h�

�
�t� �� �

�v

�
�h�t�� ���

we have

d

dt

�h�

�
��� ��� d

dt

�h�

�
��� �� � Dv�h���� ��V ���

�
B� �

�
M�

�
CA �

and hence

%q���� �
�
d

dt

�
�h�

�
��� ��

�
� d

dt

�
�h�

�
��� ��

��
� �const��M��

This completes the proof of Corollary ���� �

��



	 Computation of the integrals

Take the vector �eld�

�x � y�
�y � �x� x� �Ay �Bxz �Cyz�
�z � �z � x��

where  � �A�B�C� as a perturbation of ����� which has an inclination��ip
homoclinic orbit�

It is not hard to give all the necessary information explicitly for the
computation of the integrals M� and M� using the original formula in The�
orem ��� for this case� Indeed	 since the homoclinic solution h�t� is given	
it is easy to obtain q��t� � �h�t�� The solution q��t� is given of the form
q��t� � q��t� � ce�t� where e�t� � ��� �� e�t�T and the constant c is chosen so as
to satisfy jq��t�j � O�e�

st� as t � ��� For q��t�	 we �rst consider the Hamil�

tonian function H�x� y� � y�

�
� �x�

�
� x�

�
for the � �x� �y��equation with  � �	 and

note that the homoclinic orbit h�t� corresponds to the energy level H � �� For
any ���

� � h � �	 the energy level curve H�x� y� � h gives a periodic solution
p�t h�� Dierentiate it by h and put h � �	 then we have a solution �

�h
p�t �� to

the variational equation along the homoclinic orbit for the � �x� �y��equation� For
the �z�equation	 again we can use the variation of constants formula and hence
we obtain the desired solution q��t�� The unique bounded solution %b�t� to the
adjoint equation is simply given as %b�t� � � �y�t��� �x�t�� ���

Therefore we can carry out the computation of M� and M� using these
data� However	 it is more convenient to take advantage of the special form of
the equation and apply the simpli�ed integrals given in Corollary ����

Now the computation becomes much easier� In fact	

M� �
Z �

��
� �y�t��� �x�t�� ��

�
B� � � �
y�t� x�t�z�t� y�t�z�t�

� � �

�
CA dt

�
Z �

��
�� �x�t�y�t��� �x�t�x�t�z�t��� �x�t�y�t�z�t��dt 

M� �
Z �

��
� �y�t��� �x�t�� ����

B� � � � � � � � � �
� � �  z�t� � x�t�  � z�t� y�t�
� � � � � � � � �

�
CA
�
B� �

�
e�t

�
CA dt

�
Z �

��
���� �x�t�x�t�e�t�� �x�t�y�t�e�t�dt�

��



Clearly the �rst component of the integral M� and the third component of M�

are both negative since �x�t� � y�t�	 and therefore they are linearly indepen�
dent vectors� From Theorem ���	 we conclude that the inclination��ip double
homoclinic loop persists along a one�dimensional curve in the three�dimensional
parameter space �A�B�C� whose direction vector d is perpendicular to the vec�
tors M� and M�� The direction vector is hence given by

d � �mBnC �mCnB��mAnC�mAnC� �����

where
M� � �mA�mB�mC�� M� � ��� nB� nC��


 Completion of proof of the main result

Finally we need to show�

Lemma ���� The direction vector d has non�zero �rst component� namely�

mBnC �mCnB �� ��

By this lemma we can make the parameter A to be negative along the
persistence curve of inclination��ip homoclinic loop	 and hence the linear part
of the equation ����� at the origin veri�es the desired condition of the eigenvalues

�

�
� ��s

�u
� � � ��

ss

�u
�

Since the other two parameters B and C unfold the inclination��ip homoclinic
loop	 we can now apply the Rychlik�s theorem and obtain geometric Lorenz
attractors in appropriately perturbed vector �elds� This completes the proof of
the main Theorem ����

Proof of Lemma ���� From the computation of the integrals	 we have

mB � �
Z �

��
x�t�y�t�z�t�dt�

mC � �
Z �

��
y�t��z�t�dt�

nB � �
Z �

��
x�t�y�t�e�tdt�

nC � �
Z �

��
y�t��e�tdt�

��



where �x�t�� y�t�� z�t�� is the unperturbed inclination��ip homoclinic orbit in the
equation ������

Since z�t� � �	 it is easy to see mC � � and nC � �� Notice that x�t� can
be taken as an even function and y�t�	 an odd function� Then we have

Z �

��
x�t�y�t�e�tdt �

Z �

�
x��t�y��t�e��t��dt�

�
Z �

�
x�t�y�t�e��tdt

� �
Z �

�
x�t�y�t�e��tdt�

and hence
nB �

Z �

�
x�t�y�t��e��t � e�t�dt

which is negative from � � � since e��t � e�t � �	 x�t� � �	 and y�t� � � for
t � ��

Similarly we have

mB �
Z �

�
x�t�y�t�fz��t� � z�t�gdt�

We claim that z�t�� z��t� � � for t � �	 which implies the desired conclusion�
mBnC �mCnB � �	 since mB 
 ��mC � �� nB � � and nC � ��

Recall from �����	 that

z�t� � e�t
Z t

��
e��ssech���p�s�ds�

and therefore	 by taking u � e��t � � for t � �	 we have

z�t� � z��t�
� e�t

Z t

��
e��ssech���p�s�ds� e��t

Z �t

��
e��ssech���p�s�ds

� �
u

Z u

�

�
�

vc � v�c

��
dv � u

Z �

u

�

�
�

vc � v�c

��
dv

where c � �p��� 
 �� The integrand

��v� �
�

�

vc � v�c

��

is a smooth function for v � �	 monotone increasing on ��� �� and decreasing on
����� and has the property�

��v� � ����v��

��



For u � �	 the mean value theorem shows that there exists unique � �
��� ��u� such that

�

��u

Z ��u

�
��v�dv � ����

and hence

z�t� � z��t� � �
u

Z u

�
��v�dv � ����

� �
u

�Z u

�
��v�dv � u � ����

�
� ��

since
u � ���� � �u� ��u����� � ���u�����

�
Z u

��u
��v�dv �

Z ��u

�
��v�dv

�
Z u

�
��v�dv�

This completes the proof of Lemma ���	 and hence of Theorem ���� �

�� Related results

In �Rychlik �����	 the following equation is presented�

�x � y�
�y � x� �x� � �y � �xz � �x�y�
�z � ��z � x��

as an example of a family of vector �elds exhibiting geometric Lorenz attractors�
Apparently	 although some coe!cients are dierent	 this is essentially an exten�
sion of ������ It has been shown that	 for �

�
� � � � with appropriate values of

� and � while � � �	 the equation satis�es the assumption of Theorem ���	 and
hence certain perturbation of it including � �� � generates geometric Lorenz at�
tractors� The main idea here is to use a result of �Horozov ����� and �Carr �����	
which is a symmetric version of the Bogdanov�Takens bifurcation on the plane�
This enables us to perturb ����� as in the above equation so that it satis�es the
desired eigenvalue condition while keeping the inclination��ip homoclinic orbits	
since	 when � � �	 the existence of the inclination��ip homoclinic orbit in the
entire three�dimensional space is equivalent to that of just a homoclinic orbit
in the plane as explained in x�� Instead of using planar result	 we have in this
paper developed a Melnikov�like technique adapted to this situation in order to
keep the inclination��ip homoclinic orbits under perturbation�

This task is necessary for our degenerate singularity result	 because Rych�
lik�s equation given above cannot be used for our purpose due to the lack of the

��



essential term x�y �
�y

after taking the scaling limit introduced in x�� For the same

reason	 two other equations given in �Robinson ����	 ����� are inappropriate for
our purpose as well� Furthermore	 in the case of homoclinic orbits with resonant
eigenvalues considered by Robinson	 we do not have a good limit system which
possesses this particular homoclinic orbit in the scaling limit	 like the equation
����� in the inclination��ip case� Di!cult in Robinson�s case is to verify the
transversality condition for the stable and extended unstable manifolds along
the homoclinic orbit�

In any case	 in order to be able to prove the existence of a geometric Lorenz
attractor in these equations	 including ours	 it is needed to add one extra term
to �����	 and hence these results do not imply an analogous result for the original
Lorenz equation �����	 not even for small perturbations of it� However	 we can
show the following �somewhat strange� fact�

Proposition ���� There exists an arbitrarily small perturbation of the Lorenz
equation such that the perturbed system has a geometric Lorenz �repeller��

Here the geometric Lorenz repeller is a time�reversed object of the geometric
Lorenz attractor	 and hence this Proposition says that the perturbed system
has a geometric Lorenz attractor if the time axis is reversed�

Proof� As we have seen in x�	 the original Lorenz equation can be put into the
form ����� which seems to be a subsystem of ������ In order to put ����� in the
same perturbation situation as �����	 we need to assume that the coe!cients �p
and �q are both very small compared to ��a and ��b	 which implies

� � � � � and �� � b � ��

that is	
� � �� and b � ���

Therefore we need to make � � � in order for the parameter �	 corresponding
to ��b	 being negative as required in Theorem ���	 which means we need to
reverse the time� Once we take � � � and admit the time�reversal	 then we
easily see that the equation ����� can be regarded as a perturbation of �����
which is equivalent to the time�reversed Lorenz equation� Applying Theorem
��� to this situation	 we obtain the conclusion� �

Unfortunately	 this argument is not applicable to the original Lorenz equa�
tion but we need to perturb it� Therefore the question about the existence of
a strange attractor �or even a strange repeller� for the Lorenz equation is still
open	 to the authors� knowledge�

��
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