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Abstract

We study the most generic nilpotent singularity of a vector field
in R? which is equivariant under reflection with respect to a line, say
the z-axis. We prove the existence of 8 equivalence classes for C°-
equivalence, all determined by the 2-jet. We also show that in certain
cases, the Zg-equivariant unfoldings generically contain codimension
one heteroclinic cycles which are comparable to the Shil’nikov-type
homoclinic cycle in non-equivariant unfoldings. The heteroclinic cy-
cles are accompanied by infinitely many horseshoes and have also quite
reasonable possibility of generating suspensions of Hénon-like attrac-
tors, and even Lorenz-like attractors.



1 Introduction

In this paper we consider vector field singularities on R® which are
equivariant under reflectional symmetry with respect to a line, say
the z-axis, namely, which are equivariant under the linear map

3 3
R* =R (2,y,2) = (-2, -y, 2).
We study the most generic nilpotent singularities with such Zo-symmetry.
Those singularities have the 1-jet ya% and normal form calculation
shows that the 2-jet takes the form

yai—l— (axz—l—byz)i—l— (da? 4 e2?) 0 (1.1)
x

dy 0z
where a, b, d, e are constants. If ade # 0, one may normalize these
coeflicients as

a=—-1,d=+41, and e = %1

by rescaling the space and time variables. In particular, we need to
reverse the time coordinate if ad > 0.

The purpose of this paper is to study the determinacy and un-
foldings of these singularities within the Zs-equivariant vector fields.
Recall that the k-jet of a vector field X is CV-determining, if any vec-
tor field having the same k-jet is locally topologically equivalent to
X.

Theorem 1.1 (1) The 2-jet (1.1) with a = —1,d = +1,e = £1 is
CO-determining if
5 1
b +(=,1), (=, 1).
(b,e) # (2, 1), (3.1
There are 4 topological equivalence classes of such singularities.

(2) Consider an unfolding of a singularity as above with e = 1 of the
form:

o=y,
)= Avtpy —az+ (0+O(N pv))yz+ O(l2,y, 2%,
= v+’ + 22+ 0(,y, 2.
There exists a codimension 1 smooth hypersurface H in the pa-
rameter space for (A, u,v) such that the corresponding vector

fields with parameters in H possess a heteroclinic cycle connect-
ing two singularities on the z-axis.



The structure of the paper is as follows: In Section 2, we shall
give a proof of the 2-jet determinacy of the singularity by using quasi-
homogeneous blowing-up techniques. The existence of a heteroclinic
cycle in the unfolding is shown in Section 3, and the dynamics around
the heteroclinic cycle is discussed in Section 4. In Appendix, we give
a proof of a variant of normal form theorem which we use in Section

3.

Acknowledgement HK thanks the Limburgs Universitair Cen-
trum and FD the Kyoto University for their hospitality.

2 Structure of the singularity and de-
terminacy of 2-jet

In this section we show that the singularities having the following
2-jets are 2-determined for C'-equivalence:

d d 9, 9. 0
ya—x—l—(—xz—l—byz)a—y—l—(x +z )a, (2.1)

if (b,€) # £(3,1),£(%, 1), and we give the classification of these sin-
gularities up to C%-equivalence. This will be done by using the quasi-
homogeneous blowing-ups [5, 6] and the results of [8].

We begin with the singularities

0 3 d 2 2 0
y8$—|—(—$z+by2‘|‘0$ ‘I’f(xvyvz))ay—l_(x +ez —I—g(ac7y72))8z7

with e = 41 and where both f and g are O(|z,y, 2|?), with f not
containing an z> term. From the form of the singularity, we shall
perform the quasi-homogeneous blow-up using

3

rT=rw, y:r5§, z=rt

z,

making the calculations in the following four different charts:
(1) in Z = +£1 charts;
(2) in & = 1 chart;
(3) in y =1 chart.



Due to the symmetry, the results of blowing ups in the remaining
charts are the same as one of the above. The resulted blown-up vector
fields are given in the following lemmas:

Lemma 2.1 The blown-up vector field in z = +1 chart is

ro= Lr@*+er? +0(r%),
o= y—33 -4 007, (2.2)
y = —&— 38+ (b— 54—6) r2y 4+ er?z® + O(rd).

The singularity on the blow-up locus {r = 0} is only at the origin

=y =0 and it is a weak stable focus with radial dynamics given by
Po=

r3.

o

Remark 2.2 In z = +1 chart, the function #* + 72 is a (weak) Lya-
punov function in the blow-up locus, namely,

d o 5 B 2 so2
& +y) =532 +557) <0
Lemma 2.3 The blown-up vector field in z = —1 chart is
ro= —%r(acz +er? +0(r?),
o= g+ g4+ 007), (2.3)
y = z+32z%— (b ?{) r2y + er?z® + O(rt).

The singularities on the blow-up locus {r = 0} are either the origin

(0,0) or (z4,y+) ==+ (\4/ B3y %) The origin is a hyperbolic sad-

dle with radial dynamics given by r = —§r3, whereas the other singu-
larities (Z4,yy) are hyperbolic unstable foci with hyperbolic attracting

radial dynamics.

It can be shown using the Bendixson’s criterion that there is no
limit cycle which is entirely contained in the z = £1 charts, see [9],
since the divergence of the vector fields on these charts have every-
where a constant sign. The results of blowing-ups in these charts
depend on the constant e, and are summarized in Figure 1.



Figure 1: Blowing-ups in z = +1 charts.

Lemma 2.4 The blown-up vector field in ¥ = 1 chart is

ro= 57y,
y = —Z-2+br?yz+ a4+ 00, (2.4)
o= 1-3yz+er?Z2+0(r").

The vector field on the blow-up locus is transverse to the line z = 0.



Lemma 2.5 The blown-up vector field in y =1 chart is

o b 9-— _
r = 1+ §$22’ —2r?Ez — &rfrt + O(r), (2.5)
:o= 4iety (e —~ 435) riz? — £r28%2 4 O(r).
The vector field on the blow-up locus is transverse to the line z = 0.
In order to show the determinacy of the 2-jet, we only have to
study the behavior near the singularity at (z,y, z) = (0,0, 1), since
e (Z4,ys,—1) are hyperbolic singularities;

e (0,0,—1) has one-dimensional center manifold on which the dy-

namics is determined by —§r3%;

e there is no limit cycle on the blow-up locus.

More detailed study of the singularity (0, 0, 1) requires normal form
reduction and further blow-up.

In order to obtain the normal form of the singularity at (0,0, 1),
we use the complex coordinates given by

=741y, (=7 —1iy.
The result of the coordinate changes is
¢ = =i 50— 550 - §CC + 35C° + B -
+5r(C7 4330+ 3¢C7 4 ¢%) + O(r?),
Po= o (HCH P+ S+ 2 00).
Therefore the normal form is given by
¢ o= {(-FIeP+522) + (=14 2r2¢?) i+ hot.,
Po= (3K + 5+ hot.),

and in particular, the radial normal form given by setting p = ||
becomes
p = p (—%Io2 + b_zirz) + h.o.t., ( )
2.6
Fo= 7 (éfﬂ + gﬂ) + h.o.t.
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By putting P = %pQ and R = %rz, one has
P = P(=P+41R)+ho.t,
R = R(2P+R)+hot.
where 1 = 27? — 4. Note that P is always positive and e and R have

the same sign.
We shall make further blow-up of the above equations by

P=UX, R=UY,

in the charts X =1 and Y = 1. In X = 1 chart, the blown-up vector
field is

U=U(=14nY)+--, ?:Uy(g+(1_n)y)+...7

and hence the singularities on the blow-up locus U/ = 0 are one at ¥ =
0 which is a hyperbolic saddle, repelling in Y-direction and attracting

in U-direction, and another at ¥ = ﬁ where the linearization
matrix has eigenvalues —% and 72(771'1 . Similarly, in Y = 1 chart, the
n—1)
blown-up vector field is
U=02(1+2X)+ -, X=UX((n-1)-2X)+--

and the singularities on the blow-up locus U/ = 0 are one at X = ())

which is a hyperbolic saddle unless 7 = 1 and another at X = 7(779_1
2n+7
==

where the linearization matrix has eigenvalues 1 — 5 and

Combining the above information, we obtain the structure of the
blown-up vector field as indicated in Figure 2 depending on the value
of n.

Recall that R = %rz has the same sign as e, where e = £1. If
e = 41 then n = 2b—4 and hence n = 1 implies b = 5/2 and n= —7/2
does b = 1/4, whereas if e = —1 then n = —2b — 4 and hence = 1
implies b = —5/2 and n = —7/2 does b = —1/4. Therefore, all the
singularities above in the blown-up locus are hyperbolic as long as
(b,€) # £(3,1),£(3,1).

Figure 3 exhibits the blown-down vector fields which are obtained
from the above blow-up calculations.

This in particular shows that there is no elliptic sector in the sin-
gularity, which is crucial when one proves the 2-determinacy of the
singularity as in what follows.



n>1 1>n>-72 n<-712

(b>5/2) (5/2>b>1/4) (b<1/4)

T T r

e=+1
L4 p L4 p L4 P
parabolic + hyperbolic hyperbolic sector hyperbolic sector
sectors

(b<-5/2) (-1/4 <b<-5/2) (b>-1/4)

T r r

L/

parabolic sector “2” parabolic sectors “2” hyperbolic sectors

Figure 2: Further blowing-up. (a) n > 1; (b) 1 > n > —=7/2; (¢) n < =7/2.

Remark 2.6 We could have blown up directly the expression (2.6).
It would also have led to a desingularization with hyperbolic singular-
ities.

To study such a three dimensional vector field near (0,0,1), we
perform a normal form calculation which leads, up to a C'*° coordinate
change respecting the z-axis, to an expression:

M1+ 7+ 7)) (70— 02 ) + 92+ 7 (32 + 72
+h(2, 2+ 7%) 35 + Yigs + Yogs + Yag:
with
ah
£(0.0) = 9(0,0) = 1(0,0) = =(0,0) = 0
and
Joo Y1 (O) = jooY?(O) = jOOY3(O) = 0.



c

/’\

n>1 1>m>-7/2 n<-772

Figure 3: Structure of the singularity.

Moreover, by construction, the z-axis is invariant.

After multiplying with 27 {\(1 + f(2,2% + y*))} ™!, we obtain a
similar expression as above but with f = 0 and A = 2x. We can now
consider the first return map with respect to the section {y =0, z >
0}. It is well-defined and it can be extended to a C'**° diffeomorphism
@, defined on H = {y =0, & > 0}. To avoid confusion, let us change
the notation on H from (Z, 2) to (p, ). Then the construction permits
us to show that at (p,r) = (0,0), the diffecomorphism ¢ is infinitely
tangent to the time one map of the vector field

0 0
g(r, '02)'08_,0 + h(T‘, p2)§

In studying the vector field, the Poincaré map ¢ calculated with
respect to the positive quadrant {y = 0, £ > 0, z > 0} is infinitely
tangent, at (0,0), to the time one mapping of a vector field having an
expression:

po= o (et ) s
2.7
TS r(épz—l—if‘Q)-l-"'-
The usual blow-up operations to study such a singularity lead to

a desingularization only exhibiting hyperbolic singularities, under the
conditions (b, e) # :i:(%7 1), i(i, 1). Moreover only parabolic and hy-

10



perbolic sectors show up and no elliptic sectors. As such, the the-
orems from [8] permit us to conclude that the diffeomorphism ¢ is
C*°-conjugate to the time one map of the vector field (2.7), with a
conjugacy that is infinitely tangent to the identity at (p,r) = (0,0).
Of course the construction shows that the conjugacy respects both
{p =10} and {r =0}.

Suspending this diffeomorphism by the orbits of vector field gives
us the topological structure of the vector field near the singularity

(0,0,0). See [4].

Case | Case Il Case lll Case IV

Figure 4: Topological equivalence classes of the 2-jets.

Representing the different equivalence classes is not simple. Ex-
actly like [6], we prefer to use so-called Morse-Smale models. With
similar techniques as used in [6], one can prove that the different
equivalence classes are C%-equivalent to vector fields having a (homo-
geneous) blow-up as presented in Figure 4. Four more phase portraits
can be obtained by time-reversal. The blown-up vector fields presented
are defined in S% x [0, ) for some £ > 0; they are of Morse-Smale type
in S? x {0} and moreover their singularities and closed orbits are also
hyperbolic in S% x [0, ¢).

In all four cases the field on S? x {0} has exactly four singularities;
in two cases there is one closed orbit, in the other two cases there are

11



none. We made separate pictures of the northern and southern hemi-
spheres, Sy and Sg, and represent the (hyperbolic) “radial” behavior
by lines or cylinders equipped with @& and &.

In Figure 5, we make a tentative picture of how the singularities
look like in R?. The plane in these pictures is drawn to give an idea of
the movement transverse to the three characteristic orbits below the
singularity.

Figure 5: Three dimensional pictures for structure of singularities.

3 Unfolding of the singularity

A 3-parameter generic unfolding of the singularity as in (2.1) with
e = 1 can, by normal form calculation, always be expressed by the
following form:

T o=y,

y = Av+py—az+ b+ oA pv))yz
+(C+ﬁ(A7M7y))x3+f($7y7Z7 A7M7y)7

Z = 1/—|—362—|—,22—|—O(|ac,y,z|3)7

with a(0,0,0) = 3(0,0,0) =0, and f = O(|z,y, z|°) with no 2>-term.
In this section, we show that this system possesses a heteroclinic
cycle for appropriate parameter values. This heteroclinic cycle gives

12



rise to infinitely many horseshoes analogously to the Shil’'nikov theo-
rem.

3.1 Rescaling and Limit system
We introduce the new parameter £ and rescale by
x:rSf, y:r5§, Z=r"z, £=ru,
A=¢e*), p=e*n, v==edp;
we can take A% + g2 + 0?2 = 1, or (\,i,7) € B with B = {|\| <
1, |z| < 1,|7| < 1}. Note that this choice of power is taken in order to

bring singularities in a finite but non-zero position.
The rescaled family is given by

rz + 3z = r’y,
ri+55r = Ptz 4 uty — 32 + br?gz 4 e’z + 0(rt)),
ridzi = Aot 42 422 4 0(r),

ur = —ra,

and hence the family rescaling given by u = 1 takes the form

ro=y,
y = A+ay—zz2+0(r?)0(z,5), (3.1)
z = 224+ +00Y0(2,y, 2).

In order to have downward flow on the z-axis near 0, we will keep
v < 0.

For r # 0, singularities on the z-axis are given by z4 = £/—v +
O(r?) with 7 < 0. Choose 7 = —1 without loss of generality. In
what follows we will always keep jt < 0 and A € (—1,1). Then the
nature of the singularities near (0,0,£1) with » > 0 are a saddle-
focus with attracting focus transverse to the z-axis near (0,0,41) and
a saddle with hyperbolic saddle behavior transverse to the z-axis near
(0,0,-1).

Our goal is to show the existence of a heteroclinic orbit besides
the Z-axis which connects singularities (0,0,21) near (0,0, —1) and
(0,0,4+1) for certain parameter values. Together with the orbit on
the z-axis, this would form a heteroclinic cycle connecting these two
singularities.

13



Theorem 3.1 There exists a smooth curve A = h(ji) for sufficiently
small i < 0 with h(fi) € (=1, 1) such that for any (Mo, fio) = (h(jio), fio)
and for any sufficiently small neighborhood A of (X, jio), there exist
ro > 0 and a smooth function H (i, r) defined for r € [0,ro] and for
g < 0 with H(p,0) = h(p) for which the following statements are
equivalent:

(1) there exists a connecting orbit from (0,0,z_) to (0,0,zy) with
(A, 1) € A X [0, 7]
(2) A= (i, v).
Remark 3.2 ) is a transverse parameter for the connecting orbit.
The above theorem follows from a similar result for the limit system
which is given by setting r» = 0 to (3.1). Indeed smooth dependence

of the stable and unstable manifolds on parameters and A being the
transverse parameter imply the claim.

3.2 Reduction to a problem near infinity on
some Poincaré-Lyapunov ball

We first study the limit system given by r = 0 when g < 0 and
A€ (—1,1) as follows.

&)

= U
y = Ar+py -z,
o=t

Note that this limit system has a line of singularities on the Zz-axis.
By the change of coordinates:

d d
5 — 73/2X 7:75/2)/ 7:722 _:7—1_
e= |l y =Y, 2= (a2, = al T o
the rescaled system takes the form
X =Y,
Y = CX-Y-X7Z, (3.2)
Z = X2

14



with €' = 2 and where "~ stands for time-derivatives with respect to
the rescaled time coordinate. With this time rescaling, the singular-
ities (7,y,2) = (0,0,%1) of the limit system change to (X,Y,7) =
(0,0,4A4) where A = 1/*. Translation:

$:X7 y:)/7 Z:Z_C

then brings the above system to

To=
y = —-y-—xz, (3.3)
i o= 22,

which no longer depends on parameters. The singularities correspond-
ing to (X,Y,Z) = (0,0,4A4) are (0,0, B) and (0,0, —B) where

_ 1—A 1+
, B=A+C= ;.

Remember that the z-axis is the line of singularities. The behavior
normal to the z-axis of a singularity (0,0, zo) of (3.3) is a stable focus
if z9 > i, a stable node if 0 < 2z < i, and a hyperbolic saddle if
zg < 0.

Theorem 3.1 will reveal to be a consequence of the next proposi-
tion.

Proposition 3.3 For sufficiently large B, there is a smooth function
B = f(B) with f/(B) > 0 and f(B) > B such that the system (3.3)
has a connecting orbit from (0,0, —B) to (0,0, B). Moreover f(B) ~
B7/5 for B — 4o0.

To prove the proposition, we will first present a number of con-
structions and intermediate results. First we compactify R” to a so-
called Poincaré-Lyapunov ball by taking

U v w
T=—, y=—, 2= —, with w? + v+ w?=1.
s s s
With this change together with the multiplication of 52 to the system,

we get an analytic vector field on S? x I where I is a neighborhood of
0 which corresponds to oo in the previous coordinates. This analytic

15



vector field on S? x {0} is exactly the blown-up vector field of the
degenerate singularity studied in Section 2 on the blown-up locus. We
have already seen that there is a connecting orbit from the south pole
to the north pole in the blown-up vector field.

Near the south pole, it holds that

e the s-axis consists of singularities and is normally hyperbolic;

e the stable and unstable manifolds of the s-axis are regularly fo-
liated by the stable and unstable manifolds of each of the singu-
larities;

e within the unstable manifold of the s-axis, the projection from
any “transversal” to the s-axis along the unstable leaves is reg-
ular, and hence has a regular inverse;

e such a “transversal” can be chosen in a sufficiently small neigh-
borhood of the north pole by following the (known) connecting
orbit in S? x {0}.

We then study the vector field near the north pole. For this pur-
pose, we may take the w = 41 chart, in which the vector field is given

by:

. 1.2

5 = —gsu‘,

. 3.3

w o= v—gu’, (3.4)
U= —u-— %uzv — s%v.

The vector field along the s-axis is rotational in this case. Let us take
a compact line segment I of singularities along which the linearization
has the eigenvalues 0 and a(s) & ib(s) with b(s) # 0. We work in
C* coordinates (z,y,s) such that the line segment is represented by
{t = y=10,0<s < 1}. Observe that the C coordinates (z,y, s)
can be chosen in such a way to have the eigenspace of the eigenvalues
a(s) £ ib(s) given by {s = constant}. Moreover, we may ask the 1-jet
along the line segment I to have the expression:

b(s) (x% — y%) + a(s) (x% + y%) . (3.5)

In an appendix, we will prove the following theorem.

Theorem 3.4 Let X be a smooth vector field on R? defined in a
neighborhood of the line segment I with all the conditions as described

16



above. Let (x,y,s) denote the C™ coordinates as above, including the
expression (3.5) for the 1-jet of X along I.

Then there exists a smooth diffeomorphism ¢ defined in a neigh-
borhood of I with the 1-jet being the identity at each point of I, such
that @, X has an expression

)+ (e + 52,90 (5 v

Ha@) +ola?+ 29 (enmugs) B0

J
th(a? + % 8) 5+ Z(2,y, 9),
s
with f,g,h, Z € C*, f(0,s) = g(0,s) = h(0,s) =0, and j.4(0,0,s) =
0 forall s€ .

We bring the expression (3.4) into a normal form as above. If
we multiply the expression (3.6) by MW, we get a similar
expression as in (3.6) with b(s) = 27 and f(z%+y?, s) = 0. Because of
this expression, it is clear that the Poincaré map of it with respect to
{y = 0,2 > 0} is a smooth mapping which is infinitely tangent along

I to the time one mapping of the reduced vector field
(als) + 9% ) o4 B, 5)) o

The corresponding planar expression for the normal form of (3.4) is

given by

. 1y 79 3)

ro= —27r (28 + T +O(|s, ") |,
1

§ = —2mris <§—|—O(|s,r|)).

Lemma 3.5 Let X be the vector field given in (3.4). Then in a suffi-
ciently small neighborhood V' of (x,y,s) = (0,0,0) the stable foliation
of X along {x =y = 0} for s > 0 is smooth and extends in a con-
tinuous way to a foliation Fry on V' by adding the leaf V N {s = 0}.
Moreover, if we take k to be a segment transversely cutting {s = 0} at
some point (xg,yo) # (0,0) and we let k be a regular parameter on x
with k = 0 representing (zo,yo) and {k > 0} representing kN{s > 0},

17



then the holonomy from k to {x = y = 0} along the leaves of the
Joliation Fy is given by a Mourtada form

s = k(1 + (k)

Jfor some positive constant ¢ and some function ¢ which is smooth for
k > 0 and satisfies
n

d"p
lim k" - -
ok

0, VneN.

Proof.  Near (z,y,s) = (0,0,0) we have a 3-dimensional vector field
X having the s-axis as a line of singularities. It has a Poincaré map
f with respect to {y = 0,z > 0}, which, along {z = 0}, is infinitely
tangent to the time one mapping of the following vector field:

ro= =2rr (%82 + %rz + O(]s, r|3)) ) 3.7)
s = —2mris (%—I—O(|s,r|)). '
In this expression we write r instead of = to stress the restriction to a
2-dimensional situation.

Let us first study the reduced vector field (3.7) by making a blow-
up using r = ur, s = us, 7 = u*t. We make the calculation using the
directional blow-up.

Taking r = u, s = uww, we get

T—— —271'u(17—6—|—%w2—|—0(u))7
w = 2ﬂ'w(%—|—%w2—|—0(u)).

There is only one singularity on u = 0 situated at w = 0, which

represents a hyperbolic saddle with hyperbolic ratio g The Dulac
map with respect to any segments transverse to respectively the stable

and unstable manifolds can be written as

¢=cenP(1+ (),

where £ and 7 are regular parameter with respect to these transversal
segments with the origin being the intersection of the stable and un-
stable manifolds respectively, and the positive parts corresponding to

18



the part that interests us. In this expression, the function ¢ is smooth
for n > 0 and satisfies

il

. n Y _
7%1_1()1%77 i =0, VneN.

This expression is called the Mourtada normal form for this transition
and the proof of its validity has been given in [14].
Taking r = wv, s = u for other directional blow up, we get

w = —2ruv? (% + O(u))7
v = =27 (% + v+ O(u))

For {u = 0} we find one singularity at (0,0) at which the vector field
is equal to v times a regular vector field having {u = 0} as an orbit.
Therefore we know the phase portrait near (u,v) = (0,0) as well.

Combining both directional blow-ups we obtain the complete phase
portrait of (3.7) near (r,s) = (0,0). Now in reality, we do not want
to study the vector field (3.7), but in fact the Poincaré map f which
is infinitely near the time one map of (3.7) along {r = 0}. As we
are especially interested in the structure of f near (r,s) = (0,0), we
proceed as in [8] and apply the blow-up r = ur, s = us to f, as we did
to (3.7), however without applying the division by u?.

As such we get a smooth diffeomorphism f, which along the blow
up locus {u = 0}, is infinitely near the time one mapping of Y =
u?Y where Y is the blown-up vector field of (3.7). As in the second
directional blow-up calculated above for (3.7), the diffeomorphism f
is, along {u = 0} U {v = 0}, infinitely tangent to the time one map of
u?Z where Z is the vector field given by

w = —2ruv? (% + O(u))7
v = 27w (% + 15—61}2 + O(u))

In [8], it has been proven that under these conditions f is smoothly
conjugate to the time one map of Y, and that the smooth conjugacy is
infinitely tangent to the identity along {u = 0} U {v = 0}. In fact this
result is not purely local, but can be extended along {v = 0} as far as
the normal form theorem 3.4 applies. It can also be extended along
{u = 0} on any compact segment {u. = 0,0 < v < vg}. Moreover, since

19



in the first directional blow-up, we only encounter a hyperbolic saddle
(after division by u?), results in [8] permit to extend the conjugacy
between f and the time one map of Y to a neighborhood of the saddle,
and in this way, we obtain that in fact f and the time one map of
(3.7) are smoothly conjugate in a neighborhood of (r,s) = (0,0). By
construction the conjugacy is infinitely tangent to the identity along
{r = 0} and hence also has that property at (r,s) = (0,0).

A concluding remark of this construction is that near (z,y,s) =
(0,0,0) the vector field X possesses an invariant codimension 1 folia-
tion Fx which is smooth on {s > 0} and whose leaves cut {z =y = 0}
transversely. In fact on {s > 0}, it gives us the stable foliation which
is known to be smooth in this degenerate case. Important to know
are the differentiability properties of this foliation when we let s — 0.
There is however more to say: In the first directional blow-up, f is,
along {u = 0} U {v = 0}, infinitely tangent to the time one map of ¥
which has the invariant foliation given by the orbits of regular vector
field %Z. Thus the foliation Fn has to be smooth at least in domains
in the (z, y, s)-space which are suspensions by means of the X-orbits of
sectors C' C {y = 0,2 > 0}, where (' is the blow up to a neighborhood
Cof {fu=0,0<wv< vy} in the (u, v)-plane.

For simplicity in exposition, let us from now describe as much as
possible everything in terms of f, the blowing up of the diffeomorphism
f, knowing that we need to suspend by means of the X-orbits in order
to get the foliation Fy. Holonomy of Fp inside the suspension of C
is regular, meaning that the coordinate s can be used on any segment
transverse to the blown-up locus {u = 0} in the second directional
blow up. In this way, £ = s can be used as a regular parameter
on the transverse section considered in the first directional blow up
near the saddle point at (u,w) = (0,0). Because of the presence of
this saddle point in the blow up of f, the holonomy of Fxn between
the two transverse sections is no longer regular but is expressed by a
Mourtada form as above, with the exponent % instead of g The same
is of course true for any holonomy map of Fxn going from a segment
that cuts transversely the X-suspension of {u = 0} defined in the
second directional blow up, to another segement that cuts transversely
the X -suspension of {w = 0} defined in the first directional blow-up.

For the purpose we need, it means that whenever we take a segment
K in the original coordinates (z,y,s), that cuts transversely {s = 0}
at (20,y0) # (0,0) and we let k be a regular parameter on x« with
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k = 0 representing (2o, yo) and {k > 0} representing x N {s > 0}, the
holonomy from k to {# = y = 0} along the foliation Fy is given by a
Mourtada form

s = k(1 + (k)

for some positive constant ¢ and some function ¢ having the desired
property. O

We are now ready to finish the proof of Proposition 3.3.

Proof of Proposition 3.3. Take a neighborhood Uy of the northpole
which is foliated by Fy. Take a transverse section ¢ in Uy which is
regularly parametrized by s = 1/B1/4 where s has to be considered
here as a variable near the south pole. The passage from ¢ to the
s-axis (in coordinate near the north pole) is given by

5 687/5(1 +p(s)=s5= ﬁ.
Note that this form is valid as well in the original coordinates (u, v, s)
before the normal form calculation.

Observe that there exists a unique connecting orbit from any suf-
ficiently small s to an s which is uniquely determined by the above
formula. We clearly have

ds 7

d_i - 3052/5(1 +9(s)) > 0
for 0 < s < 1, and hence % > 0 for sufficiently large B, finishing the
proof of the proposition. O

We are now also able to prove Theorem 3.1 as a consequence of
Proposition 3.3.

Proof of Theorem 3.1. For the notation we go back to the proof of
Proposition 3.3. Since g > 1, we have 5 < s and hence B > B. In
particular if B — oo, B — oo as well. Therefore from A = (B+ B)/2
and C'= (B — B)/2, it follows that

- 1
H:HB:—W%O-
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as B — oo. We need to find, for g < 0 sufficiently small, a smooth
function A = h(j1) satisfying g(h(fi), i) = 0, where

g@wﬁzl_A—f(1+A).

72 72

Clearly ¢(0, 1) = || 7**/>(|a|*/® = ||"*/* £(1/|11]*)) < 0, because of the
asymptotic properties of f.
If we take A = —1 4+ Dp? for some D > 0 sufficiently large, then
5 . 2—Dp? 1 ~
g(=1+ Dpi*, i) = T f(D) = ﬁ@ — (D + f(D)i*) > 0,
and hence, fixing D > 0 sufficiently large and keeping iz < 0 small, we

are sure to find some h(i) € (=1 + Dj?,0) with g(h(), ) = 0. In
fact, the smaller we take ji, the larger we may take D. Since

dyg 1 of (14 A

< =—-—= |14 = 0

oA u2(+83(u2))<’
this function h has to be unique and C'°® because of the implicit func-
tion theorem.

It is easy to show that limg .o h(f1) = —1. Indeed, from its deriva-
tion, we see that

hp) = -1+ (%) :
The asymptotic properties of f and the fact that £(z) < 0 induce the
result.

Note that A = A(j1) is a smooth function and that A is a transverse
parameter. The latter follows from the fact that % >0for0<s< 1.

Now we fix figp < 0 sufficiently close to 0 and choose Cj for (3.2)
such that we have a unique connection from —B to B. Going back
to the system X¢,, we have a connection from —A4 = —B 4 Cj to
A= B+ (.

Let T denote the translation (z,y,2) — (z,y, 2+C). Let (jio, Ao),
and corresponding (Ao, Cy), be such that the system X¢, posesses a
connection from —Ag to Ag (all with fig < 0 sufficiently small). Let
us now fix fip (and hence fix Ag) and change C' ~ Cy. To follow

22



the unstable manifold at (0,0, —Ag) for system X¢ we use again the
translation to reduce the study to Xg. Define g(A4q, C) as

g(A(),C) == TC OfOT_C(—Ao) = f(AO —|—C) —|—C

Note that in system X the unstable manifold of (0,0, —B) tends to
(0,0, B) with B = f(B) where % > 0 holds. In the above we have
taken B = Ag 4+ C. This implies that in system X the unstable
manifold of (0,0, —Ag) goes to (0,0, ¢(Ag,C)). Now,

dg af

Remark 3.6 Since we found the heteroclinic orbit from (0,0, —B)
to (0,0, B) as a perturbation of the one in the sphere at infinity of
the Poincaré-Lyapunov ball, it has the so-called strong inclination
property ([3]), namely, the stable manifold of (0,0, B) is transverse to
one (and hence any) invariant manifold of (0,0, —B) which is tangent
to the eigenspaces associated to the unstable and the weak stable
eigenvalues, the latter being the z-axis.

4 Dynamics from the heteroclinic cy-
cle

In this section, we briefly discuss the dynamics in the unfolding based
on the existence of a heteroclinic cycle proven in the previous section.
The cycle connecting the singularities Py = (0,0, z4) where z3 & +1
exists in the equation (3.1) with ¥ = —1 and A = H(ji,r), x < 0 for
some function H (fi,r) given in Theorem 3.1. The singularity P, =
(0,0, 1) is a saddle-focus with eigenvalues —a =+ iw and 3, whereas the
singularity P_ = (0,0, —1) is a real saddle with eigenvalues —f3, —~, 4,
where
a>p>0, and v>d0>03>0,

for sufficiently small r. From the form of the linear part, it follows
that 2o = —y 4+ 0 = < 0.
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Lemma 4.1
d>a>p>0

for sufficiently small r > 0. Moreover a/é — 0 as i — 0.

Proof.  From the proof of Theorem 3.1, we know that limz_,o k() =
—1, while

h(ﬂ) Z -1 + Dﬂ27
for some D > 0. In fact one can take D as large as wanted, if one

takes i < 0 sufficiently close to 0.
Now for parameter values (A, i) = (h(2), ) it follows that

) 1/ 5 0\ 1/2
il G (R ))
14 A(p)\\'/?
- s e (1210
I
> —14 (1+4D)'/?,
from which the claim follows. O

Using this information, we can derive the Poincaré map along the
i,Efm as in Figure 6, it

is given by the composition of four maps ILF TI- 11T~ TI7%. The

heteroclinic cycle. Taking cross sections 3

maps IIf . (¢ = +£) are the local transition li;gpéocf?rorﬁa%mf%g 20ty
respectively, and take the form
ITf (6,2) = (Az%/P cos(B + 6 — %log z),
AzP sin(B + 6 — %log z)), (4.1)
M (e,y) = (Ca¥%y, Da"ld), (4.2)

with 4, B,C', D depending on the choice of cross sections, if the vec-
tor fields are locally linearizable, where (z,y, z) and (r, 8, z) are local
Cartesian and cylindrical coordinates around Py, each of which are
corresponding to the eigendirections, in particular z being the eigendi-
rection associated to the eigenvalue g and —3. If not linearizable, the
maps H;Zc still have essentially the same expression to their leading or-
der, due to the established results given by [19], [3], see also [12], [18].

The maps ijaji are regular transitions from Y%, to X

-, respectively,
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Figure 6: Cross sections for the heteroclinic cycle.

along the heteroclinic orbits away from the singularities. To their
leading order, we just consider them as affine maps. Combining them
together, we may express the Poincaré map Il = H};,ol_[f;col_[;;;oﬂl_oc.

We take a rectangle Ry = {|z]| < zo,|y| < yo} in the cross sec-
tion X for small enough zo,yo > 0. It is mapped under 1I,_ . to a
cusp shaped region and then mapped by HJT;;, into E; diffeomorphi-
cally. Due to the strong inclination property in Remark 3.6, the cusp
shaped image in E; lies transversely to the stable manifold of P as
in Figure 6, and hence mapped further under Hf;c to a spiral-shaped
region which is mapped back diffeomorphically into X under Hj{(;,
Because of the Zs-symmetry, the other part of the rectangle R_ is

also mapped to a spiral shaped region [I(R_), symmetric to I1(R4)
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under the reflection with respect to the origin in X .

This situation is exactly the same as one finds in the study of
dynamics around the Shil’'nikov type homoclinic orbit to a saddle-
focus singularity, where the eigenvalue condition § > « > 0 here plays
an analogous role as the so-called Shil’nikov eigenvalue condition does.
Therefore one can derive the same conclusion as the Shil'nikov theorem
that there exist infinitely many horseshoes for the Poincaré map II.
In fact, it is shown in Tresser [20] that this type of heteroclinic cycle
with the eigenvalue condition § > a > 0 and the strong inclination
property has infinitely many horseshoes, in exactly the same manner
as the Shil'nikov theorem.

Figure 7: Possibility of Hénon-like attractors bifurcating from the heteroclinic
cycle.

If the vector field is perturbed and hence the Poincaré map is
deformed accordingly, one may also find parameter values in which
the image of the rectangles Ry under the perturbed Poincaré map
becomes as in Figure 7 or Figure 8. The former case corresponds to
the situation where the suspension of a Hénon-like strange attractor
may exist whereas the latter does where a Lorenz-type attractor may
exist. In fact this observation may be more confirmed by a heuristic
argument as follows:
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1 (R.) / ‘

Figure 8: Possibility of Lorenz-like attractors bifurcating from the hetero-
clinic cycle.

Since we have strong contraction in the strong stable direction
near PP_, we may be able to capture the essential feature of dynamics
by only looking at the one-dimensional dynamics complimentary to
the strong stable direction. This one dimensional dynamics will be
obtained by composing the following two maps:

T — xﬁ/é—l—n = z,
2 = 2 Pcos(logz) = o (2),

where 7 is a parameter which unfolds the heteroclinic connection from
P_ to Py. Notice that these maps are derived from the forms of
H?;d but they are simplified by fixing the constants A, B,C, D, etc.
appropriately.

For the one-dimensional map ¢, (z), it is easy to show the following
two facts:

(1) There exists a sequence of parameters {7,} which converge to
zero as n — oo such that the corresponding map ¢, has a fixed
point z, at which c,o%n(xn) = 0 holds. Moreover, x, — 0 and
@y (T5) = —00 as n — co.
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(2) There exists a sequence of parameters {7,} which converge to
zero as n — oo such that the corresponding map ¢;, has the
asymptotics

oi (2) = Kpa?

as ¢ — 0. Moreover K, — 0 as n — oo.

We consider that these facts support the existence of Hénon-like
and Lorenz-like attractors in unfoldings of the heteroclinic cycle. In-
deed, from the first fact, one can find, by slightly perturbing ¢,,, a
unimodal map in a small interval near z, which is mapped onto itself,
and this unimodal map may be thought of as a one-dimensional ana-
logue of the Hénon-like attractors ([13]). Similarly, from the second
fact, one can perturb ¢, slightly to have a map with discontinuity de-
fined on a small interval around 0 which resembles the one-dimensional
map of the geometric Lorenz attractor ([10]).

We believe that there also exist Hénon-like and Lorenz-like at-
tractors in the two-dimensional Poincaré maps for unfoldings of the
heteroclinic cycle because the maps are given by adding strong con-
traction normal to the direction where the dynamics is essentially that
of ¢,. Of course it requires more detailed analysis in order to rigor-
ously verify the existence of such attractors. We do not carry out this
task here because there are rather well-established techniques for this
purpose thanks to the results of [2], [13], [15] for Hénon-like attractors,
and [10], [1], [17], [16], [7] for Lorenz-like attractors.

A Proof of Theorem 3.4 on a normal
form for vector field on R’ having a line
of singularities

Here we give a proof of Theorem 3.4.

Proof. The proof proceeds in two steps. First we make a formal
calculation along I to bring the Taylor expansion of X with respect to
(x,y) and whose coefficients are smooth functions in s, to an expres-
sion as in (3.6), using near-identity coordinate changes along I. This
part is similar to the traditional normal form theorem at one point, as
treated in [9]. Second, we finish the proof by showing the existence of
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a smooth diffeomorphism having the required condition and realizing
the formal requirements in the first step.

(1st Step):  For the first part of the proof we use the complex notation
z=ux+1y, z =z — 1y for which

0_1(8 40y 0 _1(0.0)
dz 2\9z oy)’ 09z 2\0x Oy/’
and hence, the 1-jet of the form (3.5) changes to

0 _0 g _0
L(s) =b(s)i (za — Z%) + a(s) (za + Z%) .

Exactly as in the usual formal normal form calculation (see, e.g. [9]),
we consider the Lie-bracket operation (or adjoint operation)

-L(s)w’“%’% = ((k—l—l)b(s)i—l-(k—l—l—l)a(s))zkil%
:L(s)yz’“z’% = ((k—l—l—l)b(s)i—l—(k—l—l—l—l)a(s))zkzl%
:L<s>7z’“z’%: = (k= Dbl (k4 Das)) 2t

If we want to remove a term (ag(s) + ibg(s))2"2' 2, we first show

that it is in the image of the adjoint operator given above by L(s),
and this is equivalent to solving the linear equation

( (k—1=1b(s) (k+1—1)a(s) ) ( g (9) ) B ( ap(s) )
(k+1—1als) —(k—1-1)b(s) Brls) )\ buls) )

The determinant of the coefficient matrix is equal to
—(k—1—=1)*(s)? = (k+1—1)%a(s)?

which is strictly negative in case k # [+ 1, and hence this linear
equation has a solution (o (s), Bri(s)) which is smooth in s. Of course,
for k =141 and a(s) # 0, the equation can also be solved, but we do
not do this because we admit a(s) to be zero at some values of s.

In a completely similar way, we can show that the terms with
zkél% for [ # k + 1 are in the image of the adjoint operator.
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Now we proceed like in the proof of [9] for the traditional normal
form theorem by using successive coordinate changes, depending on
m € N, of the form

(2,2,8) = (24 P(2,2,8), 2+ P(2,%,5),5s + Q(2,%,5))

where

P(z,z,5) = Zpi(s)zlim_i,
=0

Q(z,z,s) = Zqi(s)ziém_i,
=0

with (p;(s), gi(s)) being complex valued smooth functions in s defined
on I and to be determined by the usual procedure as in [9]. Note that
concerning the terms with zkél% for k # [, a similar calculation as
above shows that they are in the image of the adjoint operator modulo
terms of degree m + 1 in (z, 2) when we do the formal calculation up
to order m. Let us denote the coordinate transformation by Id + R
and let v = (z, 2, s). Then the transformed vector field results in

(Id+DR(v))o = A(s) (v+R(0)) +92(0)++ - FGgm-1(0)+ fm (v)Fo0(]2, 2|),

where g;(v) denotes a homogeneous polynomial of degree ¢ in (z, z),
with coeflicients being a smooth function of s. By induction, we may
assume that the g;(v) already has the required expression. The func-
tion f,,(v) represents a homogeneous polynomial of degree m in (z, 2)
with smooth functions in s as the coefficients, and the rest represents
a smooth function of (z,z,s) being flat of order m with respect to
(z,%). A(s) is a matrix representation of L(s) in the basis.
This expression can also be written as

0 = (Id+ DR(v))"H{A(s)(v+ R(v)) + g2(v)
+ ot g1 (V) + fn () 4 o(]2,2[™) )
A(s)(v+ R(v)) + 92(v) + -+ + g1 (v)
+fm(v) + A(s)R(v) — DR(v)A(s)v+ o|z, 2|™).

The (m — 1)-jet with respect to (z,Z) remains unchanged, while for
the terms of order m, we get

S (v) — ady, (L(s)) B(v),
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showing that the Lie-bracket operation is the exact equation to solve
in order to find the adequate (P(z,z,s),Q(z,%,5)). As already cal-
culated before, the adjoint operator is not completely operating at a
homogeneous level in (z, Z), but introduces also terms of higher degree.
This does not of course give problem to the induction procedure.

(2nd Step): To finish the proof, we can look at infinite succession
of coordinate changes as introduced above for increasing degree m.
Because of the construction, this infinite succession definitely leads
to a well-defined oco-jet in (z, Z) and hence also in (2, y) with smooth
functions of s as the coefficients. This formal expression in (z,y) can
now be extended to a smooth mapping ¢ defined in a neighborhood
of I if we apply the version of the Borel theorem given in [11]. The
condition on the 1-jet of ¢ along I implies that ¢ is a diffeomorphism
in the neighborhood of I. This completes the proof of Theorem 3.4.
O
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