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Department of Mathematics
University of Oviedo

Avda. Calvo Sotelo s/n, 33007 Oviedo, Spain
E-mail: mesa@pinon.ccu.uniovi.es

Hiroshi Kokubu†

Department of Mathematics
Kyoto University

Kyoto 606-8502, Japan
E-mail: kokubu@math.kyoto-u.ac.jp

Dedicated to Robert Roussarie for his sixtieth birthday

September 19, 2005

∗Partially supported by the projects FICYT PB-EXP01-29 and MCT-02-BFM-00241.
†Partially supported by Grant-in-Aid for Scientific Research (No.14340055, No.

1



Abstract

The cocoon bifurcation is a set of rich bifurcation phenomena
numerically observed by Lau [17] in the Michelson system, a three-
dimensional ODE system describing travelling waves of the Kuramoto-
Sivashinsky equation. In this paper, we present an organizing center
of the principal part of the cocoon bifurcation in more general terms
in the setting of reversible vector fields on R3. We prove that in a
generic unfolding of an organizing center called the cusp-transverse
heteroclinic chain, there is a cascade of heteroclinic bifurcations with
increasing length close to the organizing center, which resembles the
principal part of the cocoon bifurcation.

We also study a heteroclinic cycle called the reversible Bykov cycle.
Such a cycle is believed to occur in the Michelson system, as well as in
a model equation of a Josephson Junction ([23]). We conjecture that a
reversible Bykov cycle is, in its unfolding, an accumulation point of a
sequence of cusp-transverse heteroclinic chains. As a first result in this
direction, we show that a reversible Bykov cycle is an accumulation
point of reversible generic saddle-node bifurcations of periodic orbits,
the main ingredient of the cusp-transverse heteroclinic chain.

1 Introduction

There are a number of papers devoted to studying the dynamics and bi-
furcations of the following one-parameter family of vector fields on R3 (e.g.
[5, 11, 12, 13, 17, 19, 20, 22, 24]):

ẋ = y
ẏ = z

ż = c2 − x2

2
− y.

(1.1)

On one hand, this system appears as a part of the limit family of the unfold-
ing of the nilpotent singularity of codimension three (see [5]) given by the
following equations:

ẋ = y
ẏ = z
ż = λ + µy + νz + x2,

(1.2)

17340045), Ministry of Education, Science, Technology, Culture and Sports, Japan.

2



where (λ, µ, ν) ∈ S2. When ν = 0, λ ≤ 0 and µ < 0, a simple change of
coordinates and a reparametrization transforms (1.2) into the family (1.1).

On the other hand, the family (1.1), also called the Michelson system,
appears as the equation for travelling wave solutions of a non-linear PDE
called the Kuramoto-Sivashinsky equation in one-dimensional media:

ut + uxxxx + uxx +
1

2
u2

x = 0, (t ≥ 0, x ∈ R).

See [12] or [20] for precise derivation of (1.1) from the PDE. Because of this
reason, the system (1.1) has attracted much attention for research.

Let us observe some basic properties of (1.1):

• Since the divergence is identically zero, the family is volume-preserving.

• The family is reversible, namely, it is invariant under the involution
R : (x, y, z) 7→ (−x, y,−z) and the time reverse t 7→ −t.

• For c > 0 there are only two equilibrium points at

P± = (±
√

2c, 0, 0),

both are of saddle-focus type with dim(W u(P+)) = dim(W s(P−)) = 2.

As was pointed out in [20], it follows from the results in [19] that for c large
enough there is a unique transverse heteroclinic orbit connecting P+ and P−
in (1.1) which is given by the intersection of the two-dimensional invariant
manifolds, and the equilibrium points together with the heteroclinic orbit
form the maximal bounded invariant set of the family (1.1).

When the parameter c decreases, according to the numerical results in
[17] and [20], the family exhibits an infinite sequence of heteroclinic bifur-
cations, each of which creates a pair of new transverse heteroclinic orbits.
Again it follows from the numerical results in these papers that the sequence
of heteroclinic bifurcations converges to c̄ ≈ 1.2662. For this value, there ap-
pears a saddle-node bifurcation that creates a periodic orbit γ∗, symmetric
under the involution R and intersecting with the y-axis, which is the fixed
point subspace of R. According to [20], the parameter value c̄ seems corre-
sponding to the largest value for which a periodic orbit exists. The sequence
of bifurcations that appear before and after c = c̄ was studied by Lau [17]
mainly using careful numerical simulation, and was called the “cocoon” bi-
furcation, because of the specific shape of the invariant manifolds controlling
the process, see [17].
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The cascade of heteroclinic bifurcations, caused by the tangency of W u(P+)
and W s(P−), and accumulating from above to the parameter value c̄ ≈
1.2662, has been numerically observed by Lau. Here we call it the “prin-
cipal sequence” of Lau’s cocoon bifurcation.

The goal of this paper is to study this principal sequence from a theoretical
and more general point of view, and to explain its occurrence as a consequence
of the presence of an organizing center. In order to state our main results
precisely, we begin by stating some definitions.

Let Xλ be a one-parameter family of vector fields on R3 having the fol-
lowing properties:

(H1) Each of the vector fields Xλ is time-reversible with respect to the linear
involution R with dim(Fix(R)) = 1, where Fix(R) stands for the fixed
point subspace of R;

(H2) There exist two hyperbolic equilibrium points P± 6∈ Fix(R) which
are symmetric under the involution R and such that dim W u(P+) =
dim W s(P−) = 2.

Remark 1.1 Without loss of generality, one can assume that the linear
involution R in (H1) is given by the map (x, y, z) 7→ (−x, y,−z).

Remark 1.2 We refer to [15] for a quite complete survey and an extensive
bibliography about reversible dynamical systems in both continuous and dis-
crete cases.

Definition 1.3 Under the conditions (H1) and (H2), we say the family Xλ

exhibits a cocooning cascade of heteroclinic tangencies centered at λ∗, if there
is a closed solid torus T with P± 6∈ T and a monotone infinite sequence of
parameters λn converging to λ∗, for which the corresponding vector field Xλn

has a tangency of W u(P+) and W s(P−) such that the heteroclinic tangency
orbit intersects with T and has its length within T tending to infinity as
n →∞.

Definition 1.4 A family of vector fields Xλ on R3 satisfying (H1) and (H2)
is said to have a cusp-transverse heteroclinic chain at λ = λ0, if the following
three conditions hold:

(C1) Xλ0 has a saddle-node periodic orbit γ∗ which is symmetric under the
involution R.
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(C2) The saddle-node periodic orbit γ∗ is generic and generically unfolded
in Xλ under the reversibility with respect to R.

(C3) W u(γ∗) and W s(P−), as well as W s(γ∗) and W u(P+), intersect trans-
versely, where W s(γ∗) and W u(γ∗) stand for the stable and unstable
sets of the non-hyperbolic periodic orbit γ∗.

Note that, because of the reversibility, the saddle-node periodic orbit in
(C1) must intersect with Fix(R) (see [15]).

Our main result is the following:

Theorem 1.5 Let Xλ be a smooth family of reversible vector fields on R3

with (H1) and (H2). Suppose at λ = λ0 the corresponding vector field Xλ0 has
a cusp-transverse heteroclinic chain. Then the family Xλ exhibits a cocooning
cascade of heteroclinic tangencies centered at λ0.

Remark 1.6 The name “cusp-transverse” comes from the fact that, under
the genericity condition (C2), the Poincaré map along the saddle-node peri-
odic orbit has a fixed point whose stable and unstable sets form a cusp, see
Figure 1 in Section 2, and by the condition (C3) they intersects the unstable
and stable manifolds of the equilibrium points P± transversely. Under the
bifurcation, the saddle-node periodic orbit will split into two periodic orbits
for λ on one side of λ∗, while no periodic orbit will be present near γ∗ for λ
on the other side of λ∗. The cocooning cascade occurs for the latter values of
λ. Geometric structure of the cusp-transverse heteroclinic chain will become
clear once the local structure of the saddle-node periodic orbit is studied in
Section 2. See Figure 3 as representing a crucial part of the structure.

Remark 1.7 We briefly illustrate how the generic saddle-node periodic orbit
implies the cusp structure in the case of (1.1). The family (1.1) is reversible
under the linear involution R : (x, y, z) 7→ (−x, y,−z) whose fixed point
subspace is the y-axis, hence one-dimensional. Suppose at a parameter value
λ = λ0, there is a saddle-node periodic orbit γ which is invariant under R and
hence intersects with the y-axis. Denote by Π the Poincaré map along γ at
a point p = (0, y0, 0) in Fix(R). Notice that p is a fixed point of Π. Since the
vector field is reversible, by choosing the (y, z)-plane as an invariant cross
section under R, one sees that Π is also reversible, namely it is conjugate
to its inverse by the restricted involution. In particular, the determinant
of DΠ(p) at the fixed point p is equal to 1, because the Poincaré map is
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flow-defined, hence orientation preserving. Knowing that 1 is an eigenvalue
of DΠ(p) as p is a saddle-node fixed point, we conclude that 1 is a double
eigenvalue of DΠ(p). Moreover, we assume that the eigenvalue 1 is not semi-
simple, which is a generic condition under the presence of saddle-node. This
fact is supported by a numerical result in Section 4 for (1.1). It follows that
the linear part of Π is conjugate to the unipotent matrix

(
1 1
0 1

)
. (1.3)

In the analysis developed in Section 2, a reversible diffeomorphism with the
unipotent linear part at a fixed point is studied through a nilpotent singu-
larity of a planar reversible vector field. By using the blow up technique, we
can show that the stable and unstable sets of the fixed point of Π indeed
form a cusp structure.

Remark 1.8 The description of “cocoon bifurcations” in Lau’s paper [17] is
phenomenological, in the sense that a list of dynamical behaviors and their
changes (bifurcations) with variation of the parameter c is given in relation
to associated changes in the structure of numerically computed stable and
unstable manifolds of equilibrium points. Our motivation was to treat these
complex bifurcation phenomena by a general and solid mathematical man-
ner. Theorem 1.5 says that at least a part of it, namely the accumulation
of infinitely many heteroclinic tangency bifurcations, can be understood as a
consequence of the presence of a cusp-transverse heteroclinic chain. There-
fore one can understand that such a sequence of heteroclinic bifurcations
in the description of Lau’s cocoon bifurcation is not a special bifurcation
phenomenon which occurs only in the Michelson system. Indeed, it will be
shown that the same phenomena indeed occurs in a different system.

We believe that other part of the Lau’s cocoon bifurcations can also be
understood from this point of view, but this will be the subject of future
work.

In order to rigorously show the existence of a cusp-transverse heteroclinic
chain in a given family of vector fields, one must verify the conditions (C1-
C3), which is in general not easy by analytical methods and often requires
numerical computation (see Section 4). However, we believe there is a bifur-
cation mechanism producing cusp-transverse heteroclinic chains.
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Definition 1.9 Let Xλ be a family of vector fields on R3 satisfying (H1)
and (H2). A reversible Bykov cycle is a heteroclinic cycle in Xλ0 for some
λ0 consisting of two heteroclinic orbits between the equilibrium points P±,
one given by the intersection, and hence coincidence of branches, of one-
dimensional invariant manifolds W u(P−) and W s(P+), and the other given by
an intersection of two-dimensional invariant manifolds W u(P+) and W s(P−).
Moreover we assume that the equilibrium points are of saddle-focus type,
and that the following non-degeneracy conditions hold:

(B1) The intersection W u(P+) ∩W s(P−) is transverse;

(B2) As the parameter λ is varied around λ0, the heteroclinic orbit W u(P−)∩
W s(P+) unfolds generically, namely the distance between W u(P−) and
W s(P+) measured in a transverse plane is diffeomorphic to µ = λ−λ0.

In a general context, not including the reversibility assumption, the co-
incidence of branches of the one-dimensional invariant manifolds along a
heteroclinic orbit Γ is a codimension two phenomenon. On the other hand,
since the intersection between the two-dimensional invariant manifolds is
transverse, it has codimension zero. Hence, in general, a heteroclinic cy-
cle as described above has codimension two. Nevertheless, when the system
is reversible, a heteroclinic orbit Γ exists if and only if W u(P−) intersects
Fix(R) and therefore a reversible Bykov cycle has codimension one under
reversibility.

Remark 1.10 Since the Michelson system (1.1) is divergence-free, the eigen-
values at P− = (−√2, 0, 0) satisfy λu

−+2Re(λs
−) = 0, where λu

− and λs
− are the

unstable and stable eigenvalues at P−, and hence they satisfy the so-called
Shil’nikov condition:

0 <
|Re(λs

−)|
λu−

=
1

2
< 1.

We do not rely on the condition in this paper. However, the dynamics and
bifurcations from the reversible Bykov cycle satisfying Shil’nikov condition
become richer than those without it since, for instance, the existence of
Shil’nikov homoclinic orbits follows. See e.g. [5] and [16].

Remark 1.11 We have chosen the name “Bykov cycle” for the cycle char-
acterized in the above definition, because it was V. V. Bykov in [1] who
studied some of the dynamical consequences from the existence of similar
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kinds of heteroclinic cycles in a more general context than reversible ones.
Some recent results in the general context can also be found in [8]. This
type of heteroclinic cycle, or rather its bifurcation point, is sometimes called
a “T-point” [9].

An explicit heteroclinic solution representing a coincidence of one-dimensional
branches has been found (see [13]) in the Michelson system (1.1) at the
parameter value c = cK = 15

√
22/193. Then by showing the topological

transversality of the two-dimensional invariant manifolds of these equilib-
rium points [11], a heteroclinic cycle indeed exists in (1.1) at this parameter
value. This heteroclinic cycle almost satisfies the definition of the reversible
Bykov cycle, but it remains to verify the genericity conditions (B1) and (B2),
which might be tractable by rigorous numerical computation.

We have the following

Conjecture Let Xλ be a family of vector fields with (H1) and (H2). Sup-
pose at λ∞ the vector field Xλ∞ has a reversible Bykov cycle. Then, there exist
two sets of infinite sequences of parameters {λ±n }n∈N with λ−n < λ∞ < λ+

n ,
converging to λ∞ as n →∞, such that each Xλ±n has a cusp-transverse het-
eroclinic chain.

Remark 1.12 In view of Theorem 1.5, this conjecture asserts that there is
an infinite set of “cocoon” bifurcations accumulating at the reversible Bykov
cycle. This is stronger than the mere accumulation of heteroclinic bifurca-
tions (the cocooning cascade of heteroclinic tangencies). In other words, the
conjecture indicates a nested structure of bifurcations where heteroclinic tan-
gencies accumulate to saddle-node periodic orbits which in turn accumulate
to a reversible Bykov cycle.

At the moment, we are not able to prove the conjecture. In Section 3, we
will, however, prove the following theorem:

Theorem 1.13 Let Xλ be a smooth one-parameter family of vector fields
with (H1) and (H2). Suppose at λ∞ the vector field Xλ∞ has a reversible
Bykov cycle. Then there exist two sets of infinite sequences of parameters
{λ±n }n∈N with λ−n < λ∞ < λ+

n , converging to λ∞ as n → ∞, such that each
Xλ±n has a saddle-node periodic orbit satisfying the conditions (C1) and (C2).
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Remark 1.14 We consider this theorem as a first attempt to proving the
above conjecture, since the existence of a saddle-node periodic orbit with
the conditions (C1) and (C2) is the main ingredient of the cusp-transverse
heteroclinic chain. Proving the condition (C3) seems to be a more involved
task. In order to achieve such a goal one has to understand how the stable and
unstable sets of the saddle-node periodic orbits evolve when they approach
the reversible Bykov cycle. More precisely, we need a result showing that,
after choosing an appropriate transverse section Σ, they tend to W s(P−)∩Σ
and W u(P+) ∩ Σ, respectively. This requires further investigation.

Remark 1.15 Bifurcations from a reversible Bykov cycle are studied exten-
sively by Lamb et al. [16], where they proved, among other things, bifurca-
tions of countably many homoclinic and heteroclinic orbits from the cycle.
Such heteroclinic orbits may be related to the ones expected from the above
Conjecture. On the other hand, although it is not explicitly mentioned, it
also follows from the results in [16] that there exist two sequences of parame-
ters, converging to λ∞, where the family shows a saddle-node bifurcation. In
fact, the bifurcation equation from which we directly derive the existence of
such sequences can also be found there in an equivalent formulation. Never-
theless, there is no argument in [16] leading to the genericity condition (C2),
which is essential in the proof of our main result.

In [23], the existence of a one-dimensional saddle-saddle connection is
proven for a model equation of the Josephson Junction, and the transver-
sality of two-dimensional invariant manifolds is numerically verified, without
rigurous error estimate. Noticing that the model equation is reversible under
a suitable linear involution, these results show the presence of a reversible
Bykov cycle in the model equation, and therefore, from the results of this
paper, it is very likely that the cusp-transverse heteroclinic chains and ac-
companying cocooning cascades of heteroclinic tangencies should exist in this
system, similarly to the Michelson system and probably in many others.

The structure of the rest of this paper is as follows: In Section 2, we con-
sider a one-parameter family of reversible diffeomorphisms fλ such that f0

has a fixed point with the unipotent matrix as its linearization. Using results
obtained in [14], we will see that, under generic assumptions, such a family
can be written, up to infinite order, as the time-one mapping associated to a
family of vector fields unfolding the planar nilpotent singularity of codimen-
sion two. From this fact and the transversality of the invariant manifolds,
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we give a proof of Theorem 1.5. Theorem 1.13 is proven in Section 3. In
Section 4, we show numerical results which support and illustrate many of
the theoretical results as well as the conjecture given in the paper.

We would like to thank the referees for their valuable remarks and sug-
gestions concerning an earlier version of this paper; they helped improving
the presentation.

2 Study of planar reversible diffeomorphisms

near a fixed point with unipotent linear

part

2.1 Formal embedding of a reversible diffeomorphism
in a flow

Consider a C∞ one-parameter family of diffeomorphisms fλ on the plane,
with f0(0, 0) = (0, 0) and Df0(0, 0) given by (1.3). Moreover assume that
each fλ is reversible with respect to R(x, y) = (x,−y), namely R ◦ fλ ◦ R =
f−1

λ .

Remark 2.1 Attention should be paid to the notation here. Throughout
the paper, the variables of the two-dimensional Poincaré maps derived from
reversible vector fields are (y, z). Only in this section, in order to formulate
general results, we will use x and y, playing the same role as y and z in other
sections.

We will consider λ as a third variable and define f as the germ at 0 of
the C∞ diffeomorphism in R3 given by

f : (x, y, λ) → f(x, y, λ) = (fλ,1(x, y), fλ,2(x, y), λ),

where fλ,1 and fλ,2 denote the components of fλ. In the next theorem we will
see how f can be embedded in the flow of a vector field on R3 having family
character with respect to the third variable in the sense of the following
definition.

Definition 2.2 Let g be the germ at (0, 0) of a C∞ diffeomorphism in Rn×
Rm, with g(0, 0) = (0, 0) and P ◦ g = P , where P : Rn × Rm → Rm denotes
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the natural projection. Let X be a C∞ vector field on Rn × Rm such that
X(0) = 0 and P ◦ X = 0. We say that g formally embeds as a family
in the flow of X if there exists a C∞ diffeomorphism ψ in Rn × Rm, with
ψ(0, 0) = (0, 0) and P ◦ ψ = P , such that the infinite jets of ψ−1 ◦ g ◦ ψ and
of the time-one mapping of X coincide at 0.

Let us state the following theorem without proof. A proof can be obtained
based on [21], together with some straightforward calculation exploiting the
reversibility. A more specified expression can be found in [14], but we do not
need to rely on it.

Theorem 2.3 Assume that ∂f2

∂λ
(0) 6= 0 and ∂2f2

∂x2 (0) 6= 0. Then, up to a λ-
dependent C∞ coordinate change in the (x, y)-plane and a regular reparame-
trization in λ, f formally embeds as a family in the flow of a C∞ vector
field:

X :





x′ = y
y′ = λ + m(λ)x + x2 + x3g(x, λ)

+y(k(λ) + l(λ)x + x2h(x, λ)) + y2Q(x, y, λ)
λ′ = 0,

(2.1)

with m(0) = k(0) = 0.

2.2 Study of the germ fλ at the zero-parameter value

γ
u

γ
s

Figure 1: Phase portrait of X0.

This kind of germ of the diffeomorphism given above has been studied in
[6], where the following theorem has been proven:
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Theorem 2.4 Let f0 be a C∞ germ having a 1-jet j1f(0) = id + N , where
N is nilpotent and non-zero, and a generic 2-jet in the sense of Theorem 2.3.
Then f0 embeds in a C∞-way in the flow associated to a generic cusp-like
vector field as its time-one map. As an additional consequence, there exist a
stable branch γs and an unstable branch γu emanating from (0, 0).

Let us quickly repeat some steps in the proof of this theorem, and add
some extra information in view of the rest of the construction.

The related vector field can be given in the traditional smooth normal
form for nilpotent vector fields:

y
∂

∂x
+ (α(x) + yβ(x) + y2γ(x, y))

∂

∂y
,

where γ(x, y) has vanishing infinite jet at (0, 0), β(0) = 0, α(0) = α′(0) = 0,
and, because of the conditions in Theorem 2.3, α′′(0) 6= 0. As such the phase
portrait of the vector field X0 is as given in Figure 1. Here we note that, in
this subsection, we consider the vector field X as a family of two-dimensional
vector fields parametrized by λ, and we use the notation Xλ for indicating
it. The above X0 is therefore understood as the planar vector field at λ = 0.

p
1

p
2

Figure 2: Blow-up of X0.

The “phase portrait” of f0 is similar to the one in Figure 1, in the sense
that the orbits of f0 respect the orbit structure of such a nilpotent cusp-type
singularity. It for instance makes sense to talk about a stable branch γs and
an unstable branch γu emanating from the origin. The proof of Theorem 2.4
is based on a blow-up procedure

(x, y) = (r2 cos θ, r3 sin θ). (2.2)
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This blow-up can be applied both to f0 and to X0, and in studying the
vector field X0 we can even rescale time by a factor 1/r, so that we get a
desingularized situation as depicted in Figure 2.

γ
u

γ
s

D

C
p 

q 

(a)

D

C

(b)

Figure 3: Iterates of segments transverse to γs.

In Figure 2 the two singularities p1 and p2 on the singular locus {r = 0}
are hyperbolic saddles. The two invariant curves γs and γu are obtained by
blowing-down the respective stable manifold of p1 and unstable manifold of
p2. Of course in blowing-up f0 we can not rescale time and the dynamics of
the blown-up diffeomorphism f̂0 are essentially as depicted in Figure 2, with
the exception that f̂0 | {r = 0} is the identity.

Suppose that some dynamically relevant one-dimensional manifold, like
the intersection of the (x, y)-plane with the two-dimensional unstable mani-
fold of the equilibrium point P+ of the three-dimensional flow, cuts γs trans-
versely at some point p, like in Figure 3(a); let us only consider a segment
C of the manifold which is everywhere transverse to the vector field X0. We
similarly consider some segment D, transverse to X0 and cutting γu at some
point q; it could belong to some dynamically relevant one-dimensional mani-
fold, like the intersection of the (x, y)-plane with the two-dimensional stable
manifold of the equilibrium point P− of the three-dimensional flow.

Theorem 2.5 Let fλ be a C∞ family of planar diffeomorphisms as in The-
orem 2.3. We suppose that fλ is reversible under the mapping R : (x, y) 7→
(x,−y), namely R ◦ fλ ◦R = f−1

λ .
Consider invariant curves γs and γu for f0 as obtained in Theorem 2.4.

Let C be a segment transversely cutting γs at some point p1 ∈ γs and let D

13



E
1

E
2

C

D

Figure 4: Iterates of C and D after blowing-up.

be its mirror image under R transversely cutting γu at p2, where γu and p2

are the mirror images of γ1 and p1 under R, respectively.
Then, for N sufficiently large, the iterates fN

0 (C) and f−N
0 (D) cut each

other as represented in Figure 5.

Proof. In studying forward iterates of C and backward iterates of D,
we have to restrict to discrete iterates in working with f0, but for X0 we can
permit to work with continuous time-t iterates. Let us first keep D fixed and
only follow C in forward time.

We will show that the iterates behave like in Figure 3(b), i.e., they start
bending around the singularity and after a while start cutting D, in a trans-
verse way, exactly twice.

The proof is again based on the blow-up (2.2), but since the original time
is important in the construction, we are not allowed to rescale by a factor
1/r. The blown-up vector field is hence essentially like in Figure 2, except
for the fact that X̂0 | {r = 0} ≡ 0; the desingularized picture, as drawn in
Figure 2, can only be obtained by considering X̄0 = 1

r
X̂0. In Figure 4 we

draw the blown up situation representing C and D in it, without changing
the notation, and introducing extra segments E1 and E2. What we have to
use in between C and E1 (resp. E2) and in between E1 (resp. E2) and D,
is a kind of λ-lemma type argument, in the presence of a hyperbolic saddle
with an extra time-degeneracy. This has been studied in [3] and [6]. In [3]
it has been proven that the transit time of X̂0 in between C and E1,2 (and
equally in between D and E1,2) is monotonically going to ∞ when the orbits
approach the singular locus {r = 0}.

Let us continue reasoning with C and E1; the other situations dealing
with D or E2 are similar. For t sufficiently large, the iterates X̂0,t(C) will cut

14



C

D

f
0
n(C)

f
0
−n(D)

Figure 5: Iterates of C and D in a time-reversible situation.

E1 at a unique point pt in a way that their tangent line at pt makes a nonzero
angle with X̂0(pt). If we can prove that this angle tends to zero for t → +∞,
or equivalently for pt → 0, then it will follow that the X̂0-iterates of C over a
positive time will cut the X̂0-iterates of D over a negative time exactly once
on the E1 side and once on the E2 side; the intersection will be transverse.
This type of λ-lemma argument is commonly used in hyperbolic situations
but requires a proof in this more degenerate situation. The calculations to
be made are completely similar to the ones that have been performed in [4]
in a more degenerate semi-hyperbolic case.

This observation at the time-t iterates of C and D for the vector field X̂0

of course applies to the discrete iterates for f̂0 giving a similar picture as in
Figure 4.

If we apply this result to the original f0 then we can also use the fact that
f0 is “time-reversible” under the mapping (x, y, n) → (x,−y,−n). As such
γu is obtained from γs by the reflection (x, y) → (x,−y). Since the invariant
manifolds that we are interested in are in a symmetric position with respect
to {y = 0}, we can, in the previous construction, also restrict to some seg-
ment D, which is obtained from C by the reflection (x, y) → (x,−y). For
n ≥ 0 sufficiently large, the iterates fn

0 (C) and f−n
0 (D), restricted to some

neighbourhood of (0, 0), will be like in Figure 5, with fn
0 (C) and f−n

0 (D) mir-
ror images under (x, y) → (x,−y). The angles between fn

0 (C) and f−n
0 (D)

along the x-axis are necessarily like in the figure. In fact any different situa-
tion would either lead to tangencies or to extra intersections, which are both
excluded by the previous construction. ¤
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2.3 Study of the germ of the family fλ

We will continue using the notations introduced in the previous paragraph.

Theorem 2.6 Under the same hypotheses as in Theorem 2.5, there exists
a sequence of parameter values λn ↓ 0 such that for each λn there is some
Nn such that fNn

λn
(C) and f−Nn

λn
(D) have a point of tangency. Moreover,

Nn →∞ as n →∞.

Like in the proof of Theorem 2.5, we again use blow up but this time in
R3 instead of in R2. We in fact consider λ to be a third variable, considering
the family fλ as a diffeomorphism on R3 given by

(x, y, λ) → (fλ,1(x, y), fλ,2(x, y), λ),

and we will concentrate on the study of its germ at (x, y, λ) = (0, 0, 0). As
observed in Subsection 2.1, this germ formally embeds in a flow related to
an unfolding of a nilpotent singularity. Up to a diffeomorphism respecting
λ and a regular reparametrization of λ, we can suppose that as a germ
at (0, 0, 0), fλ is infinitely close to the time-one mapping of some vector
field (2.1) with C∞ functions m, k, l, g, h and Q, m(0) = k(0) = 0 and
Q(x, y, λ) = O(‖(x, y, λ)‖N) with N given a priori and as large as needed.
In this expression we use the information obtained in Subsection 2.1. Let us
observe that this normal form has more terms than the traditional one where
m(λ) = 0 and g(x, λ) = 0 for all x and λ. The latter is however valid for C∞

equivalence, while in the current study we have to rely on C∞ conjugacies.
As formal calculation suggests, we can probably suppose that k, l and h are
identically zero, but we will not use this since we do not need it. For further
study we now rely on the results in [7], indicating the different steps in the
procedure, but leaving the technical details to [7]. The construction is based
on the blow-up:

(x, y, λ) → (r2x̄, r3ȳ, r4v4),

with x̄2+ ȳ2+v2 = 1 (or (x̄, ȳ, v) ∈ ∂B where B is some “box” homeomorphic
to D3); we also restrict to v ≥ 0. Working with v4 instead of v is not really
necessary, but is introduced here in order to fully agree with [7], where other
parameters also had to be considered, imposing in a natural way that choice
of the exponent.

The blown-up locus {r = 0}, for v ≥ 0, is a half-sphere like in Figure 6(a)
that we can also see from above like in Figure 6(b).
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Again what we represent in Figure 6 is the desingularized field X̄λ = 1
r
X̂λ,

that we obtain by blow-up and rescaling time. The field X̂λ, obtained by
merely blowing-up, is equivalent to X̄λ outside {r = 0}, but is identically zero
on {r = 0}. The blowing-up f̂λ of the (three-dimensional) diffeomorphism
fλ is equal to the identity on {r = 0} and is infinitely near the time-one
mapping of X̂λ along {r = 0}.

As is usual in working on a sphere, the calculations will be made in
different charts. For instance, for making calculations in the interior of the
half sphere in the blow-up locus, we use v = 1 leading to an r-family of vector
fields

ȳ
∂

∂x̄
+ (x̄2 + 1 + O(r))

∂

∂ȳ
.

Let us remark that on {v = 0} we recover the two-dimensional situation
described in Subsection 2.2. Possibly up to an extra C∞ coordinate change
(see [6]) we can suppose that f0 is the time-one map of the vector field X0.
We again consider C and D as in Theorem 2.5, or more precisely, for each λ
we consider C × {λ} and D × {λ}, that for simplicity we still denote C and
D, respectively, not specifying the λ-level.

We have seen in Theorem 2.5 that for N sufficiently large the iterates
fN

0 (C) will cut D in a transverse way at exactly two points (restricting our
attention to a given neighbourhood of (0, 0)). Let us fix such N0 and choose
some λ0 > 0 such that for all 0 ≤ λ ≤ λ0, the same property holds for fN0

λ (C)
with respect to D.

We can also take λ0 > 0 small enough such that for all 0 ≤ λ ≤ λ0 the
vector field Xλ is transverse to fN

0 (C) as depicted in Figure 7(a) pointing

C D 
p

1
  p

2

(a)

D

p
2

p
1

C

(b)

Figure 6: Blowing-up of Xλ.
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inward the open disc RN bounded by fN
0 (C) and D.

Let Dλ
N ⊂ RN denote the closed part of RN in between f−1

λ (D) and D.
It is clear that for each λ ∈ [0, λ0] and for each x ∈ RN \ Dλ

N we still have
fλ(x) ∈ RN , while fλ(x) /∈ RN if we take x ∈ Dλ

N (to be sure about the last
statement and since we have not paid attention to fλ | Dλ

N till now, it might
be safer to change D by f−1

0 (D), calling it D again).
In the further study of fN ′

λ (C) we will restrict to λ ∈ [0, λ0], N ′ > N and
to the part of fN ′

λ (C) inside RN . By taking λ0 > 0 smaller —if necessary—
we can suppose that fN+1

λ (C) ∩ (RN \Dλ
N) 6= ∅.

We will now prove that for each λ ∈ (0, λ0] there is some Nλ > N , such
that

fN ′
λ (C) ∩RN 6= ∅ for N + 1 ≤ N ′ ≤ Nλ

fNλ+1
λ (C) ∩RN = ∅

We recall that for each N ′ ≥ N we define fN ′+1
λ (C) as fλ(f

N ′
λ (C) ∩ RN),

keeping our attention to what happens inside RN and avoiding recurrences
through the complement of RN .

We need fNλ
λ (C) ∩RN ⊂ Dλ

N .
The proof of the existence of such Nλ will be done in the blown-up sit-

uation. In Figure 7(b) we represent C, D and the respective iterates after
blowing-up, without putting a cap above the notation. In fact for λ > 0, the
blow-up is a diffeomorphic change, sending the invariant planes {λ = const.}
to the leaves of a regular foliation defined by {r4v4 = const.}. It will not
lead to a misinterpretation in transferring the used quantities to these regular
leaves, without changing the name.

D

f
0
−1(D)

f
0
N(C)

R
N

C

(a)

f
0
 −1(D)

D

f
0
N(C)

R
N

p
2

p
1

C

(b)

Figure 7: Delimiting a control region.
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The reasoning which we will make is based on Figure 6 and on calculations
made in [7]. We consider a neighbourhood of {r = 0} containing RN , that
we further subdivide in three parts V1, V2 and V3, defined in terms of X̄λ

(recall that X̄λ = 1
r
X̂λ). V1 (resp. V2) is an isolating block for the hyperbolic

saddle point p1 (resp. p2), while in V3 the vector field X̄λ is a global flow
box. We can choose the Vi compact in a way that V1 and V3, V2 and V3, as
well as V1 and V2 overlap.

If the iterates of C, for λ > 0, would be considered with respect to the
desingularized vector field X̄λ, then clearly after a sufficiently large time
they would first leave V1, and at the end lay completely in V2 before leaving
V1 ∪ V2 ∪ V3. We only have to check that the same holds for X̂λ = rX̄λ, and
also for fλ which, along {r = 0} is infinitely near the time-1 map of X̂λ.

Seen the compactness of the Vi, the verification can be done locally. Be-
sides genuine flow boxes, both for X̂λ and f̂λ, which we have for r 6= 0, we
can encounter two different situations along {r = 0}.

The first is a “degenerate flow box” and the second a “degenerate hy-
perbolic saddle”, occurring respectively at a point where X̄λ | {r = 0} is
non-singular or is singular, and hence, in the latter case, is a hyperbolic
saddle.

In the first case it immediately follows from the flow box theorem that in
well chosen coordinates (ξ, η, ζ), with {r = 0} represented by {ζ = 0}, the
expressions of X̄λ and X̂λ are, respectively

X̄λ :





ξ′ = 1
η′ = 0
ζ ′ = 0

and X̂λ :





ξ′ = ζA(ξ, η, ζ)
η′ = 0
ζ ′ = 0,

with A(ξ, η, ζ) > 0. Accordingly f̂λ can be given as an expression





ξ → ξ + ζB(ξ, η, ζ)
η → η + ζNg(ξ, η, ζ)
ζ → ζ + ζNh(ξ, η, ζ),

with N arbitrarily big and B(ξ, η, ζ) > 0. In fact the expression could be
more simplified, if we would use that in the “family chart” ({v = 1}), f̂λ

respects the foliation {r = const.}, while in the “phase directional charts”
({x̄ = ±1} or {ȳ = ±1}) it respects the foliation {rv = const.}. There is
however no use to do so. It is immediate to observe that the coordinate ξ
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defines a global Lyapunov function for X̄λ, but also for X̂λ and f̂λ as long as
we keep λ > 0.

To work near p1,2, the singularities of X̄λ on {r = 0}, we use a “phase
directional” chart given by {x̄ = 1}. We will restrict to a study near p1, the
calculations near p2 being similar. We will also avoid making unnecessary
calculations and only consider the essential facts. We know that X̄λ has a
hyperbolic saddle at p1, whose unstable manifold is contained in the singular
locus {r = 0}. As such the r-component of X̄λ can be written as

r′ = rA(r, v, ȳ)

with A(r, v, ȳ) < 0, and X̂λ has an r-component

r′ = r2A(r, v, ȳ).

By this it is clear that the r-component on {r > 0} is a Lyapunov function for
X̄λ, X̂λ and also for f̂λ, since the last is infinitely near the time-one mapping
of X̂λ along {r = 0}.

By the construction we know that {rv = const.} is an invariant foliation
both for X̂λ and f̂λ. As such for λ > 0, while the r-component of f̂λ is strictly
decreasing, the v-component will be strictly increasing until exceeding the
boundary of the chosen neighbourhood of p1.

Going back now to the original fλ and applying the previous observations
on the forward iterates of C and the backward iterates of D, we can again
use the time reversibility of fλ under the mapping (x, y, n) → (x, y,−n). We
know that γu is the mirror image of γs under the reflection (x, y) → (x,−y)
and we can again ask D to be the mirror image of C under the same reflection.
As such fn

λ (C) and f−n
λ (D) will also be mirror images under this reflection.

We have seen that for each λ > 0 sufficiently small, there exists some Nλ

such that fNλ
λ (C)∩RN ⊂ Dλ

N implying that fNλ
λ (C) is completely in {y > 0}.

In keeping the same Nλ and taking λ′ ∈ (0, λ], we obtain curves that start
at fNλ

λ (C) for λ′ = λ and tend in a continuous way to fNλ
0 (C) for λ′ → 0.

Certainly fNλ
0 (C) contains points in {y < 0}, as we have seen in the preceding

paragraph.
Hence in (0, λ] there must be a value λ′ where fNλ

λ′ (C) is tangent to the
x-axis. We hence have proven the existence of a sequence λn ↓ 0 at which,
for some Nn ∈ N, there is a tangency between fNn

λn
(C) and f−Nn

λn
(D). ¤

In Figure 8 we represent the most probable situation, in which the two
curves fNn

λn
(C) and f−Nn

λn
(D) meet at exactly one point with a quadratic
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D

fλ
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 −N
n(D)

fλ
n

N
n(C)

Figure 8: Contact between iterates of C and D.

tangency. This is most likely to be the case, but a precise proof might be
technically quite involved.

2.4 Proof of Theorem 1.5

The assertion of Theorem 1.5 now follows easily from Theorem 2.6. Let γ0 be
the saddle-node periodic orbit associated to the cusp-transverse heteroclinic
chain, and denote by Πλ the Poincaré map along γ0 parameterized by λ.
Choosing the transverse section Σ appropriately, Πλ is a family of planar dif-
feomorphisms, reversible under the restricted involution R̃ : (y, z) 7→ (y,−z).
As observed in Introduction, the Jacobian matrix DΠλ0(p0) at the saddle-
node fixed point p0 corresponding to γ0 must have a double eigenvalue 1.

Moreover, it is assumed that the saddle-node periodic orbit is generically
unfolded by the family Xλ, which is equivalent to saying that DΠλ0(p0) is
conjugate to the unipotent matrix (1.3) as well as all the genericity conditions
imposed in Theorem 2.3. From the condition (C3), the segments given by
C = W u(P+)∩Σ and D = W s(P−)∩Σ intersect transversely with the stable
set γs and the unstable set γu of γ0.

All the hypotheses in Theorem 2.6 are thus satisfied, and hence there
exists a sequence of parameters {λn} converging to λ0, which can be chosen
to be monotone, and a sequence of integers {Nn} diverging to ∞ such that
ΠNn

λn
(C) and ΠNn

λn
(D) have a point of tangency. This means that for each

λn the corresponding vector field Xλn has an orbit Γn along which W u(P+)
and W s(P−) intersect tangentially. Moreover, since Nn →∞ as n →∞, the
length of Γn diverges inside any a priori given tubular neighbourhood of the
saddle-node periodic orbit. This completes the proof of Theorem 1.5. ¤
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3 Unfolding of a reversible Bykov cycle

In this section, we prove Theorem 1.13. We shall prove the condition (C1)
in Subsection 3.1 and (C2) in Subsection 3.2.

3.1 Poincaré map along the reversible Bykov cycle

We describe the Poincaré map along the reversible Bykov cycle by using
Shil’nikov’s idea, in particular, what is called the exponential expansion. See
[10] and references therein.

The Poincaré map along the heteroclinic cycle can be given by composing
local transition maps near P± and global transition maps between them. In
order to take the most advantage of the reversibility, which is the special
feature of the system under consideration, we assume without loss of gen-
erality that the linear involution for reversibility is given by R : (x, y, z) 7→
(−x, y,−z) and take two-dimensional cross sections Σ0 and Σ1 to the cycle in
such a way that they are contained in an R-invariant plane containing Fix(R),
say the (y, z)-plane, and that Σ0 has non-empty transverse intersection with
the codimension zero heteroclinic orbit W s(P−) ∩ W u(P+) when λ = λ∞,
whereas Σ1 has non-empty transverse intersection with the codimension one
heteroclinic orbit Γ.

Let ϕ : Σ0 → Σ1 be the flow-defined transition map (with an appropriate
domain of definition in Σ0), and let ψ : Σ0 → Σ1 be similarly defined by the
time-reversed flow. The Poincaré map is then given by Π = ψ−1 ◦ ϕ, and
therefore, finding a fixed point of the Poincaré map is equivalent to finding
a point p ∈ Σ0 that satisfies ϕ(p) = ψ(p).

Recall that the system is time-reversible with respect to the involution
R : (x, y, z) 7→ (−x, y,−z), which fixes both Σ0 and Σ1. This implies that
the maps ϕ, ψ are related by R̃ ◦ϕ ◦ R̃ = ψ, where R̃ : (y, z) 7→ (y,−z). This
follows from the fact that the flow Φt of a reversible vector field is reversible
in the sense that R ◦ Φt ◦R = Φ−t.

Since the codimension zero heteroclinic orbit persists under parameter
variation and since W s(P−) and W u(P+) intersect transversely along it, it is
more convenient to introduce coordinates (u, v) on Σ0 such that the u-axis
coincides with W u(P+) ∩ Σ0 and the v-axis does with W s(P−) ∩ Σ0. More
precisely, we may assume, without loss of generality, that W u(P+) ∩ Σ0 is a
smooth curve given by G(y, z) = 0 with gradG 6= 0, and hence W s(P−)∩Σ0

can be given by G(y,−z) = 0 due to the reversibility. We then define the
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new coordinates (u, v) as

u = G(y, z), v = G(y,−z).

These relations indeed define the new coordinates near the intersection point
of W u(P+) and W s(P−) in Σ0, because of the transversality of these invariant
manifolds. Moreover, since the involution R̃ sends (y, z) to (y,−z), it acts
on the coordinates (u, v) as T (u, v) = (v, u).

We fix such cross sections as well as the coordinates (u, v) on Σ0 and (y, z)
on Σ1 using changes depending on the bifurcation parameter µ = λ − λ∞.
Under these circumstances, the above relation becomes

R̃ ◦ ϕ ◦ T = ψ, (3.1)

where T (u, v) = (v, u). An immediate consequence of this fact is that the
Poincaré map Π = ψ−1 ◦ ϕ satisfies T ◦ Π ◦ T = Π−1, since

T ◦ Π ◦ T = T ◦ (ψ−1 ◦ ϕ) ◦ T = T ◦ (T ◦ ϕ−1 ◦ R̃ ◦ ϕ) ◦ T

= ϕ−1 ◦ R̃ ◦ ϕ ◦ T = ϕ−1 ◦ ψ = Π−1.

Therefore Π is reversible under the reflection T .
We are looking for saddle-node periodic orbits, hence saddle-node fixed

points of the Poincaré map Π, which are symmetric under the involution
R : (x, y, z) 7→ (−x, y,−z) and which intersect Fix(R), namely, the y-axis.
Note that there is a fixed point p ∈ Σ0 of Π, if and only if ϕ(p) = ψ(p). This
together with the fact that q = ϕ(p) lies in the fixed point subspace of R̃
implies that p must be on the fixed point subspace of T , namely the diagonal
of the (u, v)-plane. Therefore, the point p ∈ Σ0 is of the form (u, u) for some
u, and the condition for existence of a symmetric periodic orbit is that the
z-component of ϕ(u, u) be equal to 0.

Take a cylindrical neighborhood around P− whose coordinates (r, θ, ζ) are
chosen such that (r, θ) are the polar coordinates on W s(P−) and the ζ-axis
corresponds to W u(P−). Let Σ−

side = {(r, θ, w) | r = δ, |w| < δ} in the polar

coordinates, and let Σ−
top = {(ξ, η, ζ) | ζ = δ,

√
ξ2 + η2 < δ} in the cartesian

coordinates. Then the map ϕ can be decomposed into ϕ = ϕ2 ◦ Π−
loc ◦ ϕ1,

where Π−
loc : Σ−

side → Σ−
top, and ϕ1 : Σ0 → Σ−

side, ϕ2 : Σ−
top → Σ1 are flow-

defined local diffeomorphisms along (part of) heteroclinic orbits at λ = λ∞.
Therefore the essential information of the map ϕ lies in the description of the
local transition map Π−

loc. This is given by the following Proposition, which
is an immediate consequence of Theorem 1.6 of Deng [2]:
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Proposition 3.1 Under an appropriate choice of coordinates, the local tran-
sition map Π−

loc : Σ−
side → Σ−

top can be given by

(
θ
w

)
7→

(
ξ
η

)
=

(
δwν cos(θ + Θ) + S1(θ, w; µ)
δwν sin(θ + Θ) + S2(θ, w; µ)

)
,

where ν = |λs/λu| and Θ = −ωs

λu
log w with λu(> 0) and λs±ωs

√−1 (ωs > 0)
being the eigenvalues of the linearized vector field at P−. The remainder term
Si(θ, w) (i = 1, 2) is a smooth function for w > 0 that satisfies

∣∣∣∣
∂k+`+m

∂θk∂w`∂µm
Si(θ, w; µ)

∣∣∣∣ ≤ Cwν+σ−`,

where C and σ are some positive constants, k, `, m are non-negative integers.

Remark 3.2 In Deng’s paper, the result is given in terms of the so-called
Shilnikov variables (t, τ, x0, y1) which in our notation correspond to

(t,
1

λu
log(

δ

w
), (δ cos θ, δ sin θ), δ).

Deng’s Theorem 1.6 asserts the existence of the exponential expansions for
both the stable variable (x in Deng’s paper) and the unstable variable (y)
in terms of the Shil’nikov variables. The local transition map is then given
by setting t = 0 for the unstable variable, and t = τ for the stable variable
respectively, from which we obtain the above results. It is also used later
in the bifurcation analysis of a reversible Bykov cycle. Note that a better
estimate under a stronger eigenvalue condition is obtained by Homburg [10,
Proposition 2.4].

Since the coordinates (u, v) in Σ0 parametrize W u(P+)∩Σ0 and W s(P−)∩
Σ0 respectively, and since W s(P−)∩Σ−

side corresponds to the plane {w = 0} in
(r, θ, w)-coordinates around P−, the transition map ϕ1 : Σ0 → Σ−

side; (u, v) 7→
(θ, w) is such that w = u{1 + O(|u| + |v|)} up to reparametrization of the
coordinates if necessary, and hence

wν = O(1) · uν

−ωs

λu

log w = −ωs

λu

log u + O(1).
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On the other hand, since the vanishing of the z-component of ϕ2(0, 0) ∈
Σ1, denoted by [ϕ2(0, 0)]z, means the existence of a codimension one hetero-
clinic orbit from P− to P+, [ϕ2(0, 0)]z is locally diffeomorphic to the bifurca-
tion parameter µ. Namely, again up to reparametrization if necessary,

[ϕ2(ξ, η)]z = µ + O(|ξ|+ |η|),

which must be zero if (ξ, η) corresponds to a reversible periodic orbit. Combining

β(µ,u)=0

u

µ

Figure 9: The solution curve β(µ, u) = 0 for reversible periodic orbits.

these with the above proposition, the equation for reversible periodic orbits
is given by

β(µ, u) = µ + uν · A cos(−ωs

λu

log u + B) + S = 0,

where A,B = O(1), and S satisfies the same type of estimates with respect
to u as Si in Proposition 3.1 does with respect to w, in particular, S =
O(uν+σ). It is then easy to show that the solution curve of β(µ, u) = 0 is
given asymptotically by the projection of a logarithmic spiral centered at
(µ, u) = (0, 0) that corresponds to the codimension one heteroclinic cycle.
Notice that the envelop of the curve β(µ, u) is asymptotically of O(uν), and
hence, the curve appears as in Figure 9. Therefore there are infinitely many
saddle-node bifurcation points {µn} with µn → 0 which are given by the
tangency points of the curve β(µ, u) = 0 with the lines parallel to the u-axis
in the (µ, u)-plane (see Figure 9). This concludes that saddle-node periodic
orbits satisfying the condition (C1) accumulate to the reversible Bykov cycle.
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3.2 Genericity of the reversible saddle-node bifurca-
tions

In this subsection, we prove the genericity condition (C2) for the saddle-node
periodic orbits obtained in the previous subsection, based on the hypotheses
(B1) and (B2).

Let Π(u, v, µ) be the planar diffeomorphism on the (u, v)-plane Σ0 ob-
tained as the Poincaré map along a periodic orbit corresponding to a fixed
point, and suppose that, when µ = µ0, the fixed point p = (u0, u0) represents
a (reversible) saddle-node. As seen before, the Poincaré map Π can be writ-
ten as ψ−1 ◦ϕ where ϕ, ψ : Σ0 → Σ1. We first consider whether the Jacobian
matrix DΠ(p) at the fixed point p is conjugate to the unipotent matrix

(
1 1
0 1

)
.

Because of the reversibility, DΠ(p) at a saddle-node fixed point p must have
double eigenvalue 1. Therefore if DΠ(p) is not conjugate to the above unipo-
tent matrix, it must be conjugate to the identity matrix, hence DΠ(p) = I.
It follows from this and the form p = (u0, u0) that the matrices Dϕ(p) and
Dψ(p) must be identical. Suppose this is the case, then the relation (3.1)

implies that Dϕ(p) = Dψ(p) must take the form

(
a a
b −b

)
for some non-

zero a, b ∈ R. Since p corresponds to a saddle-node periodic orbit satisfying
the condition (C1), it follows that the point p has to be in the symmetry axis
of the involution R, namely the diagonal line in the (u, v)-plane, and that its
images under ϕ and ψ are both tangent to the y-axis at the common image
point ϕ(p) = ψ(p). Therefore the vector given by

Dϕ(p)

(
1
1

)
= Dψ(p)

(
1
1

)

is horizontal, i.e. lower component being zero, hence the lower row vector of
Dϕ(p) = Dψ(p) must be of the form (b,−b) for some b 6= 0 as above.

However, as we will see, the upper row vector of Dϕ(p) = Dψ(p) can-
not be of the form (a, a), i.e. orthogonal to (b,−b). If it were the case,
then Dϕ(p)e− = Dψ(p)e− would be vertical, i.e. orthogonal to Dϕ(p)e+ =
Dψ(p)e+, where

e+ =

(
1
1

)
, e− =

(
1
−1

)
.

26



Let us now show that this is impossible for Dϕ(p). A similar reasoning also
applies to Dψ(p). For that purpose, we suppose, without loss of generality,
that the domain of definition of the map ϕ is in {u ≥ 0} in Σ0, and, along the
diagonal ∆ = {(u, u) | u ∈ R} in the (u, v)-plane Σ0, we consider the lines
Cu0 = {(u, 2u0− u) | u ≥ 0} which are perpendicular to ∆. We will measure
the angle of Dϕ(p)e+ and Dϕ(p)e− by successively seeing how D(ϕ1)(p),
D(Π−

loc)(ϕ1(p)) and D(ϕ2)((Π
−
loc ◦ ϕ1)(p)) change the angle between e+ and

e−.
In keeping p = (u, u) with u ≥ 0 to a sufficiently small neighborhood of

(0, 0), we know that D(ϕ1)(p) changes the angle with a factor k(p) that is
bounded away from 0 and +∞ in a uniform manner, since it is a regular
local diffeomorphism. We then see the effect of D(Π−

loc)(ϕ1(p)) on the angle
between D(ϕ1)(p)e+ and D(ϕ1)(p)e−. On Σ−

side, we consider the images of
∆ and Cu0 under ϕ1. The curves ϕ1(∆) and ϕ1(Cu0) are smooth curves,
which cut {w = 0} transversely. Let D1 = {θ = θ1(w)} represent ϕ1(∆),
while D2 = {θ = θ2(w)} represents any of ϕ1(Cu0). Suppose θ1(0) = θ∗.
In the following calculations, we will restrict the curves D1 = ϕ1(∆) and
D2 = ϕ1(Cu0) in a fixed neighborhood V = [θ∗−ε, θ∗+ε]× [0, w0] with ε > 0
and w0 > 0 sufficiently small. It corresponds to a fixed (small) neighborhood
of (0, 0) in the (u, v)-plane with u ≥ 0.

If q = ϕ1(p) is a point of intersection of D1 and D2 in V , then the angle
of D(ϕ1)(p)e+ and D(ϕ1)(p)e− is given by the angle of dθ1

dw
(w̄) and dθ2

dw
(w̄),

if q = (θ1(w̄), w̄) = (θ2(w̄), w̄). We will estimate the angle between Π−
loc(D1)

and Π−
loc(D2) at Π−

loc(q) by using Proposition 3.1. The curves Di (i = 1, 2)
are transformed to Ei = Π−

loc(Di), which is given by a parametric expression
(ξ, η) = (ξ(w), η(w)) with

ξ(w) = δwν cos(θi(w) + Θ(w)) + S1(θi(w), w; µ)

η(w) = δwν sin(θi(w) + Θ(w)) + S2(θi(w), w; µ),

where Θ(w) = −(ωs/λu) log w. The tangent vector of Ei at a point (ξ(w), η(w))
has an expression Zi(w) = (Zξ

i (w), Zη
i (w)) (i = 1, 2) given by

Zξ
i (w) = δ{ν cos(θi(w) + Θ(w)) +

ωs

λu

sin(θi(w) + Θ(w))}wν−1 + o(wν−1)

Zη
i (w) = δ{ν sin(θi(w) + Θ(w))− ωs

λu

cos(θi(w) + Θ(w))}wν−1 + o(wν−1).

Here we have used the fact that θi(w) and its derivative are uniformly
bounded. The inner product of Z1(w) and Z2(w) at q = (θ1(w̄), w̄) =
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(θ2(w̄), w̄) thus becomes

δ2

(
ν2 +

ω2
s

λ2
u

)
cos(θ1(w̄)− θ2(w̄))w̄2(ν−1) + o(w̄2(ν−1)),

and dividing it by the length of these vectors gives the cosine of the angle
between Z1(w̄) and Z2(w̄) as

cos(θ1(w̄)− θ2(w̄)) + o(1) = 1 + o(1),

which can be made as close to 1 as required by taking ε and w0 sufficiently
small. In other words, the angle of these vectors, and hence the angle of
D(Π−

loc ◦ϕ1)(p)e+ and D(Π−
loc ◦ϕ1)(p)e− converges to zero as p = (u, u) tends

to the origin.
Since ϕ2 is a local diffeomorphism near (ξ, η) = (0, 0), it is clear that this

property of the angle remains true for Dϕ(p)e+ = D(ϕ2 ◦ Π−
loc ◦ ϕ1)(p)e+

and Dϕ(p)e− = D(ϕ2 ◦ Π−
loc ◦ ϕ1)(p)e−. This proves that Dϕ(p)e+ and

Dϕ(p)e− cannot be orthogonal, and hence that DΠ(p) must be conjugate to
the unipotent matrix.

The previous analysis also shows that, in (y, z)-coordinates on Σ0 in which
R̃(y, z) = (y,−z), the fixed point set of DΠ(p) has to be the y-axis. Using
the reversibility of DΠ(p) with respect to R̃ once again, we see that the
matrix DΠ(p) has to be (

1 c
0 1

)

with c 6= 0. Linear change of z, if necessary, permits to suppose c = 1, and
hence DΠ(p) is exactly given by

(
1 1
0 1

)
.

It remains to show the genericity conditions which are formulated as the
following two conditions:

(1)
∂[Π]z
∂µ

(y0, z0, µ0) 6= 0, (2)
∂2[Π]z
∂y2

(y0, z0, µ0) 6= 0.

We give a proof of these conditions below.
First recall that the curve given by β(µ, u) = 0 gives the condition for

the existence of symmetric periodic orbits, and hence the points of tangency
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on the curve with respect to the lines parallel to the u-axis correspond to
the reversible saddle-node bifurcations. From the expression of β(µ, u) given
in the previous subsection which shows that the curve is asymptotically the
projection of a logarithmic spiral, it is clear that there is a sequence of such
tangency points accumulating to (0, 0), and moreover, the tangencies that
are sufficiently close to (0, 0) are quadratic. Therefore, in order to prove
the non-degeneracy conditions (1) and (2) given above, it is enough to show
only one of these, because the other follows from the quadratic nature of the
tangency. Below we prove the condition (1) using the hypothesis (B2).

In order to prove (1), we note that the Poincaré map along the reversible
saddle-node periodic orbit is close to that of the reversible Bykov cycle, if we
choose the periodic orbit sufficiently close to the cycle. As a consequence,
we will now see that the condition (B2) for the heteroclinic cycle implies the
desired condition (1) for the periodic orbit. Recall that the Poincaré map for
the heteroclinic cycle is given by composing maps which are either local tran-
sition maps near the saddle-focus equilibrium points or else transition maps
along the heteroclinic orbits outside neighborhoods of the equilibrium points.
Although the local transition maps around the equilibrium points depend
on parameters, the description of the local transition maps does not change
much under variation of parameters, because one can choose coordinates also
depending on parameters. The transition map along the heteroclinic orbit
from P+ to P− does not depend much on parameters either, because of the
transversality. Therefore, the essential dependence of the Poincaré map on
the parameter comes from the transition along the heteroclinic orbit from P−
to P+ which is given by the coincidence of one-dimensional invariant mani-
folds W u(P−) and W s(P+). Then by the hypothesis (B2), we assume that
this one-dimensional connection is broken in a non-degenerate way under the
variation of the parameter µ around µ = 0 corresponding to the presence of
the reversible Bykov cycle. In particular, the derivative in z-direction with
respect to the parameter should be non-zero, because it is transverse to the
y-axis which is the fixed subspace of the involution R. This proves the non-
degeneracy condition (1), and hence (2) also, as noted above, and therefore,
the proof of Theorem 1.13 is completed. ¤
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4 Discussions: Numerical results

Some numerical work can be done in order to support and illustrate many
of the theoretical results and conjectures that have been presented in this
paper. Following calculation has been done using the MATLAB tools [18].
Let us first present some numerical evidence for the occurrence of a cusp-
transverse heteroclinic chain in the Michelson system.
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Figure 10: Projection on the plane z = 0 of the periodic orbit for c = cL.

In [17] and [20], the authors obtained the approximate value cL ≈ 1.2662
as the parameter value for the occurrence of the first saddle-node periodic
orbit. We have checked it and obtained a more accurate value by the following
computation. We study the curve C given by the first intersection with the
half-plane {x = 0, y > 0} of the orbits with initial points on the negative
y-axis; there is a segment l0 on this axis for which such intersection is defined.
The first saddle-node periodic orbit corresponds, for decreasing c, to the first
tangency of C with the positive y axis. Let m(c) be the minimum value of
the z-coordinate along C, considered as a function of y ∈ l0; the parameter
cL is given by the zero of m(c) closest to 1.2662. With this method we get
the value cL ≈ 1.26623233, for which m(cL) ≈ −1.2 × 10−15 and such a
minimum is achieved for yL ≈ −3.02959972. In Figure 10, the projection on
the xy-plane of the corresponding periodic orbit γL is plotted.

Consider now the Poincaré map Π = ([Π]y , [Π]z) along γL defined on
a cross section contained in the half-plane {x = 0, y < 0}. Let us now
check numerically that the condition (C2) in Definition 1.4 is satisfied for the
periodic γL. We have performed a numerical integration of the variational
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Figure 11: The global hypothesis for a cusp-transverse heteroclinic chain. U0

and S0 are pieces of the first intersections of W u(P+) and W s(P−), respec-
tively, with the plane x = 0. γs and γu are branches of W s(H) and W u(H),
respectively, where H denotes the hyperbolic saddle arising, at the selected
parameter value, after the saddle-node bifurcation.

equations to compute the derivatives of Π and found:

∂[Π]y,z

∂(y,z)
≈

(
1.0000 2.0537

−1.3× 10−5 1.0000

)
≈

(
1.0000 2.0537
0.0000 1.0000

)

∂[Π]z
∂c

≈ −7.6896
∂2[Π]z

∂y2 ≈ −6.3771× 102.

Note that all the local conditions for a cusp-transverse heteroclinic chain are,
at least numerically, satisfied. We observe that the numerically computed
Jacobian matrix of the Poincaré map along the periodic orbit γL is unipotent,
and the genericity of the unfolding is also verified as seen above.

On the other hand, in order to verify the global hypothesis (C3), we have
chosen a parameter value c / cL and obtained an estimate of the hyper-
bolic saddle H = (0, yH , 0) which, for such a parameter value, appears in a
saddle-node bifurcation. Figure 11 shows a numerical approach of the first
intersections of W u(P+) and W s(P−) with the plane {x = 0}, and also of
two branches of W s(H) and W u(H). Since such branches approach the sta-
ble and unstable sets, respectively, of the saddle-node point, we can expect
that they are close enough to such sets. Hence we can consider Figure 11
as a support of the validity of (C3), at least for the Lau’s parameter value
cL. To approximate W u(H), we have used a second-degree local expansion
of the Poincaré map at H, with coefficients obtained by integration of the
variational equations, and a second-degree local expansion of the invariant
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Figure 12: Intersections of W u(P+) with the half-plane {x = 0, y < 0} for
c = cL. U0 is a piece of the first intersection and U1, U2 and U3 are pieces
of the subsequent iterates. The small circle on the y-axis corresponds to the
fixed point given by the periodic orbit. Figure (b) is a magnification around
such fixed point.

manifold. To draw the orbits in Figure 11 we take initial points (y, z) on the
invariant manifold with y ∈ [y1, y2], where y2 = yH − 10−6 and y1 is given
by the y-coordinate of Π(y2, z2) with (y2, z2) on the invariant manifold. Here
and in the sequel, numerical approximation of W u(P+) is obtained by using a
30th-degree local expansion to obtain good fundamental domains where ini-
tial conditions are taken. In Figure 12 we have plotted several intersections of
W u(P+) with the half-plane {x = 0, y < 0} for c = cL. It should be recalled
that for this parameter value, the two-dimensional invariant manifolds have
infinitely many intersections; we have only computed the first ones. Figure
13 shows the sequence of the first three tangent bifurcations.

Let us also present some numerical computations at the parameter value
c = cK = 15

√
22/193 at which we have coincidence of branches of the one-

dimensional invariant manifolds ([13]) and at which it is conjectured that
there exists a Bykov cycle. In Figure 14 we show such a cycle obtained nu-
merically. The connection along the one-dimensional invariant manifolds has
been plotted using the explicit solution from [13]. Choosing an appropriate
fundamental domain of W u(P+), parametrized by an angle θ, and consid-
ering the function z(θ) given by the value of the z-coordinate at the first
intersection with the plane x = 0, we have approximated the zero of such
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Figure 13: First three tangent bifurcations.
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Figure 14: A Bykov cycle for c = cK .

function. It leads to a heteroclinic connection crossing the y-axis at the point
(0, y0, 0) with y0 ≈ −2.17092839.

In Figure 15(a) we have drawn the graph of the function z(c) given by the
value of the z-coordinate at the first intersection point of the one-dimensional
invariant manifold W u(P−) with the half-plane {x = 0, y < 0}. It is clear
from that figure that condition (B2) in Definition 1.9 is satisfied. A numerical
computation of the derivative at c = cK gives ∂z

∂c
≈ −4.5185. In Figure

15(b) we have drawn the first intersections U0 and S0 of the two-dimensional
invariant manifolds W u(P+) and W s(P−), respectively, with the plane x =
0, in order to show the transversality. Numerically solving the variational
equation we can approximate the tangent plane at the intersection point; we
get dz

dy
≈ 0.8364 along U0. Figure 15(b) also includes a plot of the tangent
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Figure 15: In (a) we represent the value of the z-coordinate at the first
intersection point of W u(P−) with the half-plane {x = 0, y > 0}, as a function
of the parameter. In (b) the first intersection of the two-dimensional invariant
manifolds with the plane x = 0 is presented.

line.
Finally, we remark that Wilczak [24] has numerical results concerning the

Michelson system which are related to our results. Some of his computations
are made rigorous.
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