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Abstract

This paper is concerned with three-dimensional vector fields and
more specifically with the study of dynamics in unfoldings of the nilpo-
tent singularity of codimension three. Our ultimate goal is to under-
stand the dynamics and bifurcations in the unfolding of the singularity.
However, it is clear from the literature that the bifurcation diagram
is very complicated and a complete study is far beyond the current
possibilities not only from a theoretical point of view but also from a
numerical point of view, despite recent developments of computational
methods for dynamical systems. Since all complicated dynamical be-
havior is known to be of small amplitude, shrinking to the singularity
for parameter values tending to the bifurcation parameter, our aim in
this paper is especially to focus on a different aspect that might be
interesting in the study of global bifurcation problems in the presence
of such a nilpotent singularity of codimension three. We introduce
the notion of traffic regulator and the specific sets called the inset and
outset, which give a new framework for studying a transition map in a
cylindrical neighborhood of the singularity that contains all the non-
trivial dynamics that can bifurcate from the singularity, focusing on
the domains on which the transition map is defined.

We also give a list of open problems which we believe to be helpful
for future investigation of the bifurcations from the nilpotent triple
zero singularity in R3.
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1 Introduction

This paper deals with three-dimensional vector fields and more specifically
is concerned with the study of dynamics in unfoldings of the nilpotent singu-
larity of codimension three. The ultimate goal of the study is to understand
the dynamics and bifurcations that occur in the unfoldings of the singu-
larity. A generic nilpotent singularity of codimension two in the plane is
known as the Bogdanov-Takens singularity and its structure and unfoldings
are fully understood ([1], [37], [9] and references therein). Singularities with
more degenerate nonlinear terms have been studied well and their bifurcation
structures have thoroughly been investigated ([13], [14]). The singularities
that are studied in this paper are natural three-dimensional analogues of
those, and the topological types of the singularities have already been clas-
sified completely up to codimension four ([10]). In this paper we attempt
to study the bifurcations from such singularities having the least degenerate
nonlinear terms.

For sure it would be interesting to know the complete bifurcation dia-
gram and related dynamical patterns. It is, however, clear from the litera-
ture (see, e.g. [19], [31]) that the bifurcation diagram is very complicated
and a complete study is far beyond the current possibilities not only from
a theoretical point of view but also from a numerical point of view, despite
recent development of computational methods for dynamical systems such
as HomCont/AUTO and GAIO among others; see also the discussion in
§6.5. From [10], it is at least clear that all complicated dynamical behav-
ior is of small amplitude, shrinking to the singularity for parameter values
tending to the bifurcation parameter. Besides providing some extra infor-
mation about the bifurcation patterns, our aim in this paper is especially to
focus on a different aspect that might be interesting in the study of global
bifurcation problems in the presence of such a nilpotent singularity of codi-
mension three. Indeed the nilpotent singularity could, for instance, belong
to a (non-hyperbolic) homoclinic loop, near which interesting global dynam-
ics could be created. This is very comparable to the cuspidal loop in the
plane as studied in [15]. The way to study such a loop is based on a detailed
study of the transition map near the nilpotent singularity using only partial
information of the Bogdanov-Takens bifurcation. In this paper we start the
study of a similar transition map in the three-dimensional case, focusing on
the domains on which the transition map is defined.
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We introduce the notion of traffic regulator and the specific sets associ-
ated to it called the inset and outset. This provides us with a new framework
for studying a transition map in a cylindrical neighborhood of the singularity
containing all the non-trivial dynamics that can bifurcate from the singular-
ity. The inset and outset are the complements of the domains of definition of
the transition map on each of the transitive disks of the cylindrical neighbor-
hood. One may consider these sets as shadows of the maximal invariant set
sitting inside the neighborhood. They hence carry some information about
the invariant set itself, although being subsets of the 2-disk and hence easier
to be handled. We study topological properties of these sets and will describe
the structure of them in part of the parameter region of the unfolding. The
structure of the sets becomes more complicated in other parameter regions,
and we shall also discuss some of these cases based on numerical experiments.

The organization of the paper is as follows. In §2, we give the precise def-
inition of the singularity and the unfoldings which will be studied, together
with a brief summary of basic results used along the paper, most of them
known in the literature. §3 contains the study of dynamics and bifurcations
in a part of the parameter space where the corresponding system has a Lya-
punov function. In §4, we introduce the new idea of looking at the dynamics
by defining the notion of traffic regulator as well as the inset and outset.
It will provide partial information about the maximal compact invariant set
of the system. We shall describe how these inset and outset change under
variation of the unfolding parameters. In §5, we shall focus on the specific
codimension one subset in the parameter space where the corresponding sys-
tem is divergence-free. We believe that the study of the dynamics in this
particular region will be one of the crucial steps toward a complete under-
standing of the entire bifurcation diagram. Finally in §6, we list a number
of unsolved problems for future investigation. We consider this section as an
important part of this paper, because we believe that these open problems
provide a good summary of the current stage of the study of this nilpotent
singularity.

2 Preliminaries

In this section we first recall some of the results obtained in [10] about nilpo-
tent singularities in R3 and state a new property, essential in our paper,
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which can be proved by means of the techniques used there. We will also
summarize some other basic facts about the unfolding.

2.1 Singularity

Consider a C∞ vector field X defined in a neighborhood of O ∈ R3. We
assume that X vanishes at O and the 1-jet of X at O is linearly conjugate
to

y
∂

∂x
+ z

∂

∂y
.

As is proven in [10], up to a C∞ coordinate change, X can be given by the
following normal form:

y
∂

∂x
+ z

∂

∂y
+ (ax2 + bxy + cxz + dy2 + O(‖(x, y, z)‖3))

∂

∂z
. (2.1)

The condition a 6= 0 defines a stratum of codimension three in the space of
germs of C∞ vector fields with a singularity at the origin, in which only one
topological type is given. More precisely,

Theorem 2.1 ([10]) Let X be a singularity as in (2.1) with a 6= 0. Then
at the origin X is locally C0-equivalent to

y
∂

∂x
+ z

∂

∂y
+ x2 ∂

∂z
.

Throughout this paper, we call a singularity as in (2.1), with a 6= 0, the
nilpotent singularity of codimension three.

2.2 Unfolding

According again to [10], any generic three parameter family Xγ, with γ =
(λ, µ, ν) ∈ R3, that unfolds the nilpotent singularity of codimension three
admits the normal form

y
∂

∂x
+ z

∂

∂y
+ (λ + µy + νz + x2+

bxy + cxz + dy2 + eyz + α(x, y, z, γ))
∂

∂z
, (2.2)
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where
α(x, y, z, γ) = O(‖(x, y, z, λ, µ, ν)‖3) = O(‖(y, z)‖)

and λ, µ, ν represent the exact coefficients in the Taylor expansion with
respect to (x, y, z), namely the following holds:

α(0, γ) =
∂α

∂y
(0, γ) =

∂α

∂z
(0, γ) = 0.

The unfolding Xγ will be studied by using the rescaling

λ = u6λ̄, µ = u2µ̄, ν = uν̄,

x = u3x̄, y = u4ȳ, z = u5z̄,

where λ̄2 + µ̄2 + ν̄2 = 1 and (x̄, ȳ, z̄) ∈ A, a fixed ball in R3. Thus we obtain

ȳ
∂

∂x̄
+ z̄

∂

∂ȳ
+ (λ̄ + µ̄ȳ + ν̄z̄ + x̄2 + O(u))

∂

∂z̄
. (2.3)

The next theorem states that all the interesting phenomena that occur in a
neighborhood of the singularity can be obtained by means of the previous
rescaling.

Theorem 2.2 ([10]) Let C = D2× [−1, 1] where D2 stands for the standard
2-disk in R2. There exist a neighborhood W ⊂ R3 of γ = O and a continuous
map

Ψ : C ×W → R3

such that, for all γ ∈ W , Vγ = Ψ(C, γ) is a neighborhood of 0 ∈ R3 homeo-
morphic to C and

(1) Ψ(S1 × [−1, 1], γ) consists of regular orbits of Xγ,

(2) Ψ(D2 × {−1, 1}, γ) is transverse to Xγ with Xγ pointing inward along
Ψ(D2 × {−1}, γ) and outward along Ψ(D2 × {1}, γ).

Moreover the restricted vector field Xγ|Vγ has the following properties:

(i) In case λ > 0, Xγ|Vγ is a flow box.

(ii) In case λ = 0, the nonwandering set Ω(Xγ|Vγ ) consists of a unique
equilibrium point.

6



(iii) In case λ < 0, Xγ|Vγ has two equilibrium points and Ω(Xγ|Vγ ) is
contained in

Av = {(v3x̄, v4ȳ, v5z̄) | (x̄, ȳ, z̄) ∈ A}
with some v satisfying γ = (v6λ̄, v2µ̄, vν̄) and A being a fixed open ball
in the (x̄, ȳ, z̄) space.

Although it follows from the same arguments used in the proof of the
previous result, the next theorem was not explicitly stated in [10]. For this
reason and since it is essential in our paper, we include it, together with a
short proof.

Theorem 2.3 Consider the S2 family Yγ̄ given by (2.3) with u = 0. There
exists a continuous map

Ψ̄ : C × S2 → A ⊂ R3,

where C = D2 × [−1, 1], such that, for all γ̄ ∈ S2, the domain Vγ̄ = Ψ̄(C, γ̄)
is homeomorphic to C and

(1) Ψ̄(S1 × [−1, 1], γ̄) consists of regular orbits of Yγ̄;

(2) Ψ̄(D2 × {−1, 1}, γ̄) is transverse to Yγ̄ with Yγ̄ pointing inward along
Ψ̄(D2 × {−1}, γ̄) and outward along Ψ̄(D2 × {1}, γ̄);

(3) The nonwandering set Ω(Yγ̄) and even the maximal compact invariant
set of Yγ̄ are contained in the interior of Vγ̄.

Moreover Yγ̄|Vγ̄ has the following properties:

(i) If λ̄ > 0, Yγ̄|Vγ̄ is a flow box;

(ii) If λ̄ = 0, Ω(Yγ̄|Vγ̄ ) consists of a unique equilibrium point.

Proof. To prove the result we use the technique of family blowing-up
(details about this technique can be found in [10]). We first consider curves
in the parameter space defined by

(λ, µ, ν) = (v6Λ, v2M, vN)

7



with Γ = (Λ,M, N) ∈ S2 and v ∈ [0,∞). Second we apply to (2.2) a
quasi-homogeneous blowing-up given by

(v, x, y, z) = (uv̄, u3x̄, u4ȳ, u5z̄),

with v̄2 + x̄2 + ȳ2 + z̄2 = 1 and u ∈ [0,∞). Thus, we obtain a C∞ family of
vector fields ȲΓ on S3 × [0,∞). In the sequel we denote p̄ = (x̄, ȳ, z̄).

The vector field ȲΓ is studied by means of different charts on S3. Taking
p̄ ∈ S2 and v̄ ∈ ∆, where ∆ is a small neighborhood of 0 ∈ R, we obtain a
C∞ family of vector fields Ȳ 1

Γ , defined on S2×∆× [0,∞). On the other hand,
taking p̄ ∈ A and v̄ = 1, where A ⊂ R3 is an arbitrarily large compact set, we
obtain a C∞ family of vector fields Ȳ 2

Γ , defined on A× [0,∞). Note that Ȳ 2
Γ is

nothing but the family (2.3) in which we take γ̄ = (λ̄, µ̄, ν̄) = (Λ,M, N) = Γ.
The vector field Ȳ 1

Γ restricted to S2×∆×{0} gives the behavior at infinity
of Ȳ 2

Γ restricted to A × {0}. On the other hand, taking different charts on
S2, it turns out that Ȳ 1

Γ presents only two hyperbolic equilibrium points on
S2×∆×{0} at E1 = (p̄1, 0, 0) and E2 = (p̄2, 0, 0). Moreover, on S2×{0}×{0}
the vector field is Morse-Smale with no periodic orbits and E1 and E2 are,
respectively, a sink and a source. On the other hand, W s(E1) and W u(E2)
are three-dimensional invariant manifolds contained in S2 ×∆× {0}.

Let us consider fundamental domains Ds and Du of W s(E1) and W u(E2),
respectively. Since the flow of Ȳ 1

Γ restricted to S2 × {0} × {0} connects Du

and Ds, we can take, on S2 × ∆ × {0}, open neighborhoods V s and V u of
Ds ∩ (S2 × {0} × {0}) and Du ∩ (S2 × {0} × {0}), respectively, such that
∂(Ds \ V s) and ∂(Du \ V u) are also connected by the flow of Ȳ 1

Γ along a
hypersurface T ⊂ S2 ×∆× {0}.

Let us take
V̄ = (Ds \ V s) ∪ (Du \ V u) ∪ T.

We can assume that A is large enough to get V̄ covered by the chart A×{0}.
This leads to the existence of the S2 family of sets Vγ̄ satisfying (1), (2) and
(3).

Properties (i) and (ii) follow from the existence of a Lyapunov function,
a function which increases along orbits, given by L(x̄, ȳ, z̄) = z̄− µ̄x̄− ν̄ȳ and
from a simple local analysis of the singularity at the origin when λ̄ = 0. 2

Remark 2.4 The existence of Vγ̄ will be used in §4 in order to introduce
the notion of inset and outset.
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2.3 Preliminary study of the limit system

Since all the dynamics in the unfolding are detectable by the family rescaling
(2.3), our first objective should be the study of the S2 family in (2.3) for
u = 0, namely,

x̄′ = ȳ

ȳ′ = z̄

z̄′ = λ̄ + µ̄ȳ + ν̄z̄ + x̄2,

(2.4)

where λ̄2 + µ̄2 + ν̄2 = 1. In this section we pay attention to the local bifur-
cations which are present in such family.

If λ̄ > 0, we have no equilibrium points and the vector field behaves as a
flow box. On the other hand, (2.4) is invariant under the transformation

(λ̄, µ̄, ν̄, x̄, ȳ, z̄, t) → (λ̄, µ̄,−ν̄,−x̄, ȳ,−z̄,−t),

and therefore we only consider (2.4) for values of the parameter in the region

R = {(λ̄, µ̄, ν̄) ∈ S2 | λ̄ ≤ 0, ν̄ ≤ 0}.
For parameter values in the region R, (2.4) has a unique equilibrium point

at (0, 0, 0) when λ̄ = 0 and two equilibrium points at P− = (−
√
−λ̄, 0, 0) and

P+ = (
√
−λ̄, 0, 0) when λ̄ < 0. With the study of the linear part at the

equilibrium points we detect immediately some cases of degeneracy. All the
subsequent local bifurcations are summarized in the following theorem.

Theorem 2.5 In the region R we distinguish the following local bifurcations
(see Figure 1).

(1) Along the curve SN1 = {(λ̄, µ̄, ν̄) ∈ R | λ̄ = 0, µ̄ < 0} the linear part at
(0, 0, 0) has two eigenvalues with negative real part and one eigenvalue
equal to 0. Moreover two hyperbolic equilibrium points P− and P+ are
created by a generic saddle node bifurcation, where P− is an attractor
and P+ is a saddle with the stability index 2, namely, dim W s(P+) = 2.

(2) Along the curve SN2 = {(λ̄, µ̄, ν̄) ∈ R | λ̄ = 0, µ̄ ≥ 0} the linear part at
(0, 0, 0) has two real eigenvalues with opposite sign and one eigenvalue
equal to 0. Moreover two hyperbolic equilibrium points P− and P+ are
created by a generic saddle node bifurcation, which are saddles with the
stability index 1 and 2, respectively.
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(3) There exists a curve H ⊂ R joining (0,−1, 0) and (0, 0,−1), given by
the equation λ̄ = −µ̄2ν̄2/4 with λ̄ < 0 and ν̄ < 0, along which the linear
part at P− has eigenvalues {α, iω,−iω}, with α < 0 and ω > 0. On H
the family (2.4) undergoes a generic Hopf bifurcation, which creates a
hyperbolic attracting limit cycle.

(4) At γ̄ = BT = (0, 0,−1), where the linear part at (0, 0, 0) has eigenval-
ues {0, 0,−1}, the family (2.4) undergoes a generic Bogdanov-Takens
bifurcation. The limit cycle that bifurcates along H disappears in a
homoclinic bifurcation along the curve Hom, see Figure 1.

Figure 1: Local bifurcations and curves D+ and D−, where two eigenvalues
at P+ and P−, respectively, change from real to complex. The parameter
HZ, for which the system has a Hopf-Zero singularity, and the divergence
zero curve DZ are also depicted. Note that the region R is shown by means
of its projection onto the (µ, ν)-plane.

Remark 2.6 For all parameter values in R, with λ̄ < 0, the equilibrium
point P+ is hyperbolic and the correspondent linear part has two eigenvalues
with negative real part and one real positive eigenvalue. On the other hand
H divides R into two open regions R1 and R2 (see Figure 1). For parameters
in those regions P− is hyperbolic and the correspondent linear part has all the
eigenvalues with negative real part on R1 and two eigenvalues with positive
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real part and one real negative eigenvalue on R2. In Figure 1 we also indicate
the position of the curves in R where the eigenvalues change from real to
complex.

Remark 2.7 The techniques used to prove the existence of the local bifurca-
tions described in Theorem 2.5 are standard: reduction to center manifolds
and also reduction to normal form in order to show the genericity of the
correspondent unfoldings. For this reason we prefer not to include a proof.
Moreover, similar results can be found in the literature (see, for instance, [28]
and [17]).

At γ̄ = HZ = (0,−1, 0) (see Figure 1) the linear part at (0, 0, 0) has
eigenvalues {0, i,−i}. A simple normal form analysis permits to check that,
according with [36], such singularity is of codimension two and topologically
equivalent to the vertical vector field (x2+y2+z2) ∂

∂z
. This type of degeneracy

is called the Hopf-Zero singularity.
A complete understanding of all the different bifurcations which can ap-

pear in the unfolding of the Hopf-Zero singularity has not yet been achieved.
In [18], [20] and [39], the symmetric unfoldings were studied. The occurrence
of Shil’nikov type homoclinic orbits was discussed in [20] and [3]. In this last
paper their existence was proven for generic families and the C∞ flatness
character of the phenomenon was pointed out.

For generic two-parameter families that unfold the Hopf-Zero singularity,
it is known that the stable periodic orbit which is generated after the Hopf
bifurcation becomes unstable and a stable torus is born from it. This phe-
nomenon occurs along a bifurcation curve and the invariant tori persist for
values of the parameters in an open region. Note that, since the divergence
of family (2.4) is equal to a constant ν̄, it cannot exhibit invariant tori unless
ν̄ = 0 which is not an open condition for the parameters, and hence our fam-
ily (2.4) is not a generic unfolding of the Hopf-Zero singularity in that sense.
Nevertheless, one can check that the influence of the terms of order O(u) in
(2.3) permits to show that the original family (2.2) may exhibit invariant tori
in an open region of the bifurcation diagram.
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3 Dynamics when µ ≥ 0

We first observe that the system

ẋ = y

ẏ = z

ż = λ + µy + νz + x2

(3.1)

has a Lyapunov function

L(x, y, z) = yz − 1

3
x3 − λx− 1

2
νy2, (3.2)

provided that µ ≥ 0. In fact, a simple calculation shows

d

dt
L(x(t), y(t), z(t)) = z(t)2 + µy(t)2

for a solution (x(t), y(t), z(t)) of (3.1). Therefore the value of L along an
orbit is non-decreasing everywhere and is strictly increasing except along the
x-axis (the (x, y)-plane if µ = 0).

Theorem 3.1 If λ < 0 and µ ≥ 0, there exists at least one heteroclinic orbit
from the equilibrium point P− = (−√−λ, 0, 0) to P+ = (

√−λ, 0, 0).

Proof. Notice that the heteroclinic orbit, if it exists, lies in a non-trivial
intersection of two-dimensional invariant manifolds W u(P−) and W s(P+).
Suppose that W u(P−) ∩ W s(P+) = ∅. Let l ⊂ W s(P+) be a closed curve
contained in the set Vγ such that

W s(P+) = {ϕ(t, p) | t ∈ R, p ∈ l} ∪ {P+},

namely l is a fundamental domain of W s(P+). Given p ∈ l, its negative
orbit cuts Din = Ψ(D2 × {−1}, γ). In fact, otherwise, the negative orbit of
p would be bounded and hence α(p) 6= ∅. Note that α(p) is either P+ or
P−, since these are the only invariant sets contained in {p ∈ Vγ | L̇ = 0}.
Since we are assuming that W u(P−) ∩ W s(P+) = ∅, α(p) 6= P−. However,
α(p) 6= P+, because a homoclinic orbit of P+ cannot exist if we have a
Lyapunov function. Therefore W s(P+) must cut the set Din along a closed
curve γ. All the orbits starting in the interior of γ stay in Vγ for all t ≥ 0.
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This implies that ω(p) = P+ for all p ∈ Cγ where Cγ is the region enclosed by
the closed curve γ. This contradicts the fact that P+ and P− are hyperbolic
equilibrium points of saddle-type. The existence of at least one heteroclinic
orbit from P− to P+ is thus proved. 2

We shall study the invariant sets in more detail by using the level surfaces
of the Lyapunov function L. Notice that the gradient of the function L is
given by

gradL(x, y, z) = (−x2 − λ, z − νy, y),

and hence the critical points of L are only at P±. Let c± = L(P±) =
±2

3
(−λ)3/2. The Hessian at each of the critical points P± is given by

HessL(P±) =



∓2
√−λ 0 0
0 −ν 1
0 1 0


 .

In particular, if λ < 0, it has two positive and one negative eigenvalues at
P−, while two negative and one positive eigenvalues at P+, and hence L is
a Morse function. Since L is increasing along orbits, negative eigenvalues
correspond to the stable manifolds of P±, while positive eigenvalues to the
unstable manifolds.

Let V = Vγ be the box constructed in Theorem 2.3, and consider the level
surface given by Sc = L−1(c)∩V . One can choose it in such a way that the top
and bottom boundaries Din = Ψ(D2×{−1}, γ) and Dout = Ψ(D2×{1}, γ) lie
entirely in level surfaces Scin

and Scout , respectively. Studying the blowing-
up of the family, it follows that the x-coordinates of the repeller [resp. the
attractor] at infinity are negative [resp. positive]. Therefore one can take
Din and Dout as 2-disks whose x-coordinate is negative for Din and positive
for Dout.

Let us consider how the topology of the level surface Sc changes as c varies
from cin < 0 to cout > 0 through the critical values c±. From above, Scin

is a
2-disk whose x-coordinates are negative with sufficiently large absolute value.
Since the flow is monotone on the side boundary K = Ψ(S1 × [−1, 1], γ) of
the box V which is homeomorphic to a cylinder, the intersection of K and Sc

for any c is a circle. Let Kc be the subset of K which consists of the points
p in K at which L(p) ≥ c. Clearly Kc is again a cylinder except for c = cout

in which case it is collapsed to a circle. It will be convenient to consider a
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closed surface Mc given by

Mc = Sc ∪Kc ∪Dout.

Obviously Mcin
is nothing but the boundary of V which is a 2-sphere.

Due to the Morse theory, the topological type of Sc, and hence of Mc,
changes only when L takes a critical value. Therefore we have only to study
it around its critical values c±. Mc is diffeomorphic to a 2-sphere for c <
c− = −2

3
(−λ)3/2. At c = c−, the equilibrium point P− is a unique critical

point in this level and has the Morse index one. Note that here the Morse
index is defined as the number of negative eigenvalues of the Hessian at the
critical point. According to the Morse lemma, local structure of the level
surfaces near the critical point can be described by those of the quadratic
form x2 + y2− z2, and hence it changes from a two-sheeted hyperboloid to a
one sheeted hyperboloid, as c passes the critical value c− from below. This
change of local structure of the level surfaces occurs along the stable manifold
of the critical point (equilibrium point) P−, and therefore the surface Sc− at
the critical level becomes a pinched 2-disk at the critical point and then
it changes to a surface with a neighborhood of the critical point replaced
by a one-sheeted hyperboloid for c slightly larger than c−. See Figure 2.
This makes the closed surface Mc change from a 2-sphere to a 2-torus which
encloses the critical point P− inside. Moreover, the intersection of the local
unstable manifold of P− with Mc for c sufficiently close to, but larger than,
c− is a simple closed curve which can be considered as the meridian of the
torus Mc.

As c varies from c− to c+, the surface Mc remains a 2-torus. However,
the intersection of the unstable manifold of P− could become complicated,
although its isotopy class does not change. As c increases to the other critical
value c+, the surface Sc, and hence Mc, comes closer to P+, and at c = c+,
the surface Sc is again pinched at P+. Here the Morse index is two, and
hence local structure of the level surface near P+ changes from a one-sheeted
hyperboloid to a two-sheeted hyperboloid as c crosses c+. Thus Sc changes
to a 2-disk, and hence Mc turns from a 2-torus back to a 2-sphere. See
Figure 2. Notice, again, that when c− < c < c+ is sufficiently close to c+, the
intersection of the local stable manifold of P+ with the surface Sc is a simple
circle which can be considered as its longitude. After crossing this level, the
topological type of the surface Sc does not change, and hence Mc remains to
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Figure 2: Change of level surfaces.

be a 2-sphere for c+ < c < cout, and at c = cout, it collapses to a 2-disk, as
Scout is chosen in the level surface of L.

Since the flow is always transverse to the level surface Sc for any c with
c− < c < c+, the isotopy type of the intersection of W u(P−) and W s(P+) on
the 2-torus Mc does not change. Since W u(P−) is isotopic to the meridian
and W s(P+) is isotopic to the longitude on the 2-torus, it implies that the
intersection of W u(P−) and W s(P+) on the 2-torus is unavoidable. This is an
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alternative proof of Theorem 3.1 for the existence of at least one heteroclinic
connection from P− to P+. Moreover, the intersection number of W u(P−)
and W s(P+) on the 2-torus can be made equal to one by an appropriate
choice of orientations of the curves on the 2-torus.

It is likely that the intersection of these manifolds is unique for any value
of the parameters, but the above argument cannot exclude the possibility of
having more complicated intersection of these manifolds. However, since the
system we consider is gradient-like, the invariant set in V is completely given
by the orbits of intersection of W u(P−) and W s(P+) as well as the equilibria
P− and P+.

4 Traffic regulator and its inset and outset

In Theorem 2.3, we have shown that there exists a box V which has the
following properties:

(1) The boundary of V consists of Din, Dout, and K, where the vector field
is transverse inward on Din, outward on Dout, whereas K is homeomor-
phic to a cylinder S1 × [−1, 1] and it is a flow box;

(2) The maximal invariant set of the vector field in V is contained in its
interior.

The box V is an isolating neighborhood of the maximal compact invariant
set of the vector field (3.1) and has a convenient structure for describing
the dynamics in a neighborhood of the invariant set, which we formulate as
follows with the name ‘traffic regulator’.

Definition 4.1 A traffic regulator in Rn is a domain V whose boundary
consists of (1) an entrance disk Din, (2) an exit disk Dout, and (3) a boundary
flow box K. The entrance disk is an (n− 1)-disk on which the vector field is
transverse to the disk and points inward, whereas it is transverse and points
outward on the exit (n − 1)-disk. The vector field gives a flow box in the
rest of the boundary K which is homeomorphic to Sn−2× [0, 1] and is called
the boundary flow box. A positive orbit starting at a point in the entrance
disk either stays in the domain forever or leaves the domain from the exit
disk in finite time. In the former case, the initial point of the positive orbit
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belongs to the inset Cin, and in the latter case, it belongs to an open set
in Din called the transit domain and the time which the orbit spends in the
domain V is called the transit time. For the exit disk, one can similarly define
the outset Cout and the transit domain as well as the transit time. There is
a natural one-to-one correspondence map called the transition map between
the transit domains in the entrance disk and the exit disk, which is clearly
a diffeomorphism, as smooth as the vector field, and the transit time is the
same for a point in the entrance transit domain and the corresponding point
in the exit transit domain.

A usual flow box in Rn is a trivial traffic regulator with empty inset
and outset and the transition map is an everywhere defined diffeomorphism.
Clearly, a traffic regulator can be defined to have more general entrance and
exit domains rather than just one disk. For instance, a traffic regulator for
a planar hyperbolic saddle point has the entrance domain consisting of two
disjoint 1-disks and the same for the exit domain. However, Definition 4.1 is
sufficient for our purpose in this paper, since V can be chosen as in Theorem
2.3.

In the study of planar vector fields, the transition map near a singularity
carries very important information for the understanding of global dynamics,
since in that case, the inset and outset are mostly one point, and hence the
main information of the traffic regulator is contained in the transition map.
For vector fields in dimension strictly larger than two, the nature of the
transition near a singularity could be much more complicated, and the inset
and outset are no longer simple. Therefore one must study the structure
of inset and outset first to have a better understanding of the transition
map. The transition time also carries information, as it goes to infinity when
the point in Din \ Cin approaches Cin, and hence the set of points in Din

whose transit time is larger than a given constant defines a neighborhood
of Cin. This set gives an outer approximation of the inset which can be
obtained by means of a computational method as we do at the end of this
section where we show some examples. It should also be noted that the
method of Shil’nikov ([5] and references therein), which is useful to describe
the transition of orbits that pass near a hyperbolic equilibrium point, has
some similarity to the traffic regulator in the sense that the description of
orbits is given in terms of in-coming and out-going sections as well as the
transit time information between them.
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In this section, we mainly study the inset and outset of the system (3.1).
We also give general properties of these sets from topological point of view as
well as their numerical examples. Clearly Cin and Cout are compact subsets
of the interior of Din and Dout, respectively. They are non-empty if and
only if there is a non-empty invariant set in V , namely in the case λ ≤ 0.
Hereafter we always assume λ ≤ 0.

4.1 The inset and outset for (3.1)

The goal of this subsection is to describe the structure of the inset and
outset in a part of the parameter space for the system (3.1). First we give a
complete description of the inset and outset near the saddle-node bifurcations
of singularities.

Theorem 4.2 Consider the unit sphere S2 of the parameter space for γ =
(λ, µ, ν), λ ≤ 0 and ν ≤ 0. Let HZ = (0,−1, 0) and BT = (0, 0,−1) be the
Hopf-Zero and the Bogdanov-Takens bifurcation points on the unit sphere.
Define SN = {γ ∈ S2 | λ = 0}, and let Hom be the homoclinic bifurcation
curve emanating from BT on the unit sphere. Then there exists a one-sided
closed neighborhood R of the curve SN \ HZ on the sphere which is divided
into two regions by the curve Hom, such that the inset and outset for the
parameters from the set R can be given as follows:

(1) At HZ, the inset and outset are both one point;

(2) At BT , the inset is a closed segment and the outset is a point;

(3) On Hom, the inset is the union of two 2-disks connected by a segment,
while the outset is a point;

(4) In the region R1 of R divided by Hom containing HZ in its boundary,
the inset is a 2-disk, while the outset is a point;

(5) In the other region R2 of R, both the inset and outset are closed seg-
ments.

Moreover, in the region R \ Hom, the inset and outset change continuously
with respect to the Hausdorff metric. At Hom \BT , the outset is continuous
but the inset is not lower semicontinuous. See Figure 3.
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Figure 3: Inset and outset close to λ = 0.

The proof of this theorem is rather lengthy and hence will be given in
Appendix.

Remark 4.3 As proven in Theorem 4.2, the inset Cin(γ) as a set-valued
function changes discontinuously at the curve Hom. However, it is upper-
semicontinuous, see Proposition 4.6.

In the case of µ ≥ 0 where we have the Lyapunov function, the inset and
outset are relatively simple, although we cannot describe them completely,
nor can we describe the structure of the invariant set Inv(V ). If one knows
that the heteroclinic orbit from P− to P+ is unique, which is the case when
µ ≥ 0, ν = 0 ([27, 38]), the inset and outset are both a segment, homeomor-
phic to a closed interval. The boundary points of the segment Cin correspond
to W s(P−)∩Din and the remaining part corresponds to W s(P+)∩Din. The
same holds for Cout if W s(P−) and W s(P+) are replaced by W u(P+) and
W u(P−), respectively. For ν < 0 and µ ≥ 0, the inset and outset may be-
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come more complicated, but one can show that they at least share a common
property called the accessibility as described in the following definition.

Definition 4.4 A point in the inset Cin is called accessible from ∂Din, if
there exists a continuous path connecting the point and ∂Din in Din − Cin.
Accessibility of a point in the outset Cout is similarly defined.

Theorem 4.5 When µ ≥ 0 and λ < 0, the one-dimensional stable manifold
W s(P−) of the equilibrium point P− intersects Din at two points. These
points belong to Cin and are accessible from the boundary ∂Din. Similarly
W u(P+) intersects Dout at two points in Cout and these points are accessible
from ∂Dout.

Proof. As discussed in §3, the invariant set in V consists of the equilibria
P± and their connecting orbits, provided that µ ≥ 0, namely the system is
gradient-like. In this case the inset consists of the intersection of the stable
manifolds of P± with Din. In particular there exist two points of intersection
of the one-dimensional stable manifold W s(P−). Therefore, if one of these two
points is not accessible, it must be enclosed by part of the two-dimensional
stable manifold W s(P+) in Din.

Recall from §3 that if the Lyapunov level c satisfies c− < c < c+, then
the corresponding surface Mc is a 2-torus, on which W s(P+) and W u(P−)
intersect in such a way that the intersection number is equal to one. If we
take c > c− close enough to c−, the intersection of W u(P−) with Mc becomes
its meridian, while W s(P+) could become complicated, but its homology
class does not contain the meridian component. This means that any point
on W u(P−) ∩ Sc is accessible from the boundary ∂Sc.

Now we decrease c slightly below c−. The Morse theory tells us how the
level surface Mc changes in this process, and in particular how the intersection
of W s(P+) with Mc changes. At the moment when c reaches c−, the level
surface Sc− is pinched at P− and hence so is W s(P+)∩Sc− . At this moment,
the pinched point P− is still accessible from the boundary ∂Sc− . Then, as
c becomes slightly less than c−, the surface Mc is cut at P− and changes to
a 2-sphere. Therefore the intersection of W s(P+) on Sc is also cut at P−
and is now pinched at two points which correspond to W s(P−). Even at
this stage, the accessibility of the pinched points does not change, since local
accessibility is preserved in this process.
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Since the flow defined homeomorphism sends W s(P±) ∩ Sc with c < c−
to Cin in Din, this completes the proof of the accessibility of W s(P−) in Din.
The same argument works for Cout in Dout. 2

The accessibility of W s(P−)∩Din and W u(P+)∩Dout should be preserved
under topological equivalence of the flow, and hence the change of accessibil-
ity at least shows change of dynamical structure. As we already mentioned,
when γ = γ0 = (1, 0, 0), the two-dimensional invariant manifolds W s(P+)
and W u(P−) have a non-empty intersection along a unique heteroclinic orbit
Γ0 which, as we will show in Proposition 5.1, is transversal, Cin reduces to
(W s(P−)∪W s(P+))∩Din and W s(P−)∩Din is accessible from ∂Din. On the
other hand, from the numerical results in [26] (see also [30]), it follows that
there exists a value γT = (λT , µT , 0), with µT < 0, at which W s(P+) and
W u(P−) have an additional tangency along an orbit ΓT and W s(P−) ∩ Din

contains points that are not accessible from ∂Din. In Figure 4 we represent
the intersection of the invariant manifolds of P+ and P− with the plane x = 0
as well as the related insets for γ = γ0 = γT .

Let us provide a short description of the situation at γ = γT . One of the
branches of W s(P−), that we assume to cut Din at s1, has no intersection
with x = 0 but the other one, cutting Din at s2, has two intersections with
x = 0 at points A and A′. On the other hand, the intersection of W s(P+)
with x = 0 consists of three pieces Σi, with i = 1, 2, 3, determined by the
points T and T ′, where T is a point where an orbit on W s(P+) is tangent to
x = 0 and T ′ is its image by the backward flow . Given points on a small
fundamental domain of W s(P+) and following their orbits backward in time,
the first intersection with x = 0 occurs on Σ1. Points on Σ1 from T to Γ0 have
a second and a third intersection on Σ2 and Σ3, respectively. The behaviour
of the intersection of the unstable manifolds with x = 0 is symmetric, with
respect to z = 0, to that we have just described for the stable manifolds.
Backward orbits of points on the curve Σ formed by the union of Σ3 with the
piece of Σ1 from Γ0 to T ′ will intersect Din with no additional intersections
with x = 0; note that backward orbits of points close to Γ0 will cut Din

following the branch of W s(P−) which intersects Din at s1. It is now clear
that, when γ = γT , s1 and the intersection with Din of the piece of Σ from
ΓT to Γ0 determine a closed curve containing {s2} in its interior, implying
that s2 is not accessible from ∂Din.
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It is clear that a thorough investigation of the accessibility of W s(P−)∩Din

would be very useful. This set is either one point or two points, and it in
fact consists of two points when µ ≥ 0. On the other hand it is a single point
if µ < 0 and (λ, µ, ν) lies in a sufficiently small neighborhood of the saddle-
node bifurcation set SN . Near the Bogdanov-Takens bifurcation point, this
set changes from one point to two points at the homoclinic bifurcation set
Hom. It seems difficult to study the similar transition in a neighborhood of
the Hopf-Zero bifurcation point HZ, or along the µ-axis within the class of
divergence-free (time-reversible) cases. Near these values, numerical meth-
ods, as those described in §4.3, can be helpful.

Figure 4: Non accessibility of W s(P−) ∩Din when γ = γT

4.2 Topological properties of the inset and outset

In this subsection, we collect some topological properties of the inset and
outset, which are generally true for a broader class of systems than just
(3.1).

When the inset and outset are non-empty and compact, we may speak
about the continuity properties of the maps with respect to the Hausdorff
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topology. For a given parameter value γ, we consider the corresponding
Cin(γ) and Cout(γ). When we consider the dependence of these sets with
respect to the parameters, it is convenient to think of these sets also as set-
valued maps Cin = Cin(γ) and Cout = Cout(γ). We abuse the notation Cin

and Cout for denoting these maps as well.

Proposition 4.6 The map Cin [resp. Cout] defined on a parameter region
where it takes values in the set of non-empty compact subsets in Din [resp.
Dout], endowed with the Hausdorff topology, is upper-semicontinuous. Namely,
for any sequence γn converging to γ∗,

lim sup
n→∞

Cin(γn) ⊂ Cin(γ∗)

[resp. lim sup
n→∞

Cout(γn) ⊂ Cout(γ∗)].

Recall that, for a family of sets {An}, we define

lim sup
n→∞

An =
∞⋂

n=1

⋃

k≥n

Ak.

Proof. Take any p ∈ Din\Cin(γ∗). Because of the continuity of solutions
of differential equations with respect to initial conditions and parameters,
there exists a neighborhood U of p such that U ⊂ Din \ Cin(γ) for all γ
close enough to γ∗. Since lim

n→∞γn = γ∗, there exists some n0 such that U ⊂
Din \ Cin(γn) for all n ≥ n0. Hence p ∈ Din \ lim sup

n→∞
Cin(γn). Similar

argument proves the statement for Cout. 2

Remark 4.7 The maps Cin and Cout are in general not continuous as we
saw in Theorem 4.2. Similar upper-semicontinuity property also holds for
the maximal invariant set in V as well.

Proposition 4.8 The inset and outset have isomorphic Alexander-Spanier
cohomology groups:

H̄k(Cin) ∼= H̄k(Cout), (k ∈ Z).
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Proof. From the definition of the traffic regulator, the transit map is
a homeomorphism between the transit sets Din \ Cin and Dout \ Cout, and
hence their corresponding (singular) homology groups are isomorphic. From
the Alexander duality for a compact subset C in the interior of a closed 2-disk
D2 ([35]), we have

H̃q(D
2 \ C) ∼= H̄1−q(C), (q ∈ Z),

and hence the conclusion follows. 2

Remark 4.9 In general the Alexander duality does not hold if one replaces
the Alexander-Spanier cohomology [35] by, say, the singular cohomology,
unless the set C has a nice property, such as having the homotopy type
of a CW complex. For instance if the space is connected but not arcwise
connected, its singular cohomology and Alexander-Spanier cohomology may
differ. For the examples of inset and outset that are discussed in this paper, it
seems that the corresponding singular and Alexander-Spanier cohomologies
always agree, and hence one might ask whether the same duality holds in
our case for singular cohomology. However, we do not have any idea about
how much this could be true.

Note that the cohomology groups H̄k(Cin) and H̄k(Cout) are non-trivial
only when k = 0, 1 from the Alexander duality and from the fact that the
(co)homologies of negative dimensions are trivial. One can also say a little
more about cohomologies of the inset and outset. Firstly H̄0(C) is, in general,
a free Abelian group generated by the connected components of C. Similarly,
the singular homology group H0(X) is a free Abelian group generated by its
arcwise connected components of X, and in the case of X = D2 \ Cin or
D2 \ Cout, its connected components are arcwise connected, since it is an
open set of D2. Therefore its reduced singular homology H̃0(X) with X =
D2\Cin or D2\Cout, which is proven to be isomorphic to H̄1(Cin) or H̄1(Cout)
respectively, is also determined by its (arcwise) connected components. In
particular both of these cohomologies are free Abelian groups.

As we will see later, the inset and outset are not homeomorphic to each
other in general. Again, it seems likely, at least in the examples that are
given in this paper, that these two sets are homotopically equivalent.

The next proposition says that the cohomology of the inset and outset
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gives a lower estimate of the complexity of the cohomology of the invariant
set Inv(V ) itself.

Proposition 4.10 There exist flow-defined maps

ϕk
in : H̄k(Cin) → H̄k(Inv(V )),

ϕk
out : H̄k(Cout) → H̄k(Inv(V )),

for any k ∈ Z, and these maps are injective.

Proof. First note that the second cohomology H̄2(Inv(V )) is trivial, as
it is isomorphic to H̃0(V \Inv(V )) from the Alexander duality and V \Inv(V )
is (arcwise) connected. In fact if there were an extra component, any orbit
starting a point in the component cannot leave the component at any time,
and hence it must belong to Inv(V ). Therefore the nontrivial maps are only
for k = 0, 1 in the above. We shall prove the assertion for the inset, since the
outset can be treated similarly.

As remarked before, the cohomology group H̄0(A) is freely generated
by the connected components of the set A. Suppose there are more than
one connected components in Cin, then they are separated by two disjoint
open sets in Din, and therefore one can take a path whose end points are in
∂Din, which does not intersect Cin, and which separates the two connected
components of Cin. Since the path is entirely in the complement of Cin, any
positive orbit starting at the path reaches the exit disk Dout in finite time. By
definition, each connected component of Cin separated by the path must tend
to a part of the invariant set inside V . Therefore the positive orbit of the path
in V must separate two different connected component of the invariant set
Inv(V ). This means at least an injective map from connected components of
Cin to those of Inv(V ), which induces the map ϕ0

in : H̄0(Cin) → H̄0(Inv(V )).
In order to prove the existence of ϕ1

in, recall from the Alexander duality
that H̄1(Cin) ∼= H̃0(Din \Cin) and that the reduced singular homology group
H̃0(Din \Cin) can be viewed as generated by the (arcwise) connected compo-
nents of Din \Cin which do not contain ∂Din. Let X be such a component of
Din \Cin and choose a point x from it. Since x is in the complement of Cin,
its positive orbit eventually reaches a point y in Dout \ Cout and one obtains
a path connecting those two points without intersecting Inv(V ). Connecting
x to a point in ∂Din and y to the corresponding point in ∂Dout defines a
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loop in V not intersecting Inv(V ) and not contractible in V \ Inv(V ). There-
fore it defines a non-trivial 1-cycle in V \ Inv(V ), and hence a map from
H̃0(Din \ Cin) ∼= H̄1(Cin) to H̃1(V \ Inv(V )) ∼= H̄1(Inv(V )). Note that the
last equality is again the Alexander duality applied to Inv(V ) ⊂ V . From
the definition, this map is clearly injective. This completes the proof. 2

Finally we note that the inset and outset have some relation to the Conley
index (see [29] for more information) of the maximal invariant set S inside
the isolating neighborhood V . In fact V is nothing but a specific type of
isolating blocks in the terminology of the Conley index theory. In particular,
if the entrance domain is a single disk, then it is contractible and hence the
Conley index of S is trivial. In other words, if the invariant set S has non-
trivial Conley index, the entrance domain must be different from the single
disk, say, more than one 2-disks or a domain which is not contractible. See
[4] for some relevant cohomological properties of isolating blocks.

4.3 Numerical computation of the inset and outset

Results in §4.1 and §4.2 suggest that it may be helpful to consider more
detailed information about the inset and outset. With that aim we propose
a possible numerical method and illustrate a few resulting examples (see
Figures 5 and 6). In Figure 5, we show how the inset changes when the
parameters cross the homoclinic bifurcation set close to the Bogdanov-Takens
bifurcation point. Figure 6 represents an approximation of the inset at the
Kuramoto point which is discussed in the next section.

In all cases we consider the family (2.4) taking one of the parameters equal
to −1 and the others in R2, as indicated in the figures. It is easy to check
that, in all cases, when x0 < 0 and y0 > 0 the surface S given as the boundary
of the domain (−∞, x0]× [y0,∞)× (−∞, 0] contains an entrance disk for a
traffic regulator. Moreover, to simplify subsequent calculations we always
assume that the vertex (x0, y0, 0) of S is chosen to satisfy λ̄ + µ̄y0 + x2

0 > 0.
Let

R = (({x0} × [y0, y0 + ry]× [−rz, 0]) \ Pε)
⋃

([x0 − rx, x0]× {y0} × [−rz, 0])
⋃

(([x0 − rx, x0]× [y0, y0 + ry]× {0}) \Qε),
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Figure 5: Insets before (upper figure) and after (lower figure) the homoclinic
bifurcation near the Bogdanov-Takens point.
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Figure 6: Inset at Kuramoto point and its enlargement. Notice the fractal-
like structure of the inset.
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with

Pε = {x0} ×
(
− λ̄ + x2

0

µ̄
− ε, y0 + ry

]
× (−ε, 0]

and

Qε =

{
(x, y, z) ∈ [x0 − rx, x0]× [y0, y0 + ry]× {0} | y > − λ̄ + x2

µ̄
− ε

}
,

for some positive rx, ry, rz and ε.
In our computational method for the insets, we start finding values of rx,

ry, rz and ε numerically such that any positive orbit of p ∈ ∂R reaches a
fundamental domain Ds of the stable manifold of the hyperbolic attractor at
infinity. This fundamental domain is determined by the directional blowing-
up in the positive y-direction. Notice that in such a case R is an entrance
disk for a traffic regulator V , since all orbits cross R in the same direction
because we have excluded Pε and Qε.

A good choice of the vertex (x0, y0, 0) and (rx, ry, rz) makes V to contain
the maximal invariant set. We then choose points from the entrance disk R
and follow their positive orbits numerically. If a positive orbit reaches the
fundamental domain Ds within some fixed time T which is indicated in each
figure, then we color its initial point in such a way that the transit time is
indicated by the darkness of the color. This gives the numerically obtained
insets.

5 The divergence-free case

In this section we shall discuss the case when ν = 0, namely the divergence
of the vector field is equal to zero. Under this condition, the vector field (3.1)
is equivariant under the transformation:

(x, y, z, t) 7→ (−x, y,−z,−t),

and therefore is time-reversible.

5.1 On the transversality of heteroclinic orbits

When the system is divergence-free, it is known that the heteroclinic orbit
proven in Theorem 3.1 is unique, see [27] and [38]. In these papers, the
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uniqueness is essentially based on the time-reversibility of (3.1) with ν = 0,
and hence one may not expect that the same holds in the general case where
ν 6= 0.

It was also pointed out by [30] that the uniqueness of the heteroclinic
orbit in the above case implies the transversality of the two-dimensional
stable and unstable manifolds along it, although the proof was not given
there. For completeness let us provide a proof of it in a slightly more general
situation. A heteroclinic orbit from P− to P+ is called primary if the x-
component of the corresponding heteroclinic solution changes its sign only
once, say at t = 0. Similarly, a heteroclinic orbit from P− to P+ is called
odd if its x-component can be taken as an odd function of time t. Clearly, if
the heteroclinic orbit in the time-reversible system with ν = 0 is primary, it
must be odd up to some time shift.

Proposition 5.1 If there exists a primary heteroclinic orbit from P− to P+

in the system with ν = 0 and µ ≥ 0, then along the heteroclinic orbit, W u(P−)
and W s(P+) must intersect transversally.

Note that here we do not need the uniqueness of the heteroclinic orbit. We
need, however, that it is primary (and hence odd), as well as the specific
form of our system, and therefore the proof cannot be easily generalized to
other cases.

Proof. Let (x(t), y(t), z(t)) be the corresponding heteroclinic solution
with x(t) being an odd function of t. We consider bounded solutions of the
variational equation along the heteroclinic solution:

u̇ = v,

v̇ = w,

ẇ = 2x(t)u + µv.

(5.1)

Usual exponential dichotomy argument shows that any bounded solution of
this equation must converge to zero exponentially as t tends to ±∞. There
exists an obvious non-trivial bounded solution given by (ẋ(t), ẏ(t), ż(t)) =
(y(t), z(t), λ + µy(t) + x(t)2). On the other hand, there must exist at least
one unbounded solution, since the equilibrium points P± are of saddle-type.
Therefore the space of all bounded solutions cannot be of dimension three,
and hence the transversality of W u(P−) and W s(P+) is equivalent to the
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one-dimensionality of the set of all bounded solutions to (5.1). Suppose all
bounded solutions form a two-dimensional space, and consider their initial
conditions at t = 0. The non-trivial bounded solution (ẋ(t), ẏ(t), ż(t)) has
the initial condition (a, 0, c) with a 6= 0. Since the variational equation (5.1)
is time-reversible, namely the equation does not change under the involution
(u, v, w, t) 7→ (−u, v,−w,−t), the existence of a bounded solution with an
initial condition (p, q, r) implies the existence of a bounded solution with the
initial condition (−p, q,−r). Since the dimension of the set of all bounded
solutions cannot exceed two, these three vectors (a, 0, c) and (±p, q,±r) must
be linearly dependent, and hence, either q = 0 or a : c = p : r. Therefore
the only possibility for an extra bounded solution to exist is with the initial
condition (0, 1, 0) or (0, 0, 1), without loss of generality.

Let (u(t), v(t), w(t)) be the solution of (5.1) with the initial condition
(0, 1, 0) and we shall derive a contradiction by using a shooting argument.
For small enough t > 0, u(t) and w(t) are increasing and hence positive, as
u̇(t) = v(t) > 0 and ẇ(t) = 2x(t)u(t) + µv(t) > 0 for small enough t > 0.
Note that here we have used µ > 0 and x(t) > 0. This implies that v(t) is
also increasing initially as v̇(t) = w(t) > 0. If this solution is converging to
0 as t → ∞, v(t) must turn to decreasing at some t > 0. Let t0 > 0 be the
first such t, namely, v̇(t0) = 0, v̇(t) ≥ 0 for all t ∈ [0, t0], but v̇(t) < 0 for
t > t0 with t sufficiently close to t0. Then there must exist some t1 ∈ (0, t0)
such that v̈(t1) < 0. However u̇(t) = v(t) ≥ 1 for any t ∈ [0, t0] implies that
u(t) > 0. This is a contradiction, since

0 > v̈(t1) = ẇ(t1) = 2x(t)u(t) + µv(t) > 0,

and therefore we have proven that the initial condition (0, 1, 0) cannot give
a bounded solution, hence W u(P−) and W s(P+) intersect transversally.

Similar argument yields contradiction as well in the case of the initial
condition being (0, 0, 1). This completes the proof of the assertion. 2

5.2 Bifurcations from a heteroclinic cycle

One interesting remark is that the system with ν = 0, λ ≤ 0, µ < 0 has
been studied extensively in connection with a partial differential equation
called the Kuramoto-Sivashinsky equation ([25], [34]). Here we do not intend
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to discuss this equation, but only point out that our system (3.1) appears
naturally as the traveling wave equation of this PDE, and many papers have
been devoted to study the solutions of this equation. In particular, Kuramoto
and Tsuzuki [25] found an explicit bounded solution of the equation when

λ = λK = −11 · 152

193
η

3
2 ≈ −0.310072, µ = µK = −η

1
2 ≈ −0.950713, ν = 0,

where η is the unique real root of the cubic equation

(
11 · 152

193

)2

η3 + η − 1 = 0.

This explicit solution corresponds to a heteroclinic orbit given as the inter-
section of one-dimensional invariant manifolds W u(P+) and W s(P−). Such
a connection is far from being transverse, even for divergence-free vector
fields, and hence will be destroyed by an arbitrarily small perturbation of
the parameters λ and µ.

If, however, the two-dimensional invariant manifolds W u(P−) and W s(P+)
have non-empty and transverse intersection at the moment when W u(P+) and
W s(P−) intersect, then these intersections form a heteroclinic cycle connect-
ing P− and P+. The existence of such a heteroclinic cycle implies interesting
dynamical phenomena as we will show in the next theorem. Note that, al-
though the transverse intersection of W u(P−) and W s(P+) is not proven
rigorously, it seems very likely that it really exists according to numerical
experiments of [26].

Theorem 5.2 Suppose W u(P+) ∩W s(P−) 6= ∅ and W u(P−) ∩W s(P+) 6= ∅
at a parameter value γ∗ = (λ∗, µ∗, 0). Suppose also that the intersection
of W u(P−) and W s(P+) is transverse. Then the following bifurcations oc-
cur from the heteroclinic cycle formed by the intersections of these invariant
manifolds of P− and P+:

(1) There exist two homoclinic bifurcation curves associated with P− and
P+ which spiral in to γ∗. These two bifurcation curves are symmetric
to each other with respect to the µ-axis, and hence they have infinitely
many intersection points on the µ-axis at µ±i , µ−i < µ∗ < µ+

j , accumu-
lating to µ∗ from both sides of µ∗ as i and j tend to ∞.
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(2) Near each µ±i for large enough i, there exists at least one heteroclinic
cycle of P− and P+ formed by a non-empty transverse intersection of
W u(P−) and W s(P+) as well as a non-empty intersection of W u(P+)
and W s(P−), called a subsidiary heteroclinic cycle.

(3) This subsidiary heteroclinic cycle has the same bifurcation structure in
its unfolding as the primary heteroclinic cycle at γ∗, and hence is ac-
companied by two symmetric homoclinic bifurcation curves which spiral
in to the parameter point γ±i corresponding to the subsidiary hetero-
clinic cycle, and each intersection points close enough to γ±i , there exist
yet another subsidiary heteroclinic cycles having the same bifurcation
structure in its neighborhood. Therefore the entire bifurcation set in a
neighborhood of γ∗ contains a self-similar structure. See Figure 7.

Figure 7: Sketch of the bifurcation diagram for the codimension two hetero-
clinic cycle.
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Numerical experiments carried out by Nishiyama [31] suggest that such a
complicated bifurcation structure seems to occur not only at the Kuramoto
point γK = (λK , µK , 0) but also at many other points on the µ-axis, and these
points seem to converge to the Hopf-Zero bifurcation point HZ = (0,−1, 0).

Note also that Kent and Elgin [21] have studied bifurcations from the
same type of heteroclinic cycle as in the above theorem. They have discussed
the similarity of the dynamics in a neighborhood of the cycle and that for
the so-called Shil’nikov-type homoclinic orbit ([33, 20]). Glendinning and
Sparrow [19] have also made a similar remark.

Proof. First we note that the equilibrium points P± are hyperbolic and
of saddle-focus type. The dynamics near a saddle-focus point with, say, the
two-dimensional stable manifold and the one-dimensional unstable manifold
is studied in the following way.

Take a small enough cylindrical neighborhood of the saddle-focus whose
side boundary is transverse to the stable manifold and whose top and bottom
boundaries are transverse to the unstable manifold. Then any segment in the
side boundary, transverse to the stable manifold is mapped under the flow-
defined local transition map near the saddle-focus point to a spiral curve in
the top (or bottom) boundary.

Therefore, for the time-reversible heteroclinic cycle, W u(P−) is accompa-
nied by a part of W u(P+) which comes from the one side of its transverse
intersection to W s(P−), and the intersection of this part of W u(P+) at the
(y, z)-plane forms a spiral curve whose center corresponds to W u(P−).

Because of the time-reversibility, we have the same structure for W s(P+)
and W s(P−) as well. In fact these two spirals are symmetric to each other
with respect to the y-axis.

Since homoclinic bifurcation curves for, say, P− are given by the inter-
section of W u(P−) and W s(P−), and since, generically, W u(P−) moves in
the (y, z)-plane diffeomorphically to the variation of parameters (µ, ν) in a
neighborhood of γK , it is obvious that the homoclinic bifurcation curve for
P− appears as a spiral curve centered at γK . Similarly the homoclinic bifur-
cation curve for P+ becomes a symmetric spiral with respect to the µ-axis.
This proves the first assertion.

In order to find a subsidiary heteroclinic orbit, we shall look for intersec-
tions of the y-axis with the one-dimensional stable and unstable manifolds.

If we perturb the primary heteroclinic cycle within the class of time-
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reversible vector fields, namely perturb µ while keeping ν = 0, then the
spirals in the (y, z)-plane move symmetrically with respect to the y-axis.
This means that the y-axis is mapped to a curve cutting through the spiral
(without cutting the center of the spiral) in the top boundary of the cylindri-
cal neighborhood of the saddle-focus, say, P− under the time-reversed flow.
Under the inverse of the local transition map, it is then mapped to a curve
close to the stable manifold, if the perturbation is small enough.

On the other hand, W u(P−) goes through a neighborhood of P+ and may
come back close to W u(P+) ∩ W s(P−), if the perturbation is chosen to be
sufficiently small. In this case, a slight change of the parameter µ keeps major
part of the image of the y-axis while the unstable manifold W u(P−) cuts the
image of the y-axis transversally. Therefore a subsidiary heteroclinic orbit
must exists near a homoclinic bifurcation point. The second assertion is thus
proved. The third assertion is merely a consequence of a similar reasoning
applied to the subsidiary heteroclinic cycle. 2

6 Concluding remarks

As readers should have noticed, we are still very far from complete under-
standing of the bifurcations in unfoldings of the triple zero singularity; there
remain many questions that need to be answered. In what follows, we shall
provide a list of open problems which we believe helpful for the future study
of the bifurcations from the nilpotent singularity of codimension three.

6.1 Problems about elementary bifurcations

We believe that there are no additional bifurcations on and between the
saddle-node bifurcation curve SN and the Hopf bifurcation curve H of sin-
gularities. Note that both of these curves are explicitly computed.

Numerical experiments ([31]) suggest that there exist a few curves of
successive period doubling bifurcations for a periodic orbit which is born
from the Hopf bifurcation. Such successive period doubling bifurcations may
occur infinitely many times and accumulate to the onset of chaotic dynamics.
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6.2 Problems related to the structure of the inset and
outset

We believe the inset and outset for our systems always to be connected, al-
though we have no proof of it. This is equivalent to saying that the maximal
invariant set inside the box V is connected. In order to prove this, one may
need to exclude the possibility of having bifurcations away from the previ-
ously existing dynamics. For instance, if there is a saddle-node bifurcation
completely independent of the other dynamics, it would imply that the max-
imal invariant set is (or equivalently the inset and outset are) disconnected.
We conjecture that this will not happen in the unfolding of the triple zero
singularity.

If the inset and outset are connected, their 0-th cohomology groups
H̄0(Cin) and H̄0(Cout) are isomorphic to Z. Therefore one has only to look
at the first cohomologies: H̄1(Cin) and H̄1(Cin). In §4 they are proven to be
free Abelian groups generated by the (arcwise) connected components of the
complements Din \ Cin and Dout \ Cout which do not contain the boundaries
∂Din and ∂Dout, respectively. These complements are certainly not con-
nected in general, and hence the first interesting question in this direction
would be whether these cohomologies are finitely generated, namely whether
the complements have only finitely many components. We suspect that in
general one cannot expect the finiteness of the number of components, for
instance at the Kuramoto point γ = γK .

In order to study the structure of the inset and outset, the cohomol-
ogy groups may be too rough. In §4, we saw that the inset and outset
are in general not homeomorphic to each other, but they have isomorphic
Alexander-Spanier cohomologies. So one may wonder whether these sets are
homotopically equivalent in general. It is in fact the case for all the exam-
ples that are discussed in this paper, but we do not have any idea about how
much this can be generalized. For sure there are examples of sets in a 2-disk
which are not homotopically equivalent to each other but have homeomor-
phic complements; this is for instance the case for C1 = {0} × [−1/2, 1/2]
and

C2 = C1 ∪ {(x, sin(1/x)/2) | 0 < x < 1/2}.
Therefore answering this question may be difficult. A more interesting and
certainly even more difficult question would be to classify the homotopy types
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of the inset and outset. We guess that if the complement of the inset has
only finitely many components, then the inset is homotopically equivalent to
a one-dimensional CW complex.

The main interest to study the inset and outset is the change of their
structure as the parameters vary. As we have seen in Theorem 4.2, the inset
becomes a 2-disk in a part of the parameter region called R1. If we have
a 2-disk as inset, its saturation by the flow gives a three-dimensional set
which contains all the positive orbits that never reach the exit disk under
the flow, and therefore we shall call it an invariant pocket. Theorem 4.2
shows that if γ ∈ R1, then an invariant pocket exists, and moreover its
boundary is the two-dimensional stable manifold of the equilibrium point
P−. One may be interested in how such an invariant pocket ceases to exist
as the parameters are varied. Again from Theorem 4.2, if the parameters
are varied in a small neighborhood of the Bogdanov-Takens point (BT ), the
invariant pocket is destroyed by the homoclinic bifurcation. We conjecture
that this is in general the case. Along any choice of one-parameter subfamily
which connects a point in R1 and any other parameter point without an
invariant pocket, the bifurcation where the invariant pocket ceases to exist
is the homoclinic bifurcation of P−.

As we have seen in the previous section, the inset and outset near the
saddle-node bifurcation curve SN are completely described, and in particu-
lar they are contractible. Contractible inset and outset also appears in the
divergence-free case when µ ≥ 0, namely when the system becomes gradient-
like. According to the numerical calculation near the “cocoon” bifurcation
discussed in [26], however, it seems likely that the inset and outset have a
loop and hence are not contractible. It would be important to study how the
structure changes between these two cases, along various paths in the param-
eter space. Also important is to study the structure of the inset and outset
at other parameter values. In particular, we are interested in the structure
of these sets near the Hopf-Zero point.

6.3 Near the Hopf-Zero point

The basic question about the bifurcation in our family near the Hopf-Zero
point (HZ) is its genericity. Since the family (3.1) is a specific quadratic
system, one must verify its genericity in order to apply the known results,
such as those of Broer and Vegter [3]. One special property of our system
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is that it has a constant divergence ν and hence it is completely divergence
free when ν = 0. This already shows that the family (3.1) loses some kind
of genericity with respect to the existence of invariant tori, see §2. However,
this does not necessarily mean that it is not generic with respect to other
bifurcations. We may expect that there exist parameter values, arbitrarily
close to HZ, at which the system has a Shil’nikov type homoclinic orbit.
For proving this, one may take different approaches: a standard way to
prove it may be to use the Melnikov method. It is likely, however, that the
Melnikov integral for the system (3.1) gives an exponentially small function
of the parameters so that it is not easy to prove the existence of a homoclinic
orbit in perturbations from HZ. Therefore the existence of the Shil’nikov
homoclinic orbit in the system (3.1) still remains open.

It will also be helpful to study dynamics near HZ, if one knows the
transversality of the two-dimensional stable and unstable manifolds of the
equilibria P±. It can be proven that these invariant manifolds have non-
empty intersection at some parameter values, but it is not known whether
they intersect transversally. Of course if the system can be made completely
rotationally symmetric by a change of coordinates, the intersection cannot
be transverse. For interesting information on this case we refer to [20] and
especially to [24]. But the rotationally symmetric systems are not generic,
and hence we can hope that the intersection likely becomes transverse. A
proof of this has however not been given. One may again try to prove this
by using a Melnikov-like method, but then one will face a similar difficulty
of exponential smallness of the function.

6.4 The divergence free case

Along the curve DZ given by ν = 0 in the parameter sphere, the correspond-
ing systems are always divergence-free and at the same time time-reversible.
When µ ≥ 0, the systems are also gradient-like and are known to have a
unique heteroclinic orbit from P− and P+, from which the dynamics is com-
pletely described. When µ becomes negative, there are a number of bifurca-
tions observed by numerical experiments, including the “cocoon” bifurcations
[26], a codimension two heteroclinic orbit at the Kuramoto point, etc. There-
fore the first problem is to understand such bifurcations in more detail. In
particular, it will be interesting to know the first bifurcation that occurs
when the parameter µ changes from positive to negative along DZ. Most
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likely the first bifurcation will be the heteroclinic bifurcation as discussed at
the end of §4.1.

Again it will be helpful to have the transversality of the two-dimensional
stable and unstable manifolds of P± along the µ-axis. The transversality is
proven for µ ≥ 0 as discussed in §3, but the proof does not seem to work for
negative µ. Numerical simulation suggests that these manifolds are always
transverse.

A codimension two heteroclinic orbit was explicitly given at the Kuramoto
point, but there are many more of such heteroclinic orbits at different pa-
rameter values, and it seems that parameter values for these codimension
two heteroclinic orbits accumulate to HZ, according to numerical experi-
ments. As discussed in §5, a cycle involving such a heteroclinic orbit implies
subsidiary cycles and a self-similar bifurcation structure around it. Accu-
mulation of such structures to HZ should be related to the existence of a
Shil’nikov homoclinic orbit bifurcating from HZ.

6.5 More global bifurcations and computational ap-
proach

Away from the curve DZ, one loses the additional information that one has
for zero-divergence, and hence studying dynamics and bifurcations will be
much more difficult. One may be interested in tracing the parameter curve of
homoclinic orbits emanating from BT . According to numerical experiments,
it seems that the curve enters the parameter region where the Shil’nikov’s
eigenvalue condition is satisfied, inducing nearby chaotic dynamics due to
the Shil’nikov’s theorem; it then seems to approach the Kuramoto point on
the curve DZ, namely a codimension two point of heteroclinic connection.
From that point, other homoclinic orbits branch off and connect to other
codimension two heteroclinic points, creating very complicated bifurcation
structure.

There seems to be a rich variety of homoclinic bifurcations. Theoretical
results for studying such homoclinic bifurcations would suggest to look for
codimension two (or higher) homoclinic orbits. For instance a homoclinic
orbit with the critical Shil’nikov condition quite likely exists, and will imply
the existence of complicated dynamics including chaotic attractors, according
to [32].
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Recently new computational methods and tools have been developed, like
HomCont/AUTO and GAIO, that could be used for studying the problems
discussed in this paper.

HomCont/AUTO [6] can trace homoclinic and heteroclinic bifurcation
curves in a parameter plane, and might hence be quite useful for studying
homoclinic and heteroclinic bifurcations in the system studied in this pa-
per. We can e.g. think at those curves emanating from BT or from HZ.
Nishiyama [31] used an earlier version of HomCont and followed the ho-
moclinic bifurcations curves from BT . He obtained results which seem to
confirm the existence of a sequence of parameter points accumulating to HZ
around each of which the bifurcations discussed in §5.2 occur. His study was
rather incomplete and needs further attention. HomCont/AUTO might
also be of great help to provide a computer assisted proof for the existence
of such bifurcation points by using validated numerical computation.

Another interesting problem for which the numerical technique may be
useful is to capture the two-dimensional invariant manifolds. This could lead
to a numerical confirmation of the transversality of the two-dimensional sta-
ble and unstable manifolds discussed in §5.1. The numerical tool GAIO [16]
is one of such tools, using the so-called subdivision algorithm for numerically
approximating the two-dimensional objects in R3; see also [23] for a different
approach. These tools may hence be of great help in tackling the problems
discussed in §6.4.

A Proof of Theorem 4.2

Here we give a proof of Theorem 4.2. First we shall state a lemma which will
be used later.

Lemma A.1 Let X be a compact connected metric space consisting of more
than one point and H0 ⊂ X be homeomorphic to a closed segment with
end points x1 and x2. Assume that there exists a family of nonempty sets
Hγ ⊂ X, with γ ∈ B(γ0, r) for some γ0 ∈ Rn and r > 0, such that the
following properties hold:

(1) There exist x1(γ), x2(γ) ∈ Hγ such that x1(γ) → x1 and x2(γ) → x2

when γ → γ0.
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(2) For each r > 0 there exists s(r) > 0 such that if γ ∈ B(γ0, s(r)) then
Hγ ⊂ {x ∈ X | d(x,H0) < r}.

Then Hγ → H0 in the Hausdorff metric as γ → γ0.

The proof of this lemma is quite simple and hence omitted.

Proof of Theorem 4.2. Our knowledge of the local bifurcations arising
along the line SN = {γ ∈ S2 | λ = 0} when µ 6= −1, given in Theorem 2.5,
is the main tool to prove the result. We will consider the versal unfoldings
of the singularities (see [9]) to determine the dynamics inside the box V .

If γ ∈ SN with µ < 0 and ν < 0, then the local family is a generic
unfolding of a saddle node bifurcation with a (C0, C∞) versal unfolding given
by the one-parameter family

x′ = α + x2

y′ = −y

z′ = −z,

(A.1)

where α is a real parameter. If γ ∈ SN with µ > 0 and ν ≤ 0, then a
(C0, C∞) versal unfolding is given by the one-parameter family

x′ = α + x2

y′ = −y

z′ = z,

(A.2)

where α is a real parameter. Finally, close to BT , the local family is a
generic unfolding of the Bogdanov-Takens bifurcation whose (C0, C0) versal
unfolding can be given as

x′ = y

y′ = α + βy + x2 − xy

z′ = −z,

(A.3)

where α and β are real parameters. In this last case it is useful to recall
the bifurcation diagram of the singularity (see Figure 8). We do not need to
know the local bifurcations at HZ; we only use the fact that, as mentioned
in §2, the vector field is topologically equivalent to a vertical one at HZ.
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Figure 8: Bogdanov-Takens bifurcation. In our three-dimensional family,
there exists a two-dimensional center manifold on which such bifurcations
occur. The center manifold is always normally attracting.

Taking into account the versal unfoldings (A.1), (A.2) and (A.3) and the
local behavior at HZ, easily follows the existence of a small box Vγ, satisfying
similar properties to those of V , where one can describe all the possible local
bifurcations. To be precise, the boundary of Vγ consists of Dγ, in, Dγ, out and
Kγ. Dγ, in and Dγ, out are 2-disks where the vector field is transverse inward
on Dγ, in, outward on Dγ, out. Kγ is homeomorphic to a cylinder S1 × [0, 1]
and it is a flow box. On Dγ, in and Dγ, out we can again define the notion
of inset and outset but with respect to Vγ. In order to avoid complicated
notation we will refer to Vγ as the local box, and to Dγ, in and Dγ, out as the
local entrance disk and the local exit disk, respectively. Similarly, we will
also use the terminology local inset and local outset.
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When λ = 0, and therefore α = β = 0 in (A.1), (A.2) and (A.3), the
change of the local inset and outset when γ varies can be described as follows:

(1) At HZ the local inset and outset reduce to a unique point.

(2) If γ ∈ SN with µ < 0 and ν < 0, then the local inset is a 2-disk
whose boundary is given by the intersection of the two-dimensional
stable manifold of the singularity with the local entrance disk. The
local outset reduces to a unique point.

(3) If γ ∈ SN with µ > 0, then the local inset and the local outset are
homeomorphic to closed segments. Their end points are given by the
intersection of the stable manifold and the unstable manifold at the
singularity with the local entrance disk and the local exit disk, respec-
tively.

(4) At BT , the local outset is a point, and the local inset is homeomorphic
to a segment with end points given by the intersection of the stable
manifold at the singularity with the local entrance disk.

Since L(x, y, z) = z − µx − νy is a Lyapunov function when λ = 0, it
follows that positive and negative orbits stay inside V only if they have the
singularity as ω- and α-limit set, respectively, and also that there is no non-
trivial orbit Γ such that α(Γ) = ω(Γ) = O. Therefore, taking Vγ smaller if
necessary, we can assume that all the orbits which leave the local box Vγ also
leave V ; note that in such a case we get the description of the inset and outset
for V along {γ ∈ S2 | λ = 0} since they are homeomorphic to the local ones.
On the other hand, because of the continuity of the solutions with respect to
the parameters, such property also holds for parameters in a neighborhood
of a fixed γ with respect to the box Vγ. Since the dynamics inside such a box
is given by the respective versal unfoldings, we only need to pay attention to
possible bifurcations in order to complete the description of inset and outset
of V close to the saddle-node points and the Bogdanov-Takens point. In the
sequel we only pay attention to the local inset and outset.

After the saddle node bifurcation we find two singularities inside Vγ. If
such bifurcation occurs for µ negative then one of the singularities is a hy-
perbolic attractor while the other one is a hyperbolic saddle with a two-
dimensional invariant manifold. Hence the local inset is again a 2-disk whose
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boundary is given by the intersection of such two-dimensional stable manifold
with the local entrance disk. The attractor belongs to the region enclosed by
the two-dimensional stable manifold and the local entrance disk. Therefore,
the local outset reduces to a unique point. If the saddle node bifurcation
occurs for µ positive, then both singularities are hyperbolic saddles with dif-
ferent stability index. The local inset and outset are homeomorphic to seg-
ments whose end points are given by the intersection of the one-dimensional
invariant manifolds of the singularity with the correspondent local entrance
and exit disks.

At BT we must pay attention to the complete bifurcation diagram (see
Figure 8). For values of the parameter close enough to BT and with λ < 0,
two singularities s and e appear (see Figure 9). Let U be a neighborhood
of BT where the local bifurcations are those given by the versal unfolding.
The curve Hom of homoclinic bifurcation at s divides U into two regions
R1 and R2 (see Figure 3). For parameters in R1 the local inset is again
homeomorphic to a 2-disk whose boundary is limited by the two-dimensional
stable manifold of s and the local outset reduces to a unique point. The Hopf
bifurcation at e has no influence on the shape of the local inset, and only
the attractor inside the local box changes from e to a periodic orbit. For
parameters in R2 the local inset and the local outset are homeomorphic to a
segment. The end points are given by the intersection of the stable manifold
of e and the unstable manifold of s, respectively, with the local entrance disk.
Therefore along Hom the qualitative change of the inset and the outset is
understood. In Figure 9, we depict the local phase portraits for the vector
fields in normalized coordinates. We see that for parameters at Hom the
local inset is given by the union of two 2-disks connected by a segment. The
union of the boundary of the disks and the segment is given again by the
intersection of the stable manifold of s with the local entrance disk.

It remains to prove that insets and outsets change continuously with
respect to the parameters outside the line Hom. Because of Proposition 4.6,
we only need to prove the lower-semicontinuity. If for some value of γ the
inset or the outset reduces to a unique point it is easy to check, by taking
into account the continuous dependence of the solutions with respect to the
parameters, that for any arbitrarily small neighborhood B of such a point
and for values of the parameters close enough to γ, the corresponding inset
or outset is contained in B. When the inset is a closed disk, we only need
to prove that its boundary changes continuously. This fact follows from the

44



Figure 9: Qualitative change of the inset near the line of homoclinic bifurca-
tion.

continuous dependence of the stable manifold with respect to the parameters
when we take γ with λ 6= 0. If we consider γ with λ = 0 we must also take
into account that (A.1) is a (C0, C∞) versal unfolding. Similar arguments
are valid when the inset or the outset are homeomorphic to a segment and
the parameter is not BT .

The proof of the continuity at BT is slightly more involved and relies on
Lemma A.1. To apply it we consider γ0 = BT and H0 as the inset for BT .
We only need to check that the family of insets for parameters close to BT
satisfies the property (1) stated in Lemma A.1. Note that x1 and x2 are the
intersections of the stable manifold at the origin with the entrance disk when
γ = BT . We distinguish three different cases:

45



(1) If γ ∈ {γ | λ = 0} with µ > 0, then we take x1(γ) and x2(γ) as the
intersections of the stable manifold at the origin with the entrance disk.

(2) If γ ∈ {γ | λ = 0} with µ < 0, then we take x1(γ) and x2(γ) as
the intersections of the strong stable manifold at the origin with the
entrance disk.

(3) If we consider γ with λ < 0, then we take x1(γ) and x2(γ) as the
intersections of the strong stable manifold at s with the entrance disk.

Since (A.3) is a (C0, C0) versal unfolding, it follows that the invariant man-
ifolds used to define x1(γ) and x2(γ) converge to the stable manifold at the
origin for BT when the parameter tends to BT . Hence Property (1) follows.

At Hom the continuity of the outset is straightforward. Let us now show
that the inset function Cin(γ) is not lower-semicontinuous. In fact we can
reduce the proof to the case of local insets and therefore consider normalized
coordinates as those depicted in Figure 9. Take γ0 ∈ Hom \ BT and let
F0 denote the focus point of the vector field Xγ0 . It suffices to look at a
small transverse cylinder C around the stable manifold at F0. Let A be one
of the circles given by the intersection of C with the local entrance disk at
γ0. It is then possible to find a sequence {γn} converging to γ0 such that the
corresponding lim supn→∞ Ĉin(γn), where Ĉin denotes the local inset, cuts the
circle A at any given point. See e.g. [12] for more details. This completes
the proof since we already know that the local inset at γ = γ0 ∈ Hom \ BT
is homeomorphic to the two 2-disks connected by a segment which entirely
contains the circle A. 2
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