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Abstract

Cascades of period-doubling bifurcations have attracted much in-
terest from researchers of dynamical systems in the past two decades
as it is one of the routes to onset of chaos. In this paper we consider
routes to onset of chaos involving homoclinic-doubling bifurcations.
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We show the existence of cascades of homoclinic-doubling bifurca-
tions, persistently in two-parameter families of vector fields on R3.
The cascades are found in an unfolding of a codimension-three homo-
clinic bifurcation; an orbit-flip at resonant eigenvalues. We develop a
continuation theory for homoclinic orbits in order to follow homoclinic
orbits through infinitely many homoclinic-doubling bifurcations.

1 Introduction

It is known that, under certain conditions, an orbit homoclinic to a hyper-
bolic singularity can undergo a homoclinic-doubling bifurcation. This creates
a homoclinic orbit, referred to as a doubled or 2-homoclinic orbit, that cir-
culates twice in a tubular neighborhood of the original homoclinic orbit. It
has been made plausible by H. Kokubu, M. Komuro and H. Oka [23] that
a cascade of successive homoclinic-doubling bifurcations can occur. It is the
goal of this paper to rigorously establish the following result:

Main Theorem In the space of two-parameter families of smooth wvector
fields on R? there is an open set consisting of families that possess a cascade
of homoclinic-doubling bifurcations.

A precise statement will be made in Section 2, see Theorem 2.4, once the
necessary notation has been introduced. The picture to have in mind for the
homoclinic-doubling bifurcation is the following: in the parameter plane of a
two-parameter family of vector fields that generically unfolds such a homocli-
nic bifurcation there is a curve of 2-homoclinic orbits that branches from the
curve of primary homoclinic orbits, at the codimension-two point. The bifur-
cation diagram of such a homoclinic-doubling bifurcation is depicted in Fig-
ure 1. Note that such a scenario only makes sense for two-parameter families
of vector fields; homoclinic-doubling does not occur in generic one-parameter
families. A cascade of successive homoclinic-doubling bifurcations arises if,
as a curve of doubled homoclinic orbits is followed, a further homoclinic-
doubling occurs. The homoclinic orbit, existing after n homoclinic-doubling
bifurcations, forms a curve which gets arbitrarily long as n — oo.

It is clear that we are dealing with a situation that is global both in
parameter and in phase space. Our idea to handle this problem is to con-
sider a codimension-three homoclinic bifurcation and to show that there are
cascades of homoclinic-doubling bifurcations in its unfolding. Thereby we
localize the problem in the parameter space and restrict the phase space to a



Figure 1: This figure shows the bifurcation diagram of a homoclinic-doubling
bifurcation, as studied in this paper. Besides the curve of primary homoclinic
orbits and the branch of doubled homoclinic orbits, there is a branch SN
of periodic saddle node bifurcations and a branch PD of period-doubling
bifurcations.

small tubular neighborhood of the codimension-three homoclinic orbit. The
codimension-three homoclinic bifurcation we consider is an orbit-flip bifur-
cation at resonant eigenvalues. To be more precise, let X be a smooth vector
field with a hyperbolic singularity p at which DX (p) has two real stable eigen-
values —a, —f with —a < —f < 0 and one unstable eigenvalue, which we
may assume to be equal to 1, after a time reparametrization. Assume that
X has a homoclinic orbit contained in the strong stable manifold W?**(p)
of p. Such a homoclinic orbit is called an orbit-flip homoclinic orbit [36].
We assume the resonance condition on the eigenvalues o = 1 and further
the eigenvalue condition % < f < 1. Finally, we assume that an associated
number, which we call the weak eigenvalue along the homoclinic orbit, is suffi-
ciently large. In any unfolding in a three-parameter family of vector fields, of
a vector field with such an orbit-flip homoclinic orbit at resonant eigenvalues,
we show the existence of cascades of homoclinic-doubling bifurcations. Ac-
tually, the homoclinic-doubling bifurcations themselves are codimension-two
homoclinic bifurcations known as inclination-flips. Building on the results of
this paper, the occurrence of homoclinic-doubling cascades in the unfolding
of other codimension-three homoclinic bifurcations is discussed in [19]. The
paper [24] discusses codimension-three homoclinic bifurcations as well, and
establishes the existence of inclination-flip bifurcations of n-homoclinic or-
bits, for any n, in the unfolding of a particular codimension-three homoclinic
bifurcation.



There exists a striking similarity of homoclinic-doubling cascades with
period-doubling cascades. Indeed, in our constructed example, we can find
period-doubling cascades arbitrarily near a homoclinic-doubling cascade. The
existence proofs show more similarities. Period-doubling cascades for diffeo-
morphisms unfolding a Smale horseshoe are shown to exist using continuation
results for periodic orbits [45]. Analogous results then hold for vector fields
obtained from diffeomorphisms by a suspension construction. We proceed
by similar techniques; in a properly defined geometric situation we apply a
continuation result for homoclinic orbits. Since an appropriate continuation
theory for homoclinic orbits was not available, we had to develop such a the-
ory. The resulting theory is inspired by a continuation theory for periodic
orbits by K.T. Alligood, J. Mallet-Paret and J.A. Yorke [3], [2] and a contin-
uation theory for homoclinic orbits that applies to generic families and was
developed by B. Fiedler [11].

In addition, by considering the unfolding of a codimension-three homo-
clinic orbit and using singularly rescaled coordinates, we obtain a Poincaré
return map that is close to an interval map. This interval map is unimodal,
but not smooth since it has infinite slope at one point. The reduction to
(essentially) one dimensional dynamics brings a study of universal scaling
properties into scope. For smooth unimodal maps, universal scaling prop-
erties of a period-doubling cascade were discovered independently by M.
Feigenbaum [10] and by P. Coullet and C. Tresser [7]. They found that
the period-doubling bifurcations in the cascade scale asymptotically accord-
ing to a geometric law, with a convergence rate independent of the family.
This universal scaling is explained by renormalization theory. As just men-
tioned, in our constructions we obtain a Poincaré return map that is close to
an interval map. Renormalization theory and its interpretation for universal
scalings in the bifurcation diagrams have been studied for a class of such
interval maps in [20].

In [23], numerical evidence for the existence of a homoclinic-doubling
cascade in a family of piecewise affine vector fields is provided. Our re-
sult showing that homoclinic-doubling cascades occur in the unfolding of a
specific codimension-three homoclinic orbit, enables the construction of an
example of a family of polynomial vector fields with a homoclinic-doubling
cascade. Indeed, in [37] a recipe is given to construct polynomial vector
fields with specific homoclinic orbits. Following his construction one can
write down a family of vector fields unfolding a codimension-three orbit-flip
homoclinic orbit at resonant eigenvalues. A numerical investigation of such
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vector fields is contained in [30] by B.E. Oldeman, B. Krauskopf and A.R.
Champneys, where they numerically detect a cascade of homoclinic-doubling
bifurcations and study scalings in the bifurcation diagram. See also [31].
Furthermore, there is some evidence that in the Shimizu-Morioka model for
studying the dynamics of Lorenz-like systems at high Rayleigh numbers,
homoclinic-doubling cascades can occur, see [39].

This paper is organized as follows. In Section 2 we give a definition
of the degenerate homoclinic orbit called the orbit-flip at resonant eigen-
values. This is the core object of our study, and its unfolding exhibits the
homoclinic-doubling cascades. We do not intend to study the complete bifur-
cation diagram of this codimension-three homoclinic orbit, but rather restrict
our study to a region in parameter space where one expects the cascade. For
these parameters, we study a Poincaré return map. We give an asymptotic
expression of a rescaled form of this Poincaré return map. The crucial obser-
vation is that the rescaled Poincaré return map can be viewed as a singular
perturbation of an interval map. This rescaled Poincaré return map plays a
central role in the analysis that follows.

In Section 3 we consider the family of one dimensional maps that result
from the singular rescaling. We indicate the relation between its dynamics
and bifurcations with that of the original family of vector fields. In Section 4
we extend the study in Section 3 to that of the two dimensional rescaled
return map and prove some facts needed later. In particular we show the
existence of an invariant strong stable foliation for the rescaled return map,
on a subset of the parameter space. This allows for a rigorous reduction to
one dimensional dynamics, for these parameter values.

Section 5 is devoted to the construction of a continuation theory for ho-
moclinic orbits. This is inspired by a similar theory for the continuation of
periodic orbits, developed in a series of papers by K.T. Alligood, J.A. Yorke
and J. Mallet-Paret [25], [3], [2]. An obvious difference between continuing
periodic and homoclinic orbits is that periodic orbits are continued in one-
parameter families of vector fields, whereas homoclinic orbits are continued
in two-parameter families of vector fields.

In Section 6 we gather all information to prove the main theorem. Ap-
plying the continuation theory to our situation it will follow that, when con-
tinuing a particular homoclinic orbit, one encounters homoclinic orbits that
form curves of arbitrarily large length. Information derived from the fact that
we are unfolding a particular codimension-three homoclinic orbit allows us to
conclude that this can only happen through a cascade of homoclinic-doubling



bifurcations.

In Appendix A we complete the proof that the bifurcation set of gener-
ically unfolded inclination-flips, with eigenvalue conditions with which they
occur in the homoclinic-doubling cascade, is as indicated in Figure 1. This
was previously unknown; the bifurcations were known to be complete as far as
bifurcations of n-periodic and n-homoclinic orbits for n = 1,2 are concerned.

In Appendix B we construct a normal form for vector fields near the
singularity and prove validity of certain exponential expansions for a local
transition map. The results of this appendix are used to study the Poincaré
return map in Section 2.

Acknowledgements The authors acknowledge fruitful conversations with
Patrick Bonckaert, Bernold Fiedler and other colleagues at the Free Univer-
sity in Berlin, Sergey Gonchenko, Bernd Krauskopf, Bjorn Sandstede, Misha
Shashkov, Andrey Shil'nikov and Leonid Shil’nikov. AJH acknowledges the
kind hospitality of I’'Université de Bourgogne in Dijon for a visit and of Kyoto
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2 Orbit-flip at resonant eigenvalues

In this section, we introduce a homoclinic orbit of codimension-three called
orbit-flip at resonant eigenvalues. Homoclinic-doubling cascades will be found
in its unfolding. After giving some definitions, we provide a precise state-
ment of our main result in Theorem 2.4 below. This section is further devoted
to the study of a Poincaré return map on a cross-section transverse to the
codimension-three orbit-flip homoclinic orbit.

Let X be a smooth vector field on R? with a hyperbolic singularity ¢. We
assume that DX (q) has two distinct real stable eigenvalues and one unsta-
ble eigenvalue. By a time reparametrization, we may assume the unstable
eigenvalue to be equal to 1. Write —«, —3 with a > [ > 0 for the two sta-
ble eigenvalues. Because the two stable eigenvalues are distinct, the vector
field X has, contained in the stable manifold W?®*(q) of ¢, a one dimen-
sional strong stable manifold W#*(q). Its tangent space at ¢ is the eigenspace
associated to —a. There further exists a two dimensional center unstable
manifold W*"(q) with tangent space at ¢ spanned by the eigenspaces associ-
ated to the eigenvalues —f and 1. This last invariant manifold is not unique
and in general it is only C! [16]. The tangent bundle of (any) W**(q) along
the unstable manifold, however, is a uniquely determined smooth bundle, see



e.g. [18] for a proof of this fact. All these invariant manifolds persist under
perturbation of the vector field. We write W™ *(q), W"(q), etc., if we wish
to stress the dependence of these manifolds on the vector field X.

Definition 2.1 Suppose I' is a homoclinic orbit of X, that is, a nontrivial
intersection of W**(q) with W*(q). T is called an inclination-flip homoclinic
orbit, if W**%(q) is tangent to one (and hence any) center unstable manifold
W#t(q) along I". T is called an orbit-flip homoclinic orbit, if T' C W**(q).

Inclination-flips and orbit-flips are examples of homoclinic bifurcations of
(at least) codimension-two. We will not make precise the notion of codimen-
sion. What is heuristically meant with a bifurcation being of codimension-n,
is that it is given by a collection of conditions, naturally occuring in its study,
that make up a manifold of codimension-n in the space of vector fields. Com-
pare also Subsection 5.1.

Definition 2.2 Let {X,}, v € R be a smooth unfolding of X = X; pos-
sessing a homoclinic orbit I' at v = 0. Let S be a cross-section intersecting
[" transversally at a single point. We say that I creates a homoclinic orbit of
order N or an N-homoclinic orbit in the family { X}, if for any neighborhood
VY C R? of 0 and for any tubular neighborhood T of the closure of T, there
exists v € V such that X, possesses a homoclinic orbit in 7 intersecting
SNT in N points.

The next proposition serves to introduce the notion of weak eigenvalue
along an orbit-flip homoclinic orbit. This is defined only if there is the
resonance o = 1 among the eigenvalues of DX (g). A related notion, that of
weak direction, was considered in [28].

Proposition 2.3 Suppose that I' is an orbit-flip homoclinic orbit of a vector
field X as above. Suppose that o = 1. Let S be a cross-section transverse to
[ and let  : S — S be the Poincaré return map on S. Let C = {C(t) | t €
(=1,1)} be a C' curve in S, transverse to W*(q) at C(0) = W*(q) N S,
with C(t) in the domain of ® for t > 0. Then the limit
ltlil(?gl D®(C(t))

exists as a 2 X 2 matriz which has two eigenvalues A and 0. The eigenvalue
A depends neither on the choice of the cross-section S nor on the curve C.
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PROOF. By a theorem of G.R. Belitskii [4], there is a C'' local coordinate
change that makes the vector field X, near the singularity ¢, linear. In such
coordinates one has an explicit expression of a local transition map. The
proof is now given by a straightforward computation, which we leave to the
reader. O

It should be noted that the Poincaré return map ® is defined only on a
subset of the section S. Here and throughout the paper we find it convenient
to speak of the Poincaré return map on a cross section, even though its
domain is actually a subset of the cross section. We call the eigenvalue A
the weak eigenvalue along T'.

Consider a smooth three-parameter family of vector fields {X,},v € R?,
on R? satisfying the following conditions:

(BH: Basic hypothesis) The vector field X, has a hyperbolic singularity
¢, at which the linearization DX, (q,) possesses two negative eigenval-
ues —a(7y) < —f(vy) and one positive eigenvalue 1.

(OF: Orbit-flip) The vector field X possesses, at the parameter v = 0, an
orbit-flip homoclinic orbit I'. The stable manifold W ™*(qo) intersects
any center unstable manifold W *(qo) transversally along I'.

(SR: Strong resonance) The eigenvalues of the linearization D Xy(qp) sat-
isfy
1
a(0) =1 and 5 < £(0) < 1.

(WE: Weak eigenvalue) The weak eigenvalue A along I' satisfies

A> 5 <6(10)>160(0)'

(GU: Generic unfolding) | J(W3 (¢,), a(7),7) and | JW¥. (¢,), (7))

v v
intersect transversally along T’ x {1} x {0} in R® x R x R®.

Let S be a cross-section transverse to I'. Take coordinates (z,y) on S
so that W3’ (¢,) intersects S in (0,0) and Wy ™*(g,) intersects S in {z = 0}.
We may further assume that the domain of the Poincaré return map on S
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is contained in {z > 0}. Write (£(y),w(y)) for the coordinates of the first
intersection of W (¢,) with S. Define p(y) = a(y) — 1. By the generic
unfolding condition (GU), one may, by reparametrizing the parameter space,
assume that v = (g, w, p).

The next theorem gives the class of vector fields for which we prove the
existence of homoclinic-doubling cascades.

Theorem 2.4 Let {X,}, v = (c,w, ) € R®, be a smooth three-parameter
family of vector fields as above. For each e sufficiently small and positive, the
two-parameter family {Y,, .} given by Y, , = X. . ., possesses a connected set
of homoclinic bifurcation values in the (w, p)-parameter plane, containing a
cascade (wp, fy) of homoclinic-doubling bifurcations in which a 2™-homoclinic
orbit is created. Moreover, each such homoclinic-doubling bifurcation is an
inclination-flip and each p, as well as lim, ., p, s positive.

The main result, as formulated in the introduction, is a consequence of
this theorem. The geometry of the flow of the vector fields occurring in the
above theorem is discussed in Section 2.1 below (and illustrated in Figure 2),
by considering first return maps on a cross section. Theorem 2.4 holds for
any family satisfying the conditions (BH) to (GU) and so holds for an open
set of three-parameter families of vector fields.

Note that the eigenvalues of DX, (q,) at v = (g, wy, i), satisfy a(y) > 1
and % < B(y) < 1. We refer to the appendix for a precise statement on
the unfolding of inclination-flips with these eigenvalue conditions. These
eigenvalue conditions are relevant since for other conditions an unfolding of
an inclination-flip has a different bifurcation diagram [21], [17], [28]. Observe
also that higher order homoclinic orbits can only occur for ¢ > 0, when
W*(gq,) intersects S in the domain of the Poincaré return map on S.

2.1 Return maps

Let {X,} be a smooth three-parameter family of vector fields, satisfying the
conditions (BH) to (GU) above. Without loss of generality we may assume
that the singularity ¢, is the origin O. Take coordinates (zss, s, T,) € R? so
that X, is given by a set of ordinary differential equations;

x‘ss — _a(f)/)xss +Hss(x357x87xu;7)a
51/:3 — _B(V)xs +Hs(xss;xs;xu;7)a (21)
x.u — xu+Hu(xssaxsaxu;7)a
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where D'H,,(O;~), D'H,(O;~), D'H,(O;~) = 0 for i = 0, 1.
For suitably small § let

S = {xss:67|xs|7|xu|§5}a

so that S is a cross-section transverse to I'. The following proposition, giving
information on the Poincaré return map on S, is the main result of Section 2.
Its proof will occupy the rest of the section.

Proposition 2.5 Let {X,} be as above and let ®.,: S — S be the Poincaré
return map associated to X.,. Let A be the weak eigenvalue along the homo-
clinic orbit I'. For all compact intervals 1,J C (0,00) and all positive real
numbers Ay, Ay, there exist ¢ > 0, a diffeomorphism

of: (0,50) x Ix J — R?,
and a smooth family of diffeomorphisms

o’ (0, 4,] x [-A,,A)] — S

€7p7r

depending on parameters (¢,p,r) € (0,e0] x I x J, so that the map ¥, :
(0, A,] x [-A,, A,] — R?, given by

_ v -1

v
&P, €,0,7

has the following expression.:
_ | f@ep,r) + (z, y;e,p,7)
Lear(@y) = ( ha(z,y;€,p,7) ’

where

r

1-p

flze,pr) = p+ (B — zP)

and h;, i = 1,2, satisfies

1

LCEN DI CATEN Y < C.lzl?,

Ohi (e pr)
ay T,Y;e,p,T

)

for some C. > 0 with C. — 0 ase — 0.
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Remark 2.6 Fore =0, Uy, (x,y) = (f,.(2),0) with
1 p(0)

ra?® + g,

~1-5(0) 1-5(0)
Remark 2.7 It will follow from the expression for oP that, at ¢ = 0, p is

for(x) = p

positive for r < Alg(ﬁo()o). By condition (WE) on the weak eigenvalue along
[, this is the case if r < L _HA=BO) particular value will play a role
B(0)
later.
(I)fa.r
T
o(T)
(I)IOC(T)
S q)loc

/ z

Figure 2: This figure illustrates the presence of close to unimodal maps in first
return maps for a vector field X, v = (e, w, p), as stated in Proposition 2.5.
The strip T' = Uﬁi_’,p,r(A) is mapped to a cusp shaped region by the first return
map ¢ = &g, 0 §y, (the local and global transition maps ®j,. : S — ¥ and
®p,r 0 3 — S are studied in Section 2.2). The correct scale is given by the
map o, , . and given explicitely in Section 2.3.

It should be noted that the rescaling in the above proposition, applies
only in a subregion of the combined phase-parameter space S x R?. Indeed,
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it applies only to values from S x R? that lie in the image of (0¢,,,0F). The
importance of the rescaling lies in the fact that the rescaled Poincaré return
map is close to a one-dimensional map. Singular rescalings have been applied
in the study of homoclinic bifurcations in [28], [29], [24].

2.2 Transition maps

The remainder of Section 2 is an exposition of the proof of Proposition 2.5.
The proof is divided into two steps. The first step, in this subsection, involves
computing an asymptotic expression for a local transition map. The proof
of the main result of this subsection, Proposition 2.9, is postponed to Ap-
pendix B. The second step, in the next subsection, is then the introduction
of rescaled coordinates and the computation of the rescaled Poincaré return
map, in these rescaled coordinates.

Starting from the differential equations (2.1) we will perform a number
of local coordinate changes that bring the differential equations, near the
origin, in a better manageable form. By a smooth coordinate change we may
straighten the local strong stable, the local stable and the local unstable
manifold of ¢;

Wigeld) € {xg, 2, =0}, (2.2)
Wi'(q) € {x =0}, (2.3)
I/quéc C {xssaxé‘:o}a (24)

By (2.3), the function H, in (2.1) is of O(z,). We can therefore multiply
the vector field X, near the origin by the smooth positive function (x, +
H,(zss,%5,24;7))/xy. Note that this is equivalent to performing a state
dependent rescaling of time. Denoting the obtained vector field still by X,
X, is given by a set of ordinary differential equations

Tys = —a(V)Tss + Fas(Tss, Tsy i y),
Ty = —B(Y)xs + Fy(@ss, Ts, Tu3 ), (2.5)
Ty = Ty

The next lemma is proved in Appendix B.

Lemma 2.8 There are smooth local coordinates in which

Fss(xss;xSaxu;V) = O(||(x887x8)||2)7
FS(x557xsaxu§7) = O(“(JSSS,JIS)HZ).
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For some small positive §, define cross-sections

S = {xg =0, |xsl], |T4| =6}, (2.6)
Y = {x, =90,|vl, |zs| =0} (2.7)

We may assume that S and ¥ intersect the homoclinic orbit ' transversally.
By a linear rescaling we may assume that 6 = 1. On S we use (zj,x,)
as coordinates. Likewise, on ¥ we use (4, xs) as coordinates. The proof
of the following proposition is contained in Appendix B. Essential for the
expansions is the eigenvalue condition (SR).

Proposition 2.9 The local transition map Py, : S — X, for the vector field
(2.5), has the following expression for its components P, = (P55, OF

loc» loc) ;

i (z5, 203 ) = @y (W (25 7) + R (25,245 7)) ,

s B8 s s (28)
Do (T5, 203 7) = @y (@9 (w55 7) + R (25, 25 7)) -
Here ¢®° 1° are smooth nonzero functions. Furthermore, R** and R® are
smooth for x, > 0; for each 0 < 0°° < 20 — a and 0 < 0® < (3, there exist
constants Cy; > 0 so that

ak+l f
7Rss S u; < C USSi,
‘axga(:cs,v)l (o 7)‘ =
ak—i—l A
7R3 s u; < O O'S—,
TR 7)‘ = e
for nonnegative integers k, 1. 0]

(bu

The components (®f, ., Pf.

f 0 @) of the global transition map ®g, : ¥ — S
can be written as

(I)far(xssa e 7) = w(’y) + Axss + Bxg + Ql(xss; Tg; ’7)7 (29)
Op (255, 25;7) = e(y) + Cass + Dy + Qo(xss, Ts;7), (2.10)
where ¢ and w vanish for v = 0, and @)y and @), are quadratic and higher
order terms. Also A, B, C, D depend on 7, we suppress this dependence from

the notation. The Poincaré return map ® : S — S for the vector field X,
is the composition of the local and global transition maps, ® = &g, 0 D).
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Write & = (®°, ®*). From (2.9), (2.10) and Proposition 2.9 we obtain that
for some o > 0,

O (w5, w03 7) =

w(y) + Az® + Br,al + Ot + z,0 + 2225, (2.11)
(s, w0 ) =

£(y) + C2® + Drya’ + 0@ + z,2® + 2227), (2.12)

where A = Ay**(0;7), B = By*(0;7), C = C4**(0;) and D = Dy*(0;7).

2.3 Singular rescalings

Using the asymptotic expression of the Poincaré return map ® : S — S in
the normal form coordinates, obtained in the previous subsection, we com-
plete the proof of Proposition 2.5.

PROOF OF PROPOSITION 2.5. Define

n(y) = aly) -1 (2.13)

Let () and w(y) be as in (2.9), (2.10). By the generic unfolding condition
(GU), the map v — (e(7),w(7y), (7)) is a local diffeomorphism. We may
and therefore do assume that for small values of v, v = (g, w, p).

Let A be the weak eigenvalue along I'. A straightforward computation
shows that A equals the value of C' at v = 0.

The Poincaré return map ® = (®°,®*) on S has the expression given
by (2.11), (2.12). Let I,J be compact intervals in (0,00) and let A,, A, be
positive real numbers. We define the maps

0" 1 (0,20] x Ix T R, (2,p,7) > (2 1,)

and
0—:7},17,7" : (07A$] X [_AyaAy] — Sa (xay) = (ZUS,ZUU)
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implicitly by the following identities.

e\'1—p5~
ro= (=) —£¢, 2.14
<p> B (2.14)
a—B
pf = O (2.15)
w BD
el (2.16)
T, = E—, .
p ~
T, = eﬂy—sa’ﬁé. (2.17)
p*FBD

Note that D # 0, since ' is not an inclination-flip homoclinic orbit. From
(2.14) we obtain

R GE)) (é(fi‘”) . (2.18)

This makes clear that, for £o sufficiently close to 0, o and o7 ,, are well
defined.

A direct computation using (2.11), (2.12) gives the expression of ¥, .
Remark 2.6 follows since p,w — 0 as ¢ — 0. Remark 2.7 follows easily from
(2.18). 0

3 Dynamics of the interval maps

In the previous section, we derived the rescaled Poincaré map ¥, ,,, which
is a singular perturbation of the map

(@, y) = (fpr(2),0), (3.1)

with the one dimensional map f,, given by

1 P o]
—1_67“1: +1—B

where we have written 3 for 3(0) (recall that 3 < 8 < 1). In this section, we
shall study the dynamics and the bifurcation structure of the family {f,,}.

for(z)=p

re, (3.2)
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Figure 3: For each p,r, f,, given by (3.2) is a unimodal map with its critical
point at z = 1. Note that f(1) =p—r and f(0) =p. fp—r <0, p> 0 and
> (1—3)/B, fpr has two fixed points.

We consider f,, defined on [0,00). Observe that {f,,} is a family of
unimodal maps, with a critical point at x = 1, which are not differentiable
at x = 0. The role of the parameters p, r is indicated in Figure 3.

Homoclinic bifurcations and bifurcations of periodic orbits for the vector
fields we study, naturally correspond to bifurcations of the reduced one di-
mensional maps {f,,}. For homoclinic bifurcations, the correspondence is
as follows.

Homoclinic orbit of order n: Since the unstable manifold of the vector
field is the orbit of the origin of the cross section ¥ (see the previ-
ous section), an n-periodic orbit of f,, through 0 is interpreted as an
n-homoclinic orbit of the vector field. We therefore refer to such a pe-
riodic orbit as a homoclinic orbit of f,,. The bifurcation set H,, for
n-homoclinic orbits of {f,,} is thus given by

o(0) = 0. (3.3)

Inclination-flip homoclinic orbit of order n: An n-periodic orbit of f,
that goes through 0 and the critical point 1 in successive iterates, is
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interpreted as an inclination-flip homoclinic orbit of order n. The cor-
responding bifurcation set IF,, is given by

Ofpr
0

1(0)=0 and I (f1(0) =0,

p7r
which is equivalent to

"(0)=0 and fr '0)=1. (3.4)

p,r p,r

In particular, IF,, occurs only on the diagonal line p = r.

3.1 Homoclinic-doubling cascades for the interval maps

For parameter values on the diagonal p = r in the parameter plane, the
one-parameter family {f,}, given by

fo(@) = fop(x) =p <1 1 i Bxﬁ + 1 fﬂx> )

satisfies f,(1) = 0. That is, the critical value of f is 0. Since inclination-
flips correspond to periodic orbits containing both 0 and 1, see (3.4), IF,
is contained in the diagonal p = r. To find a cascade of parameter values
Pn € IF9n, it thus suffices to consider the one-parameter family { fp}. Such a
cascade is the analogue, in the context of the one dimensional maps {f,,},
of the sought-for homoclinic-doubling cascade.

Observe that, at p = 1, the critical point 1 is on a 2-periodic orbit of

fi. Atp=p= B_ﬁ, fp is a unimodal map, mapping [0, p] onto itself. We
want to conclude from these facts that {f,}, p € [1, p], is a full family, and
so contains maps with any kneading sequence, compare [26]. Because {f,}
is not a family of C' maps, this can not be concluded directly. However,
applying the coordinate change o(z) = z'/#, we get a family of maps {fp},
given by fp =0olo fp o o, that are continuously differentiable. This is a
consequence of the facts that |f,(z)| = O(|z — 1|*°) for & near the critical
point 1, and 26 > 1. It follows that {f,} with p € [1, ], is a full family. In
particular the family { fp} contains a cascade of parameter values p,, in IF..
See [23] for an alternative argument.

The same argument also works for parameter values satisfying p > r,
where f,,(1) = p — r is positive. In fact, under the condition that p > r,
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fpr(p —r) =1 implies that f,, has a super-stable 2-periodic point, whereas
> (p—7) = fpr(p—r) implies that f,, is a unimodal map from the interval
[p—r, f(p — r)] onto itself. Therefore along any path in the region {(p,r) €
R? p > r}in the parameter plane connecting these two curves, the family
r} forms a full family. One can conclude that r} along such a curve

P, P,

admits a cascade of period-doubling bifurcations.

3.2 Combinatorics of homoclinic orbits

It is clear that homoclinic bifurcations for {f,,} can only occur if 0 < p <,
when the critical value of f,, is negative. The following renormalization ar-
gument shows that, along lines in the parameter plane where p — r has a
constant negative value, there are cascades of homoclinic bifurcations. Re-
strict f,, to M = {z, 0 < f,,(z) < p}, which is a union of two intervals.
One can define a renormalization of {f,,} as follows. Renormalization is
defined if 0 < fp%,(()) < @, where @ is the orientation reversing fixed point of
fpr- The renormalized map is the first return map on the interval [0, f7,.(0)].

Suppose the parameters p, r are functions of one parameter p € [, /ﬁ].
Thus we obtain a one-parameter family {f,}, p € [, pt]. Suppose p(p) <
r(p) for all p and f2 (0) < 0, 7 (0) > f,+(0). For such a family one
can find a subinterval [py, p7]| of [u™, u*] so that f, is renormalizable for
p € [py, pf]. Writing R f,, for the renormalized map, we have (Rf,-)*(0) =0
and (RfuT)Z(O) = Rf,+(0). So the renormalized family satisfies the same
properties as the original family, allowing the conclusion that f, possesses
infinitely renormalizable maps. This implies the existence of a cascade of
parameter values 1, € Hon for {f,}.

More precise knowledge is obtained from symbolic dynamics, which we
will shortly describe. For each point & € M, an itinerary Z(x) is defined as
a finite or infinite sequence Z;(x), j > 0, of symbols L and R, according to
the following rule.

B L, if fi(z) <1,
(=) = { R, if fZ(x) > 1.

If f](x) is outside of M, that is, if f](x) < 0 or if f](x) > p, then Z,(x) is
not defined for k£ > 7 + 1.

One defines an ordering on itineraries as follows. Let Z, J be two
itineraries. Then Z < J if for the first integer j with Z; # J;, the following
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holds: either Z; = L and J; = R and the number of L’s in Z;, 0 <7 < j is
odd, or Z; = R and J; = L and the number of L’s in Z;, 0 < i < j is even.

Note that fJ(x) is decreasing at x (and thus changes the order of points
close to x), precisely if the number of L’s in Z;(z), 0 < i < j is odd. From
this one deduces that Z(z) < Z(y) implies = < y, so that itineraries of points
reflect the position on the interval. This observation immediately gives a
result on the order of homoclinic bifurcations. First note that if one lets pu
increase, a horseshoe is created (an interval map is said to have a horseshoe
if the interval is mapped twice over itself). From the above considerations
one concludes that for each Z < J, there are parameter values u' < 2, so
that 0 is a periodic point both for f,: and for f,», and such that Z(0) =7
for p = p' and Z(0) = J for p = p?.

If one further has a monotonicity property of the homoclinic bifurca-
tions, saying that the value of y for which 0 is periodic with some prescribed
itinerary, is unique, then this fully describes the order of homoclinic bifurca-
tions.

Considering the change in itinerary under the action of the renormaliza-
tion operator, see [18], one sees that the first homoclinic bifurcations are of
periodic points with itineraries

(L)*®, (LR)*®, (LRLL)®, (LRLLLRLR)>,

in this order. Observe that the periods are powers of two. For each itinerary,
the following itinerary is obtained by taking the block of symbols which is
periodically repeated, putting two of these blocks behind each other, chang-
ing the last symbol of the new obtained block and then repeating this block
periodically. The ordering is the same as found in symbolic dynamics for
smooth unimodal maps [27].

There are various such sequences of homoclinic bifurcations. Indeed, if
U is a block of symbols containing an even number of L’s, then there is a
sequence of subsequent homoclinic bifurcations with the following itineraries:

(UR)>*, (UL)*, (ULUR)*, (ULURULUL)*>,

and so on using the same rule as above. The resulting periods are powers of
two times the number of symbols in UR. A similar sequence of subsequent
homoclinic bifurcations exists for blocks of symbols U containing an odd
number of L’s. Here the order is

(UL)*, (UR)*, (URUL)*, (URULURUR)*,
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and so on.

3.3 The bifurcation set

The bifurcation set of the family {f,,} in the (p,r)-parameter plane, near a
point in IF,, is expected to be the same as for homoclinic-doubling bifurca-
tions, see Figure 1 in the introduction. It seems to be hard, though, to prove
that these bifurcations in IF, unfold generically in the family {f,,}. In this
direction, we have the following information on the homoclinic bifurcation
values near points in IF,,.

Lemma 3.1 Let (p,r) = (pn,pn) € IF,. Then H, in a small neighborhood
of (Pn,Pn) is a smooth curve, tangent to the diagonal at (py, pp)-

PROOF. We use the implicit function theorem. Let ¢(p,7) = f}'.(0).
Observe that ¢ vanishes on H,,, see (3.3). Clearly we have ¢(p,,p,) = 0.
Note that ¢(p, r) is a smooth function for (p, r) near (p,, p,), since f;;n,pn(()) +
0,1 <7 <n-—1. We compute the partial derivatives of .

0 Ofpir 1 pn- O fn-
o) = )5 LA )
Olpsr

FEE (5 0)),

Since f7~! (0) = 1, Zaen (1) = 0, and %’;’“(w) =1, we have

Pn,Pn ox
dp
—_— =1.
p (p.7)
Similarly, since %(1) = —1, we have
dp
— =—1.
5y Po7)
Therefore, the gradient of ¢ at (pn,p,) is (1,—1) which is non-zero and is
perpendicular to the diagonal. The assertion follows. 0]

Under the assumption that bifurcations unfold generically, the simplest
consistent way to connect bifurcation curves in a cascade of inclination-flips
in IF,., seems to be as depicted in Figure 4. Such a bifurcation picture is
also indicated by numerics done in [23].
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Saddle-node bifurcations of periodic orbits
********** Period-doubling bifurcations of periodic orbits

—  Homoclinic bifurcations

Figure 4: This figure gives an impression of the expected bifurcation set
of {f,,} in the parameter plane. The thick dots indicate three subsequent
inclination-flip bifurcations. Inclination-flips occur on the diagonal p = r in
the parameter plane. Along lines p — r = d with d > 0, there are cascades
of period-doubling bifurcations. Along lines p — r = d with d < 0, one finds
cascades of homoclinic bifurcations.
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4 Dynamics of the rescaled return map

In this section we collect two results on the dynamics of the rescaled Poincaré
return map V., ., which we derived in Section 2. Both results will be used
in the proof of the our main theorem, Theorem 2.4.

Let {X,} be as in the statement of Theorem 2.4; for other notation see
Proposition 2.5.

Lemma 4.1 Let (¢,p,r) € (0,e0] x I x J. Then, with v = o,(e,p,r), the
vector field X, has no orbit-flip homoclinic orbit.

PROOF. Since p belongs to a compact interval, (2.15) yields that, for some
ky >0,

lw| > ke P (4.1)

Putting x,, = ex/p from (2.16) in (2.11), one obtains
|®° (24,61 /p;7) — w)| < O(7), (4.2)

as ¢ — 0, uniformly in z, from a compact interval. From (4.1) and (4.2) we
get
|©° (0, c2/p; )| > kae®™" — O(”),

as € — 0. Since for small values of v, 5(v) > a(y) — B(7), it follows that for
small enough, |®*(x,, ex/p; )| > 0. This implies that the unstable manifold
of the singularity cannot be contained in the strong stable manifold, which
means that orbit-flip homoclinic orbits do not occur in this region of the
parameter space. l

4.1 Existence of invariant foliations

Recall that the rescaled return map W, , , is considered on a bounded domain
A of the form

A = {(zy); 0<z <Ayl <AL,

for parameter values (g, p, r) from (0,g0] X I X J. An invariant strong stable
foliation of ¥, ,, on A is a foliation § of A with one dimensional leaves
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satisfying .y (8,) C Fu, 0 and ¥y (ar) = Topr(@)l] < Algr — o] if
¢2 € §y, for some A < 1. The existence of an invariant strong stable foliation
enables a reduction to a one dimensional map, by identifying points on the
same leaf of the foliation. The range of e-values for which this holds however,
is not proved to be uniform in p,r; the value of &(p,r) in the formulation of
the lemma below goes to 0 if we let p—r go to 0. Invariant foliations have been
constructed at various places, for constructions comparable to the following,
see e.g. [33], [18].

Lemma 4.2 There is a continuous positive function £(p, ), defined forp <r
and with (p,r) — 0 asr—p — 0, so that V., , possesses an invariant strong
stable foliation on A for p < r and e < &(p,r).

PROOF. For convenience we suppress the dependence of the rescaled return
map on &,p,r from the notation and write ¥ for the rescaled return map.
From Proposition 2.5, ¥ is of the form

\I](xay) = (f(x),O)+(h1(x,y),h2(x,y)),

where
r
flz) = p+ 75 (51:0‘—1:’3) (4.3)
and, for i = 1, 2, h; satisfies
oh; oh;
. Zt Zt < B 4.4
)b e @) G| < ol (1.9

for some C. > 0 with C. — 0 as ¢ — 0. Note that ¥(x,y) is not defined if
xz=0.

We will construct a strong stable foliation on A. We may assume that
A, is large enough so that both A, > p and f(A;) > A, for all p € I. Let
us describe the idea of the construction of the strong stable foliation. Let
T=ANU{0} x [-A4,,A4,]) and p = ANT({A,} x [-A4,, A]); we will
see that 7 bounds a strip 7" and p together with (0, A,] x {A,} bounds a
strip R in A, as indicated in Figure 5. The image W~'(A) intersects T U R
only in the boundary curves 7 U p. Take a trial foliation § on the closure
of A, containing {0} x [-A4,, 4,], {A.} x [-A4,,4,], 7 and p as leaves. We
claim that, for a suitable choice of §, a strong stable foliation of ¥ on A is
obtained as the limit of y<,,<,, V7" (8| 7uz) U ¥7"(3) as m — oo.
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j_’ib'

Figure 5: In the left picture the domain of U~ is indicated, as a subset of
A =(0,4,] x [-4,, Ay]. The right picture depicts the image 1)~ *(A).

Observe that lim, o ¥(z,y) is a point whose coordinates do not depend
on y; it is in fact the first intersection of the unstable manifold of the singu-
larity of the vector field with A. Denote this point by P. Observe that U—!
is not defined at P. Let

Cs(z,y) = {(w,0) € Ty As - ul < svl},

where (u,v) are the natural coordinates on 7, ,)A. Below we show that, for
¢ small, a function s(z,y) exists with 0 < s(z,y) < 1 and s(z,y) — 0 as
x — 0, so that

DU (W, ) Co(¥(,9) € Cuiay(a.1). (45)

This means that the cone field {Cy, )} is invariant under DW . For the
moment, we assume that (4.5) holds. If ¢ = 0, because f(A;) > 0, the
equation f(x) =0 has two solutions, both in (0, A,). From this and (4.5) it
follows that, for € small enough, 7 consists of two curves intersecting JA in
(0, 4;] x {=A,} and (0, A;] x {A,}. Note that T(,,y7 C Ci(z,y). Similarly,
using f(Ag) > Az > p, if ¢ = 0, the equation f(z) = A, has one solution,
which is contained in (0, A;). From this and (4.5), for ¢ small, p is a curve
intersecting OA in (0, A;] x {—A,} and (0, A;] x {A,}. Note that T(,,)p C
Ci(x,y). The strips T and R are therefore well defined. We have that
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U1 A)NT =7 and ¥7'(A) N R = p. Choose a trial foliation § on the
closure of A as above, so containing {0} x [—A,, A,], {4z} X [-Ay, A)], T
and p as leaves, satisfying in addition T(; )Ty C Ci(z,y). From (4.5) we
conclude that the foliation §™ given by

§" = U v 3|RuT UwT"(3),

0<n<m

is a continuous foliation on A, satisfying

TwwSey C Csay (@ y). (4.6)

In order to show that §" converges to a continuous foliation as m — oo,
it suffices to show that for each (z,y) € A, (z,y) > T{(4,)T(y,,) converges to
a continuous line bundle over A. Let (x,y,0) — (¥ Y(z,y),S(x,y,0)) be
the induced map on A x L(R,R). That is, ¥(x,y,0) = v where graph v =
DU~!(z,y)graph o. This yields

Y(z,y,0) = , (4.7)

where

§ ~{ alz,y) b(z,y)
DV (z,y) = (c(x,y) d(x,y)>'

Below we will show that X contracts distances in the fibers: thereis k < 1
so that for all (z,y) € A,

|E(.'L’,y,0'1) - E(x7y702)| < k|01 - 02|' (48)

It is standard to derive Lemma 4.2 from (4.8), using (4.6) to assure that the
limit foliation is continuous at {z = 0}, compare [16], [18].
[t remains to show (4.5) and (4.8). Note that

D(f,0) = ( it 10+ =L g ) (4.9)

From DV = D(f,0) 4+ D(hi, hy), using (4.4) and 25 > 1, it follows that the
determinant of DW(x,y) goes to 0 as £ goes to 0, uniformly in (z,y). (In
fact, one can show that the determinant of D¥(z,y) is small of order &”,
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uniformly in (z,y).) Furthermore, for each p,r, there is a constant ¢ > 0 so
that for € small enough and for all (x,y), the trace of D¥(z,y) is larger than
c. For ¢ one can take e.g. one half times the minimum of |f'(x)| over those x
for which f(z) > 0. From these estimates on the determinant and the trace
of DW(x,y), one obtains that DW(x,y) has eigenvalues \;(z,y),i = 1,2, with
Ao(z,y) = 0ase — 0 and |\ (z,y)| > ¢ for some constant ¢ > 0, if ¢ is small
enough. Furthermore, A\;(z,y) — oo as x — 0, since the trace of DU (z,y)
goes to co as ¢ — 0.

Using (4.9) and (4.4), one obtains that for each 6 > 0, there exists £ > 0
so that for all £ with 0 < ¢ < £, a unit eigenvector v;(z,y) corresponding to
Ai(z,y), is within ¢ distance of (1,0) for i = 1 and of (0,1) for i = 2. Also,
vo(z,y) — (0,1) as x — 0, for all small .

Note that DU~ (z, y) has eigenvalues 1/)\; (V' (x,y)), i = 1,2. From the
above it follows that 1/Ay(¥ ! (z,y)) — oo as ¢ — 0 and 1/\ (¥ ! (z,y)) <
1/c for sufficiently small values of e. The eigenvectors of D¥~!(z,y) equal
those of DU (¥~ (z,y)). With Q = (v1 (¥ (z,y)) va(¥~!(x,7y))), we have

1
DY () = Q(Mgw ! )Q‘l- (4.10)

/\Q(I,y)

Using that Q and Q! are close to the identity matrix, an easy estimate on
(4.7) yields (4.8).

We have seen that A\, (z,y) — oo asx — 0, for all smalle. So 1/X(z,y) —
0 as (z,y) — P within the domain of ¥~'. Now (4.5) follows from this and
the fact that ve(x,y) — (0,1) as o — 0, for all small .

Finally, observe that since the bound ¢ must be chosen smaller than the
infimum of |f'(z)| over x > 0 with f(z) > 0, ¢ will be small for parameter
values (p,r) with p — r close to 0. Therefore, & from the formulation of the
lemma will go to 0 as p —r — 0. U

Let P.,, = limgo¥.,.(d,y). Note that P.,, does not depend on y;
P. ,, is in fact the first intersection of the unstable manifold W*(O) with the
cross section S, in rescaled coordinates. An n-homoclinic orbit of X, .,
occurs if WP 1 (P, ,,) is contained in {(x,y); = = 0}. The following lemma
shows that homoclinic orbits of X, (., are confined to a small tubular

neighborhood of the orbit-flip homoclinic orbit at resonance.
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Lemma 4.3 For A, large enough and for all (e,p,r) € (0,50] x I x J, there

is a constant 0 < B, < A, and a function 7 : [-A,, A, = (0,4;) so
that, if O L(P.p,) € {(z,y); x = 0}, then ., (P.p,) is contained in

{(z,y); |y| < By,0<z<71(y)} foralli,0 <i<mn-—1.

PROOF. Let ¢,, denote the fixed point of f,, with Df,,(¢,,) > 1. For
e small enough ¥, ,, has a hyperbolic saddle fixed point Q). ,, that is the
continuation of g, ,. As in the proof of Lemma 4.2, one shows that the stable
manifold of Q. ,, is the graph of a function 7 : [-A4,, 4,] — (0, A,) (if A,
is large enough). Write Z, ¢ = {(z,y); |y| < C,0 <z < 7(y)}. Clearly,
if P.,, is not contained in Z. 4,, then W' (P.,,) & Z.4,, for all positive
integers i. If P.,, € Z. 4, we have ¥, ,, (Z; p,) C Z;p, for some B, < A,.
This proves the lemma. U

5 Continuation of homoclinic bifurcations

In the introduction we mentioned the central role a continuation theory for
homoclinic orbits plays in the demonstration of our main result. We do not
develop such a theory in its fullest generality, but develop it as appropriate for
our needs. Our continuation theory for homoclinic orbits is reminiscent of the
continuation theory for periodic orbits as constructed in [3], [2]. The notion of
virtual length of a homoclinic orbit and the definition of being continuable are
inspired by the corresponding notions for continuing periodic orbits in these
works. For generic families, where homoclinic bifurcations unfold generically,
a pathfollowing result for homoclinic orbits was obtained by B. Fiedler in [11].
Following this paper, we consider an index of periodic orbits created in the
homoclinic bifurcations and use it to continue homoclinic orbits.

We discuss generic families in the next subsection, in this first subsection
we present the statements of our continuation theory for homoclinic orbits.

Let X be the set of smooth vector fields on R?, equipped with the weak
Whitney topology. Consider the set X5 of smooth two parameter families of
smooth vector fields on R®. Let {X,} be a two-parameter family of vector
fields from X5, depending on a parameter A € R?.

Let P be the set of bounded closed subsets of R?, equipped with the
Hausdorff metric. Let

G - {(M, h) € R? x P; h is the union of a singularity and} 6.

a homoclinic orbit of X,
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For (u,h) € G, let I(u, h) denote the length of h (length here means
arclength). For simplicity we assume [(u, h) is finite, which is guaranteed,
for instance, if one considers orbits homoclinic to a hyperbolic singularity.

Definition 5.1 Let (u,h) € G be as above. We say that k is a virtual
length of (u, h), if there exists a sequence of perturbations {Yy} of {X\} with
{Yi} = {X)} as i — oo so that {Y}} possesses a homoclinic orbit h; at
parameter values p; with p; — wu, h; — h in the Hausdorff topology and
I, hy) = k as i — oo.

We write 7(u, h) for the set of virtual lengths of (p, h). In Section 5.1 we
calculate the virtual lenghts of different codimension-one and codimension-
two homoclinic orbits.

Let (i, h) € G so that h is the union of a homoclinic orbit and a hyperbolic
singularity. Write I for the connected component of G containing (u, h). We
call (u, h) globally continuable if either

e I'\{(i, h)} is connected

or each component C of I'\{(i, h)} satisfies at least one of the following
conditions:

e (' is unbounded
e there exists a sequence (v;, g;) € C so that sup, 7(v;, g;) = oc.

e there exists a sequence (v;,g;) € C so that, as i — oo, v; — v and g¢;
converges in the Hausdorff topology to a closed invariant set containing
either a nonhyperbolic singularity, or more than two orbits.

Note that the closure of a homoclinic orbit consists of two orbits. By a
closed invariant set containing more than two orbits, one can think of a set
containing two homoclinic orbits or a heteroclinic cycle.

Suppose that (u, h) € G is a generically unfolding codimension-one ho-
moclinic orbit with 7(u, h) = {l(g,h)}. In the next subsection we explain
what is meant by generically unfolding and codimension-one, here we use the
following property (u, h) as above satisfies: there is a sequence p; of param-
eter values converging to ;1 and a periodic orbit h; of X, converging to / in
the Hausdorff topology as i — oco. For all sufficiently large 7, h; is unique
and its unstable manifold W*(h;) is either orientable or nonorientable. Note
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that an unstable manifold which is either one or three dimensional is always
orientable. Define

0, if W*(h;) is nonorientable for large i,

o(u h) = { 1, if W*(h;) is orientable for large i. (5:2)

If W*(h;) is two dimensional, there exists a two dimensional center manifold
We*(h) of h [38], [18]. Then ¢(u,h) = 0,1 if W**(h) is nonorientable,
orientable respectively. It is thus possible to define ¢ using X, alone.

For any (u,h) € G, we let ¢(u, h) = 1 if the virtual lengths of (u, h) are
bounded and there exists a sequence of families {Y{} € X, with {Y]} — {X,}
as i — oo and {Y}} possesses a generically unfolding homoclinic orbit h; of
codimension-one at parameter values u; with p; — p, h; — h in the Hausdorff
topology as i — 00, ¢(u;, 7;) = 1. For all other (i, h) € G, we let ¢(u, h) = 0.
Denote

G = {(n.h) € G o(p,h) =1} (5:3)

The notion of continuability of homoclinic orbits (u, h) in G is as follows.
Let (u, h) € Gy so that h is the union of a homoclinic orbit and a hyperbolic
singularity. Write I'; for the connected component of G containing (u, h).
We call (u, h) globally I-continuable if either

e I'\\{(p, h)} is connected

or each component C; of I')\{(u, h)} satisfies at least one of the following
conditions:

e (] is unbounded

e there exists a sequence (v;,g;) € Cy so that sup, 7(v;, ;) = oo or so
that (v, 9;) — (v,9) € G as i — oo with (v, g) possessing unbounded
virtual lengths.

e there exists a sequence (v;,¢g;) € C so that, as i — oo, v; — v and g;
converges in the Hausdorff topology to a closed invariant set containing
either a nonhyperbolic singularity, or more than two orbits.

The following continuation theorem will be proved in Section 5.2.

Theorem 5.2 Let (k,vy) € Gy be a generically unfolding codimension-one
homoclinic orbit of {X,}. Then (k,7) is globally I-continuable.
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5.1 Generic families

We start with a brief discussion of the possible codimension-one and codimen-
sion-two homoclinic orbits. We give the virtual lenghts of these homoclinic
orbits. Let {X,} € X, and let G, G} be as defined in (5.1) respectively (5.3).
(u,h) € G is called a codimension-one homoclinic orbit if A is homoclinic
to a hyperbolic singularity p(u, k) and the following conditions are fulfilled.
Denote by —a, —f3, v the eigenvalues of DX, (p(y, h)). By changing the time
parametrization of solutions, we may assume that v =1 and Re o« > Re >
0. (i, h) € G is called a homoclinic orbit of codimension-one if the following
conditions are satisfied.

(1) a# 8,
(2) if o, 8 € C\R, then Re § # 1,
(3) if o, 5 € R, then

(a) B#1,
(b) h & W*(p(p, b)),
(c) W*(p(p, h)) intersects W**(p(u, h)) transversally along h.

Here W**(p(u,h)) denotes the one dimensional strong stable manifold of
p(p, h), well defined if a, 8 € R and o # . Furthermore, W*5(p(u, h))
is the two dimensional stable manifold of p(u, h) and W**(p(u, h)) is a two
dimensional center unstable manifold of p(u, h), see also [18]. We denote by
W (p(u, h)) the one dimensional unstable manifold of p(u, h).

For A near p, let p(A, h) denote the hyperbolic singularity near p(yu, h). All
invariant manifolds defined above, exist for A near u. We say that a homocli-
nic orbit (4, k) of codimension-one unfolds generically if (J, (A, W*(p(A, h)))
intersects [ J, (A, W***(p(\, h))) transversally in R* x R* along (p, h).

If (4,h) € G is a homoclinic orbit of codimension-one, then 7(u,h) =
{l(p, h)} with one exception: if « = 3 and Re 8 < 1, then (u,h) has un-
bounded virtual lengths [40], [13], [14]. Near a generically unfolding homo-
clinic orbit (p, h) of codimension-one with 7(u, h) = {l(u,h)}, G is a curve
embedded in R* x P.

Next we discuss to some extent codimension-two homoclinic orbits. We
discuss only homoclinic orbits that are homoclinic to a hyperbolic singular-
ity. In particular a list is obtained of codimension-two homoclinic orbits,
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homoclinic to a hyperbolic singularity, with bounded virtual lengths. For a
precise definition of generic unfolding for codimension-two homoclinic orbits
we refer to the corresponding literature. (p, h) € G is a homoclinic orbit of
codimension-two if precisely one of the conditions for being of codimension-
one does not apply (in some cases additional nondegeneracy conditions should
hold). This yields the following list.

e (1) does not hold: @ = 3. (p,h) has unbounded virtual lengths if
[ < 1 since an arbitrarily small perturbation of X, yields a vector field
so that the linearization at the singularity has two complex conjugate
eigenvalues. If 5 > 1, 7(u,h) = {l(p, h)}. In fact, if (u,h) is gener-
ically unfolding, GG is near pu a curve on which ¢ = 1. This is easily
deduced from the fact that a Poincaré return map on a cross section is
a contraction, compare [12].

e (2) does not hold: «, € C\R and Re f = 1. (i, h) has unbounded
virtual lengths since an arbitrarily small perturbation would make
Re g < 1.

e (3a) does not hold: 8 = 1. The virtual lengths of (u, h) are bounded
by 2l(u,h). Assuming an additional nondegeneracy condition holds,
there are two possible bifurcation diagrams [6], see also [21], [36]. In
one case, 7(u,h) = {l(u, h)}. Here, if (u,h) is generically unfolding,
then near (u,h), G is a curve along which ¢ = 1. In the other case
T(py h) = {l(p, h),2l(p, h)}. Near (p, h), if (u, h) is generically unfold-
ing, G consists of three curves branching at (u, k). One curve consists
of doubled homoclinic orbits with approximately twice the length of
(u, h). Inspection of the bifurcation diagram reveals that near (u,h),
(G, is a curve containing the curve of doubled homoclinic orbits and
one of the other curves branching at (p, h), as in Figure 6.

e (3b) does not hold: h is an orbit-flip homoclinic orbit. We refer to
[36] for a treatment of this bifurcation problem. If f < 1 and a < 1
the virtual lengths of (u, h) are unbounded. If § > 1 and a > 1, then
7(py h) = {l(, h)}. If in this case (p, h) is generically unfolding, then
near (i, h) G is a curve along which ¢ = 1. Finally, if @« > 1 and 5 < 1,
then 7(pu, h) = {l(u, h),2l(pu, h)}. Near (u,h), if (u,h) is generically
unfolding, G consists of three curves branching at (i, k). One curve
consists of doubled homoclinic orbits. By considering the bifurcation
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diagram one sees that near (u, h), G is a curve containing the curve
of doubled homoclinic orbits and one of the other curves branching at
(u, h). See Figure 6.

(3¢c) does not hold: A is an inclination-flip homoclinic orbit. It follows
from [17], [28] that (u, h) has unbounded virtual lengths if & < 1 or
B < % For other eigenvalue conditions, (u,h) has bounded virtual
lengths. If &« > 1 and 8 > 1, 7(u,h) = {l(p,h)}. In this case, if
(u, h) is generically unfolding, then near (i, h) G is a curve along which
¢ = 1 (this case is easily treated since the Poincaré return map on a
cross section is a contraction). The remaining case o > 1 and % <
f < 1, was studied in [21], [22], see also Theorem A.1 in Appendix A.
Here, 7(u, h) = {l(p, h),2l(, h)}. Near (u,h), if (u, h) is generically
unfolding, G consists of three curves branching at (i, k). One curve
consists of doubled homoclinic orbits. By considering the bifurcation
diagram one sees that near (u, h), G is a curve near (u, h) containing
the curve of doubled homoclinic orbits and one of the other curves
branching at (i, h). See Figure 6.

©

Figure 6: In all three possible cases of homoclinic-doubling, the projection
of G to the parameter space R? is as depicted. The solid curve represents
homoclinic orbits for which ¢ = 1, on the dashed curve ¢ = 0. In particular,
{; (u, h) € Gy} is differentiable at each parameter value p on it.

It follows from the above discussion that near each generically unfolding

homoclinic orbit (4, h) € G of codimension-one or codimension-two and
with bounded virtual lengths, G is a curve.
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Before discussing generic families and stating a continuation theorem for
such families, we add a remark on the bifurcation theorem as it is known
for the orbit-flip, if @« > 1 and # < 1, when homoclinic-doubling occurs.
The bifurcation theorem in [36] states that for each integer n > 2, there is
a neighborhood in the parameter plane of the orbit-flip bifurcation point,
on which no n-homoclinic orbits exist. The theorem in [36] thus does not
exclude the existence of n-homoclinic orbits for high n, for parameters near
the orbit-flip bifurcation point. Note that this does not effect the statement
that 7(u, h) = {l(p, h),2l(u, h)}. For the inclination-flip, with eigenvalue
conditions o > 1 and % < f < 1, a similar statement was proven in [21].
In Appendix A we show that n-homoclinic orbits (and n-periodic orbits) for
n > 2 do not appear in the unfolding of such an inclination-flip.

Recall that a subset of a topological space is called a residual subset if it
contains the intersection of countably many open and dense subsets.

Lemma 5.3 There is a residual subset L), of Xo so that all homoclinic bi-
furcations of {X\} € Y, are generically unfolding. O

We omit the proof of this lemma. It can be proved in the same way as
a similar result in [3], dealing with bifurcations of periodic orbits in one-
parameter families of vector fields, is proved. Compare also [34], containing
a prototype result for single vector fields. We call families from %), generic
families, ), is in particular a dense subset of X,.

For {X,} € 2),, along paths of generically unfolding homoclinic orbits
(u, h) of codimension-one with ¢(u, h) = 1, one has an orientation as defined
in [11] for generic families of vector fields. We do not define an orientation
of paths of homoclinic bifurcation values since we also treat nongeneric fam-
ilies. Note that in our definition of I-continuable homoclinic bifurcations we
do not try to continue paths of homoclinic bifurcations through e.g. hetero-
clinic bifurcations. Continuation through such codimension-two bifurcations
seems feasible, but one would have to discuss the possible local bifurcation
diagrams. Compare the definition of stratified bifurcations in [11].

5.2 Proof of the continuation theorem

In this section we prove Theorem 5.2. We start with a lemma that will be
used frequently in the proof.
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Lemma 5.4 Let { X7} be a sequence of families of vector fields converging
to {Xa} as n — oo. Suppose that (jin,hy,) is a homoclinic orbit of X}

homoclinic to a hyperbolic singularity, such that (ti,, hy) — (i, h) asn — 0.
Suppose that sup [(ji,, hy) < 0o. Then h contains a nonhyperbolic singularity,

n
or consists of more than 2 orbits, or is a homoclinic orbit of length bounded
by sup l(pin, hn).

PROOF. Denote by p; the supremum over n of (i, h,). Suppose that h
does not contain a nonhyperbolic singularity and also does not consist of
more than 2 orbits. There is a neighborhood U of (j,h) in R? x P so that

e for all (u,h) € U, there is a hyperbolic singularity p(u, h) of X, de-
pending continuously on (u, h) and so that, at 1 = [, h is homoclinic

to p(f, h).

We may assume that p(fi, h) has a one dimensional unstable manifold

W*(p(f1, h)). Let W*"*(p(zi, h)) be the branch of W"(p(j,h)) that forms
the homoclinic orbit h of X,. Let W' (p(fi,h)) denote the intersection of

loc

Wt (p(ji, b)) with a local unstable manifold of p(jz, h). We have that

o W™ (p(u, b)) can be defined for (1, h) € U so that W (p(u, b)) varies
continuously with (s, h).

For n a positive real number, let W»*(p(u, h)) be the union of piecewise
smooth curves in the closure of W**(p(u,h)), containing p(u,h) and of
length bounded by n. The subset W2 (p(u, h)) of the stable manifold W*(p(u, h))
is defined similarly.

Fix § small and positive. For (u,h) € B, let D(u,h) be a small cylin-
der transverse to W?*(p(u, h)) along OW; (p(u, b)), varying continuously with
(u, h). Let Dt (p, h) be the component of D(u, h)\OW§(p(p, h)) that is on
the same side of Wg(p(p, h)) as W™ (p(u, h)), let D~(u, h) be the other
component.

Define V" (p(y, h)) as the maximal connected compact part, containing
p(p, ), of Wi (p(p, b)), so that (u1, Voo™ (p(p, h))) € . By taking a smaller
neighborhood U of (i1, h), if necessary, we get that

(a) for (u,h) €Y, p(u, h) is the only singularity contained in V3 *(p(u, h)).
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(b) for (u,h) € B, V»*(p(u, h)) has nonempty intersection with D(u, h).
Furthermore, if V»*(p(u, h)) intersects D~ (u,h) in a point x, then
all intersections of V;**(p(u, h)) with D(pu, h) are in the compact con-
nected part of W™ (p(u, h)) between p(u, h) and x.

The first item holds, for % small enough, because h does not contain two
different singularities. The second item is a consequence of this and the fact
that A is not the union of two homoclinic orbits.

Since Vo (p(, h)) does not depend continuously in the Hausdorff topol-
ogy on (u,h), we alter it. For (u,h) € U, define the closed set H(u,h)
as follows. If V" (p(u, h)) does not intersect D~ (u, h), then let H(u,h) =
Voot (p(p, h)). Otherwise, if x is the intersection point of V" (p(u, b)) with
D~ (p, h) and [ is the line between x and p(pu, h), we let H(p, h) be the union
of the piece of W™ (p(u, h)) between p(u,h) and x and the maximal con-
nected piece of [, containing x, so that the sum of the length of both pieces
together is at most p;. We claim that H(u, h) varies continuously with (p, h)
for (11, h) € B. Indeed, W, (p(1, h)) depends continuously on (i, k). By the

loc
flow box theorem, compact parts of W% (p(y, b)) that lie outside a neigh-
borhood of p(u, h), vary continuously with (i, h). The above derived items
(a) and (b) imply that parts of W% (p(y, b)) near p(y, k) also depend con-
tinuously on (p, h). Because H(u, h) is a curve of length at most p;, the limit

limy, 00 H (fin, hyy) is a homoclinic orbit of length at most p;. d

We first prove Theorem 5.2 for generic families. We then use this result
plus density of the generic families, to prove Theorem 5.2 for arbitrary fam-
ilies. The following lemma, the continuation result for generic families, can
also be obtained as a corollary of the pathfollowing theory developed in [11].

Lemma 5.5 Let {X,} € 9, and let (k,y) € Gy be a generically unfold-
ing codimension-one homoclinic orbit of {X,}. Then (k,7) is globally I-
continuable.

Proor. We have seen that near generically unfolding codimension-one
and codimension-two homoclinic orbits, (G; is a one dimensional manifold.
The connected component I'y of G that contains (k,7) is therefore home-
omorphic either to a circle or to (—1,1). Consider the latter case and let
g : (—1,1) — G; be a homeomorphism with g(0) = (k,7). Suppose that
C = ¢([0,1)) is bounded and that 7 is bounded over g([0,1)). For a se-
quence s; T 1, let (u;, h;) = g(s;). By taking a subsequence we may assume
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that (s, hi) converges to (fi, h). By Lemma 5.4, if (fi, h) has bounded virtual
lengths then h either contains a nonhyperbolic singularity, or consists of more
than two orbits, or is the union of a hyperbolic singularity and a homoclinic

orbit. In the latter case, since {X,} is a generic family, (i, h) would be I-
continuable, contradicting the definition of G;. The lemma follows. U

As mentioned before, we will prove Theorem 5.2 by approximating the
family {X,} by generic families for which Lemma 5.5 can be applied. We
first introduce some notation. Let {X,} and (x, ) be as in Theorem 5.2 and
let G be as in (5.3). Write I'; for the connected component of G containing
(k,7). Let ¥ C R* be a small neighborhood of k. Now {y; (u,h) €T }NY
is a smooth curve. Let M be a curve in V transverse to {y; (u,h) € I'y}. By
Lemma 5.3, we can take a sequence of families {Y{} € 9, with {Y{} — {X,}
as i — 0o. Let GY be defined as Gy, but then for {Y;}. For i high, there is
a unique point (k°,v") € GY so that k' € M and (x',7") — (k,7) as i — oo.
Furthermore, 7(k%, ") = {I(x",7%)} for large .

PROOF OF THEOREM 5.2. Assume (k, ) is not globally I-continuable. Then
I''\{(k,7)} is not connected. There is a component C of I';\{(k, )} so that
C is bounded and, denoting

= inf [(v,9), 5.4

Po Inf Cl( 9) (5.4)

P = sup T(Vag)a (55)
(r,9)€Cr

we have py > 0 (since otherwise there would exist (u, k) in the closure of C}
with h a nonhyperbolic singularity of X,) and p; < oo. Also, there is no
homoclinic orbit (i, k) in the closure of C; with unbounded virtual lengths.

We claim that C; is closed. Indeed, let (u;,h;) € C; be a sequence
converging to a point (i, h). Then by Lemma 5.4, (u,h) € G. Since (p, h)
has bounded virtual lengths, we have in fact (u, h) € C}.

Recall that M is a small curve transverse to {y; (i, h) € G1} at (k,7).
Let W be a small neighborhood of 7 in P. We claim that for ¥ small enough,
the following properties hold.

e (M xW)NV =1.

e M x W divides U in two connected components U~ and U with, say,
C, Cc Ut
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e there exists a neighborhood U; of {X,} so that for any family {Z,} €
Uy, there is no (u, h) € Y+ with h an invariant set containing a nonhy-
perbolic singularity or containing more than 2 orbits.

e there exists a neighborhood Uy C U; of {X,} so that for any family
{Z\} € Uy, there is no (u, h) € BT, so that h is a homoclinic orbit of

Z, with (11, h) € (0, 55po) U [1501, 3p1)-

The first two items are clear. To establish the third item, suppose it were
false. Then there would be a decreasing sequence of neighborhoods U; of
C), and families {Z} with {Zi} — {X,}, so that there are (v;, h;) € T,
with h; a closed invariant set of Z,, containing either a nonhyperbolic sin-
gularity or more than two orbits. It is easily seen that an accumulation
point (v,h) of the sequence (v;, h;) gives a closed invariant set h of X,
which also contains either a nonhyperbolic singularity or more than two or-
bits. Similarly one derives the last item. If it were false, there would be
a decreasing sequence of neighborhoods ;" of €}, and families {Z%} with
{Zi} — {X,}, so that {Z{} possesses a homoclinic orbit (v;, h;) € ;" with
l(v;, h;) € (0, %po] U [%pl, 3p1]. By Lemma 5.4, the third item and closedness
of C}, an accumulation point (v, h) of {(v;, h;)} would lie on Cy. Hence, h
would be a homoclinic orbit of X, with either its length being smaller than
19—0p0 or with a virtual length in [}—épl, 3p1]. This contradicts the definition of
po and p. |

Recall that {Y}'} is a sequence of families in ), converging to {X,}. For
¢ high enough, we have

o I(x',7') < fgp1 and (k. 7)) =1,
° {Y/\Z} € Z/{Z,

Let C} be the connected component of G} \{(x*,~7")} so that C?, restricted
to a small neighborhood of (k¢,~?), is contained in U*. Let D be the con-
nected component of C% N Y that contains (x*,7*). For all (u, h) € Di and
i high enough, we have I(u,h) < 3p;. To see this, assume there would be
(1, h) € Dy with I(u,h) > 3p;. Because I(k',7") < 1tp1 and, for generic
families, [ either changes continuously or jumps with a factor 2, there would
be (i, h) € Di with I(fi,h) € [15p1, 2p1]. This contradicts {Y}} € Us for i
high enough.

Let D; be the collection of accumulation points of D! as i — oco. By
Lemma 5.4, D; C G;. Because D! is connected for all i and the sequence
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(k%, ') € D! converges to (r,7) € Dy, we have that D, is connected. Because
C) is closed and connected and D; has at least the point (x,7) in common
with ', we have

D, C Cl. (56)

Note that it follows that C¢ C 0" for i high enough.

Because {Y{} € 2,, (k',7") is globally I-continuable. Since C?! C U*
for large i, C! is bounded for large i. For the same reason, if I} denotes
the connected component of G containing (%,~*), T¢\{(k%, ")} can not be
connected. Since {Y7} € Uy, there must be (u;, h;) € Ct with h; a homoclinic
orbit of Y} of length at least 3p;. This contradicts {Yy} € Up and proves
Theorem 5.2. U

6 Homoclinic-doubling cascades

In this section we prove the main theorem of the paper, stating that cascades
of homoclinic-doubling bifurcations exist for an open set of two parameter
families of vector fields.

Let ., .(x,y) be the rescaled Poincaré return map as obtained in Sec-
tion 2, see Proposition 2.5. Other notation, in particular the definition of o?,
will be as in this proposition. We recall our main result, Theorem 2.4.

Theorem 6.1 Fore fived and positive, consider the two parameter family of
vector fields (p,7) = Xoo(zpr)- If € is small enough, there is a connected set
in the (p,r) parameter plane consisting of homoclinic bifurcation values of
{Xgp(gyp,,«)}, containing a converging sequence of inclination-flip homoclinic
bifurcations at which a 2""'-homoclinic orbit branches.

PRrROOF. Recall that Uy, ,(z,y) = (f(x;p,r),0), where

’

flzsp,r) = P+ﬂ(5$—$6)- (6.1)
Here we have written 3 for 5(0). The function f is defined on some interval
(0, A,], for parameters (p,r) € I x J. We may assume that A, > %1/(1_6) and

further that [1, %l/(lfﬁ)] is contained in both T and J. A computation shows
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that f2(0;p,r) = 0 for parameter values on the curve

; 1/0-5)
H, = {(pﬂ"); p= (m) }, (6.2)

see Figure 7. Observe that Hy is tangent to the diagonal at (p,r) = (1,1).
Furthermore, along {(p,r); p= %l/ufﬁ)}, the map f satisfies f(p;p,r) = p.

We will restrict the parameters (p, ) to a suitably chosen domain in the
parameter plane, bounded by a curve K. The curve K is as indicated in

Figure 7; K consists of four parts Ky, Ky, K3, K, where for some constants
d; Pla PZ; Rl)

Ky C {(p,r); p—r=dj,
Ky c {lp,r); p=P},
K; C {(p,r); r =Ry},
Ky C {(pr); p=H}.

We take d > 0, P, <1 and P, > %l/(lfﬁ). Take R; > P,. Note that we can
choose K so that K C I x J. Also, by Remark 2.7, we can choose K so that
for (p,r) inside the region bounded by K the eigenvalue conditions o > 1
and % < B < 1 hold.

K
K 2

K

Figure 7: The choice of the curve K.
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We first derive some information on the set of homoclinic bifurcation
values of { X,»(c )} for fixed small positive € on K. Note that H intersects
K, in a unique point k.

Lemma 6.2 For ¢ small and positive, there is a unique k € K4 near ko for
which Xgv(. ) possesses a 2-homoclinic orbit. This homoclinic bifurcation
unfolds generically. Further, { X,v(cpr} has no homoclinic orbits for (p,r) €
Kl U KZ-
PROOF. Write W, . = (¥}, W2 ). Note that W_,.(0,0) = (p,0). Com-
pute %f(p;p, r) = (Bp—p?)/(1— ), which is nonzero. Therefore, for ¢ small
and positive, 2! (p,0) # 0. The existence and generic unfolding of the
homoclinic bifurcation at x follows.

For e =0 and (p,r) € Ky, f(x;p,r) > d for all z. Therefore, if € is suffi-
ciently small, {X,»(cp,} has no homoclinic orbits for (p,r) € K;. Fore =0
and (p,r) € Ko, f"(0;p,r) > p for all positive integers n. It follows that if &

is sufficiently small, {Xyn(.p} has no homoclinic orbits for (p,r) € K,. O

We mention that {Xgp(m,,,)} has many homoclinic bifurcation values for
(p,r) € Kj.

We continue the proof of Theorem 6.1. Let 7 denote the closure of the
homoclinic orbit of Xs»(c ). Theorem 6.1 is proved by applying Theorem 5.2
to (k,7). We first show how to compute ¢, see (5.2) for the definition,
for certain homoclinic orbits of {X,»(p,}. From this, it will follow that
é(k,7) =1 for small enough &, so that Theorem 5.2 can be applied to (k, 7).

By Lemma 4.2, there is a parameter set S of the form

S = {(g,p,r); p—r<0,0<e<&(r—p)}, (6.3)

where £ is a positive function on (0,00) with lims ,o&(s) = 0, so that ¥
possesses an invariant strong stable foliation for (e,p,r) € S. Let (e,v) € S
be so that Xgs(.,) possesses a homoclinic orbit h. We will indicate how
to compute ¢(v, h). Take continuous coordinates so that the strong stable
foliation of W, for (¢,p,r) € S, has leaves parallel to the z-axis. In these
coordinates,

Vepo(,2) = (felw;p,7),9(x, 2 p, 7€), (6.4)

for some functions f.,g. Recall that a homoclinic orbit of X,»( ,,) cor-
responds to 0 being a periodic orbit of f.(x;p,r). Let m be the minimal
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integer with f(0;v) = 0. Now

1, if f™(x; \) is increasing near 0,

0, if f(z; A\) is decreasing near 0. (6:5)

o) = {

It is clear that for € small enough (¢,k) € S. We can therefore use (6.5) to
get d(rk,7) = 1.

As already mentioned, we restrict the parameters (p,r) to the domain
A bounded by K. In the definitions of I-continuable homoclinic orbits, one
should replace the condition ‘C' is unbounded’ by ‘C' is unbounded or the
closure of C intersects K x P outside (k,7) .

Let C be the connected component of GG} containing (,y) in its closure.
By Lemma 4.3, all homoclinic orbits of {XUP(E,A)} in C; are contained in a
small tubular neighborhood of the codimension three orbit-flip homoclinic
orbit at resonant eigenvalues. From this and the fact that we restrict the
parameters (p,r) to the bounded domain A, it follows that C is bounded.
Furthermore, l| ¢, 1s bounded away from 0. In this tubular neighborhood, ¢,
is the only singularity. The different possibilities given by Theorem 5.2, can
therefore be precised to the following list.

e cither the closure of C) intersects K x P outside (x, "),
e or 7 is unbounded over C,

e or there is a homoclinic orbit in the closure of C'; with unbounded
virtual lengths.

We claim that 7 is unbounded over Cy. After establishing this claim, we
show that 7 can only become unbounded through a cascade of homoclinic
doubling bifurcations.

We first show that there is no homoclinic orbit in the closure of C; with
unbounded virtual lengths. By the eigenvalue conditions o > 1 and % <
B < 1, the only possibly occurring homoclinic orbits of codimension two or
more are orbit-flips and inclination-flips (or combined orbit-inclination-flips),
see the overview in Subsection 5.1. By Lemma 4.1, orbit-flips do not occur.
From inclination-flip homoclinic orbits with the eigenvalue conditions az > 1
and % < f < 1, by Theorem A.1 in the appendix, the only possible virtual
lengths are one and two times the length of the inclination-flip homoclinic
orbit.
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To show that 7 is unbounded over Ci, let {Y{} € 2, be a sequence of
generic families converging to {X,»(. \)} as ¢ — 0o. Let G*, G} be defined as
G, Gy (see (5.1), (5.3)), but then for {Yi}. For i high, {Y}} has a unique
homoclinic orbit (k,7") € K x G near (k,7). Let Ci be the connected
component of G} that contains (x,7") in its closure. By the same reasoning
as above for CY, one shows that for large ¢ there is no homoclinic orbit
(i, h) in the closure of C* with unbounded virtual lengths. By Lemma 6.3,
{u;  (p,h) € Ci} is contained in A, its closure intersects K only in &’.

Therefore, by Lemma 5.5, 7 is unbounded. From arguments used in the

C
proof of Theorem 5.2 it is now clear that 7 restricted to the closure of (] is
unbounded.

It remains to show that 7| , being unbounded implies the existence of a
cascade of homoclinic-doubling bifurcations in C. Recall that all homoclinic
orbits of {X(,p(g)\)} in C'] are contained in a small tubular neighborhood of the
codimension three orbit-flip homoclinic orbit. There are therefore constants
k1, ks close to 1 and [y > 0 so that

l(u, h) € [Nk'llo,nglO], (66)

if (u, h) € Cy is an N-homoclinic orbit. In fact, Iy is the length of the orbit-
flip homoclinic orbit at resonant eigenvalues. It follows that T| ¢, can only
become unbounded if €' contains N-homoclinic orbits for arbitrarily large
N. We have seen above that for each (u,h) € C, either 7(p, h) = {{(u, h)}
or 7(u, h) = {l(p, h),2l(p, h)}. Therefore C; can only contain N-homoclinic
orbits for arbitrarily large N if there is a cascade of inclination-flip homocli-
nic orbits on C]. Il

Lemma 6.3 Let {Y}}, k', Ci and K be as in the proof of Theorem 6.1.
Then the closure of {p; (u, h) € C} intersects K only in k'

PROOF. Denote
sn. = {m (p,h)€ G hisan n-homoclinic orbit of Y/}, (6.7)

Because {Y}} is a generic family, s, consists of a finite set of piecewise smooth

curves. Write 1, = Osn, 1, = 10 O {5 (1, h) € G1} and 1) = 1\,
Homoclinic bifurcation values of Y/\i on K are contained in K3 U K. In

fact, K, contains just one homoclinic bifurcation value, k' € ni, with k' — &

42



as © — 00. All other homoclinic bifurcation values on K are contained in
K3. Let 0 : K — [0,1) be a coordinate traversing K counterclockwise, with
o 1(0) € K, UK,. We first prove the lemma under the assumption that,
as o increases, periodic orbits are created and not annihilated in homoclinic
bifurcations.

Following Section 3.2, which summarizes results from Section 4.3 in [18],
homoclinic bifurcation values on K satisfy the following properties. For
() a positive integer, we will describe K N (na Uy U...Ume). Note that
(M UnjU...Unk) NK is a finite set, say

(n%UniU...Un%Q)ﬂK = {v,...,vn}, (6.8)

with v, = k' and o(v1) < ... < o(vy). For j with 1 < j < N, let I1(j) be
defined by

Vi € My (6.9)

By Section 3.2, for 1 < 5 < N, the finite bifurcation set on the piece of K
between v; and v, is as follows:

MU U...Unle)N{Ae K; o(A) € (o(v),0(vj41)} =
{Gits -5 Gor1( s (6.10)

where 0((j1) < ... < 0(Co1-1¢)) and
G € 77310)+h—17 (6.11)
1<h<Q+1—1I(j). The set ni N K consists of a unique bifurcation value;
mNK = v (6.12)

If g is a curve in sy, where s,; is defined in (6.7), then g is homeomorphic
either to a circle or to an open interval. The following information on the
number on points of g in 7,,,, respectively in 13;,, will be used frequently in
the sequel. The three items are easy consequences of the fact that {Y}} is a
generic family and of the possible local bifurcation diagrams.

e Suppose g is homeomorphic to a circle. Then card gN 77;]-+1 is even and
gn 773]-+1 = 0.
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e With dg = {g1,92}, suppose both g;,¢92 C n;j or both ¢1,g2 C ngj.
Then card g N7y, is even and g N nY;., = 0.

e With dg = {g1, 92}, suppose g1 C ny; and go C ny; (or vice versa).
Then card g N7y, is odd and g N 7Y, = 0.

Write

o= {m (h) € Ci} (6.13)

Suppose there is an integer Q such that % N (s, U... U s5¢) intersects K in
two points vy and v;. We will derive a contradiction from this assumption,
thus proving the lemma. Figure 8 illustrates the reasoning, consisting of a
counting argument, with an example.

Let H be the connected component of A\X¢ that contains {\ € K; o(v;) <
o(A) < o(y)} in its boundary. We restrict the parameter A to the open do-
main H, the definitions of s, and 7, are consequently altered;

sn = {pme€H; (uh)e G, hisan n-homoclinic orbit of Y/} (6.14)

Write 0, = 0s,, nh = na N {; (i, h) € Gi} and 72 = n,\n.. Let S, be the
union of the curves in s, that have an endpoint in 7°.
Observe that for all positive integers j,

ny C OH. (6.15)
Since X% C {p; (p, k) € G4}, curves in si; can not end at ¢, so that

ny NSy = 0, (6.16)

for all positive integers j. We now first list some properties concerning the

number of points in 7y, and 7y, for positive integers j. For a finite set S,

write | S| for the cardinality of S. From the description of the bifurcation set
on curves in s,, we have that for all positive integers 7,

‘néjH ﬂSZj‘ = ‘773]-‘ mod 2, (6.17)

1341 N (52/\S21)| = 0 mod 2, (6.18)

Since the total number of points in 7,; must be even, for all positive integers

75
ny;| = |na| mod 2. (6.19)
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Figure 8: This example illustrates how a contradiction is derived from the
assumption that ¢ intersects K in two points. Curves of homoclinic orbits in
the parameter plane are drawn, solid curves correspond to homoclinic orbits
on which ¢ = 1 and dotted curves correspond to homoclinic orbits on which
¢ = 0. The order of the homoclinic orbits is indicated. In the region H
enclosed by X! and part of K, the number of curves in sg does not match
the number of endpoints in 7;.
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Let ¢ be a positive integer. From the description of the bifurcation set on K
it follows that

s N K NOH| — [nhers NKNOH| = [0S NKNH|. (6.20)

Compute (on top of each equality sign we indicate the equations used, these
equations are used either with j = ¢ or with j = ¢ + 1):
(6.19)
0 == ‘,r]%q+l‘ —_— ‘ngq+1‘ HlOd 2

AT i 1) Soa| 4 Mt O (520\Sa0) | + |1y 0 K 1 OH]|

- ‘77(2)41+1 NKN aH‘ - ‘nqurl N Ell‘ mod 2

O s 0 Soa| + [nken N K N OH]

- ‘77(2)41+1 NKN aH‘ - ‘T](Q)qul N Ell‘ mod 2

GO0 10 | — nl, A K 0 OH| = [nss N 3| mod 2

O 0 A s = [l N S| mod 2.
It follows that
75 N 5| = [nSrs NX}| mod 2. (6.21)

Let N be big enough so that X! Nson = 0. So WQ)N N Eﬂ = 0. Inductively
applying (6.21), starting at ¢ + 1 = N, we get [p3 N Xt = 0 mod 2. On the
other hand, using (6.12), we get

Iy N = 1mod 2. (6.22)

This contradiction proves the lemma in the special case where periodic orbits
are only created in homoclinic bifurcations when traversing K counterclock-
wise.

The general case, when periodic orbits may also be annihilated in ho-
moclinic bifurcations when traversing K counterclockwise, is reduced to the
special case by a homotopy argument. Let f'(z;p,r) be the Poincaré re-
turn map of {Yi}. Let t — H(z;t,p), 0 < t < 1, be a homotopy with
H(x;0,p) = fiz;p,Ry), P < p < Py and H(z;1,p) = g(x;p) where g is
such that periodic orbits are only created in homoclinic bifurcations when
increasing p from P, to P,. Replace fi(z;p,r) by a map f'(z;p,r) with
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fimp,r) = fix;p,r) if (p,r) € A and fi(a;p, Ry +t) = H(x;t,p) for
P <p< P, 0<t <1 By asmall perturbation of H we may assume
that homoclinic bifurcations of n-homoclinic orbits, 0 < n < 2P*! occur
along smooth curves. Together with the remark that (6.12) still holds in the
general case, this reduces to the special case treated above and proves the
lemma. Il

A Inclination-flip

This appendix provides an exposition of the derivation of the bifurcation di-
agram of a generically unfolding inclination-flip homoclinic bifurcation, with
eigenvalues so that it undergoes a homoclinic-doubling. We treat only three
dimensional vector fields.

Consider a smooth two-parameter family of vector fields {Y,},v € R?, on
R?, satisfying the following conditions (where notation for invariant manifolds
is analogous to the notation used in Section 2):

(BH: Basic hypothesis) The vector field X, has a hyperbolic singularity
¢, at which the linearization DX, (g,) possesses two negative eigenval-
ues —a(7y) < —f(vy) and one positive eigenvalue 1.

(IF: Inclination-flip) The vector field X, possesses, at the parameter v =
0, an inclination-flip homoclinic orbit I'. The homoclinic orbit I' is not
contained in the strong stable manifold W7 (o).

(EC: Eigenvalue conditions) The eigenvalues of the linearization D Xg(qo)
satisfy
1
a(0) > 1 and 5 < £(0) < 1.

(GU: Generic unfolding) Denote by F** the bundle {T,W¢"(¢,); = €
W (g,)}. The condition is then that U TW(4y),7) and U (£, )

v
intersect each other transversally along TrW 3% (qo) x {0} in T]R3 x R%,

Theorem A.1 Let {Y,} be a two-parameter family of vector fields on R?

as above. After a reparametrization of the parameter plane, the bifurcation
diagram of {Y,} for small values of v, is as depicted below. From the curve
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H, of primary homoclinic orbits, a curve Hy of doubled homoclinic orbits
branches. Furthermore, a curve SN of periodic saddle-node bifurcations and
a curve PD of period-doubling bifurcations branch.

The following list describes all periodic orbits of {Y,} in a tubular neigh-
borhood of T, for parameters from the different regions I,...,V. In region I,
{Y,} has no periodic orbits. In region II, {Y,} has an attracting 1-periodic
orbit and a saddle I-periodic orbit. In region III, {Y,} has an attracting
1-periodic orbit. In region IV, {Y,} has an attracting 1-periodic orbit and a
saddle 2-periodic orbit. In region V, {Y,} has a saddle 1-periodic orbit and
an attracting 2-periodic orbit.

This bifurcation was studied in [21] and in [22]. The bifurcation curves
were computed in [21]. However, information on the number of n-periodic
orbits for n > 1 and n-homoclinic orbits for n > 2, was not obtained. Most
ingredients for the proof of Theorem A.1 are available in the literature. For
instance, it was established in [22], that in a subregion of the parameter
plane, a Poincaré return map possesses a strong stable foliation on a part
of its domain. This foliation enables a reduction to a one dimensional map
and thus excludes the existence of n-homoclinic orbits and n-periodic orbits
with n > 2, on the domain of the strong stable foliation and for parameter
values from the subregion where the foliation exists. Combining such an
argument with a direct computation for the remaining parameter values and
remaining points from the domain, proves that for all parameter values near
the inclination-flip bifurcation point, no n-homoclinic orbits or n-periodic
orbits exist for n > 2. It will be seen that the parameter region where a
strong stable foliation exists, includes all bifurcation curves.

By collecting the main arguments from [21], [22] and adding the required
additional computations, we provide a proof of Theorem A.1. We will subdi-
vide the proof in different sections, starting with the derivation of bifurcation
equations for periodic and homoclinic orbits.
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A.1 Bifurcation equations

We may assume that the origin O is the singularity of {Y,} for all small
values of 7. Take coordinates (z, x5, x,) near O, so that

0 0 0
DY. = — — —
7(0) Alss 0% g5 + B 0x, * oz,
Take the local coordinates such that the local stable and unstable manifold
of O are linear:

=
N =

Wi (0) C {z, =0}, (
Wi (O) C {xss = 2, = 0}, (

For small positive numbers §; < § take a cross section
Y = {xs - 67 |xu|7 |xss| < 60}7

transversally intersecting the homoclinic orbit. By applying a linear rescal-
ing, we may assume that 6 = 1. By [22], the Poincaré return map II on X
has the following expression:

. I°] . n
H(sts,xuW) ( p+rh’(x8877)xu M kl(l‘SS?xu”Y)xu ) ) (A3)

€+ /lh/(xss; ’}/)-'175 + kZ(xsm Ly 7)$Z

where n > 1, p, u, &, r, § depend smoothly on 7, h(xss; ) is a smooth positive
function with h(0,0) = 1, and k;(zy, zs;7y), @ = 1,2, are smooth functions
defined on z, > 0 with, for £ >0, [ > 0,

) ak—i—l :
}:HE) W’%(%s, T V) Ty,
existing and bounded. Compare also Appendix B, in which Proposition 2.9
and the resulting expressions (2.11), (2.12) are proved. The Poincaré return
map II is restricted to (x5, 2,) € [—00, 0o X (0, dg], for 6y some small positive
number.

Note that p and e vanish at v = 0 since this expresses the fact that Yj
possesses an inclination-flip homoclinic orbit. The generic unfolding condi-
tion (GU) implies that the derivative D(u,¢) has full rank at v = 0. After a
reparametrization we may therefore take v = (u, ). The primary homoclinic
orbit persists along the line {¢ = 0}.
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Let (%541, Tuj+1) = (@45, 2y,;) be an orbit of W. Suppose we are
looking for N-periodic orbits or N-homoclinic orbits for some fixed N. For
an N-periodic orbit, Tss v = Tgs0, Ty,n = Ty, and furthermore z, ; > 0 for
all j. For an N-homoclinic orbit, zss v = Z4s0, Tun = Ty = 0 and z,,; > 0
for 0 < j < N. Let

\I]] = xss,j+1 — H([L‘ss js Ty J) (A4)
:I/‘u,‘]+1 P .

We take the indices j in ¥, x4 ;, ©,; modulo N. Write ¥ = (Wy,... ,¥y_4).
Write Xgs = (Ts5,0,--- > Tss,v—1) and Xy = (Zyp,... ,Tyn—1). Note that U
vanishes on N-periodic and N-homoclinic orbits.

Let P be the orthogonal projection onto the image Im Dy W[ . It is
easily computed that

DXSS\II| Xu=0 " (jjss,Oa :%u,Oa s 7jjss,N717 :%u,Nfl) —
(%55,0,0, ..., Tss,n-1,0). (A.5)
Performing a Lyapounov-Schmidt reduction the equation ¥ = 0 will be split-
ted in the equations (I — P)¥ = 0 and P¥ = 0. This strategy was also

followed in [6], [21]. In this set-up, using (A.5) the following lemma is not
hard to derive.

Lemma A.2 The equation (I — P)U = 0 can be solved for xes as function
of xu. The following estimate holds for k > 0:
okt

||3k75lx (55,5 (Xu) — s5,5(0) || < Craitl|xull”™

for some Cyyy > 0. Pulting Xss(Xy) into the equation PV = 0, we obtain the
reduced bifurcation equations

Tujir = &+ pxy+ Uj(xu7), (A.6)

for 0 < j < N. The function U; is smooth for x,; >0, 0 < j < N, and
there exist n > 1, Cryy > 0 so that

ak+l

||mUj(Xu;7)|| < Crpl|xa"
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A.2 Computation of the bifurcation curves

Now we use the reduced bifurcation equations from Lemma A.2 to solve for
bifurcations of n-periodic and n-homoclinic orbits, n =1, 2.

1-periodic orbits.

For a 1-periodic orbit, (A.6) becomes an equation of the form z, =
e + prd + U(ry;y). To compute the parameter values where saddle-node
bifurcations of 1-periodic orbits occur, one has to solve the system

1 = Bual" +U'(z4;7).

Here U(x,;v) = O(z") and U'(z,;7) = O(27'). Solving these equations,
one obtains p > 0 and

1 1 1

e = (877 =577 ) 4T 4 o(uT),

2-homoclinic orbits.

For a two-homoclinic orbit, (A.6) becomes

Tug = €+ pzh o+ Ui(Tu0, Tu1i7),s
Tup = €+ pzh s + Up(Tuo, Tu1i V),

with 2,0 = 0 and z,; > 0. Thus we get

Tyl = €,

0 = &+ pah; + Uo(0,70,1;7)-

Solving this one obtains ; < 0 and

2-periodic orbits.

For a 2-periodic orbit, (A.6) becomes

Tug = €+ pzh o+ Ui(Tu0, Tu1i7),
Tup = €+ pzhy + Up(Tu0, Tu1i V),
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with z,o and z,; positive. We may assume that z,9 < z,,; and write
Ty = Ty, Ty, = AT, for some 0 < a < 1. The equations to solve are

Ty, = 5+uaﬁx§+UI(axu,xu;7),
ar, = ¢+ pa’ +Us(azy, z.;7).

By symmetry, Uy(azy, z,;v) = Uy(zy, ax,;7y). Subtracting the both equa-
tions and dividing by (1 — a)z? yields

aﬁ —1 + Ul(axuaxu;7) B Ul(xua axu;fy)

— Ao (A7)

1—
:ruﬁ = U

Here Uy (azy, Ty; ) — Ur(2y, axy;y) = O((1 —a)xl) as a — 1. It follows that
(A.7) has a well defined limit as a — 1,

v, = B+ U ).
Here U(x,;v) = O(277%). Note that  — 8 > 0 since n > 1. We thus obtain
period-doubling bifurcations if y < 0 and

e = (BT BT) (c 7 +ol(—w) ).

A straightforward computation shows that the period-doubling bifurcation
is supercritical [15].

A.3 Invariant foliations

It remains to show that no n-periodic orbits and n-homoclinic orbits exist,
for n > 2. For this we will construct invariant strong stable foliations for II.
Also the statements on stability of periodic orbits are a direct consequence
of preceding computations and the existence of a strong stable foliation.

We will cover a neighborhood W of v = 0 in the parameter plane by two
regions W, and W,. For a positive constant F, let

Wi = {(e,p) €W; el < Elu|™7},
Wo = {(e,p) €W; |e| > E|u|™7}.

Below, we will need to choose E sufficiently large. For parameters from W,
a strong stable foliation for IT will be constructed. Dynamics of II for pa-
rameters from W, is studied separately.
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Parameters from W,.

We parametrize W, by parameters (¢, k), where k is given by p = k|e|*=#;
k is contained in [—(5)'?, () ?]. Consider rescaled coordinates (&, &y )
given by

() = (i) )= ()

Computing the Poincaré return map (Zys, Z,) — ﬂ(iss,i"u;e, k) in rescaled
coordinates and with parameters (¢, k), one gets

. Brhlel28-1 & 4n n+8-1
.. zPrhle + 2k le
(Zss, Ty, k) = ( u 2 u ilel >

sign(e) + k22h + 20k, |e|7 !

Here h is evaluated at (z4;7) = (|g|' Pig + p; k||t P, e) and ky, @ = 1,2,
is evaluated at (z,7u;7) = (' P2y + p, el ke[ F,e). As e — 0,

(Zss, Ty €, k) — o(Zss, Tu; €, k), given by

ﬂo(i'ss;i’u;gak) = ( Y )

sign(e) + k22

This convergence is uniform on sets of the form [—1, 1] x (0,I], where I is
a positive number. It is clear that I, has a stable fixed point if £ > 0,
attracting all points in its domain. If ¢ < 0, all points of Il, are eventually
mapped outside the domain of IIy. If we consider only small values of &, i.e.
if ' is chosen sufficiently large, then for € small and positive, IT has a stable
fixed point in [—1I, ] x (0, I], which attracts all points in [—1, I] x (0, I]. And
if £ is small and negative, all points in [—1I, I] x (0, I| are mapped outside the
domain of II.

The range [—dg, dg] X (0, &) of (z4s, x,)-values for which we have to study
I1, corresponds to [—‘?lﬁo, ﬁ%] x (0, é&)] in the (Zss, &,)-coordinates. Note
that this region is much larger than [—1,1] x (0,] if € is small. Write
[T = (1%, 11*) and [y = (I3, I1§). For &, € (0, 4],

[ (Z g5, Ty) — ﬂg(§7887§7u)| - |5%Zk2|5|n71|

= - < sup |ko| 07"

Since this is small, if Jy is small, it follows that every point (xys,z,) €
[—d0, 0] X (0, dp] is either eventually mapped into [—I|e|, I|e|] x (0, I|e|] by
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I1, or eventually mapped outside the domain of II. Hence II possesses just
a stable attracting fixed point if € > 0, whereas for ¢ < 0, all points of
[—d0, do] X (0, dp] are eventually mapped outside the domain of II.

Parameters from W,.

Parametrize W; by (u, k), where k € [—F, E] is defined by ¢ = k|u|ﬁ.
The value of E will be considered fixed, subject to conditions obtained in

the above treatment of parameter values from W,. Consider the rescaling
defined by

(20) = (o= ) ()4 (1),

The Poincaré return map (Zss, Z,) + (T4, Tu; i, k) in rescaled coordinates
and with parameters (p, k), has an expression

H(jsw Ty [y k) =
—rksign()|u[ T + 2 [l |l 5 — korsign (o) 5]
ki + sign(u)T8h + 2ky |17 ’

where e.g. h is evaluated at (xs;7) = (|p|Zs + 7"|u|%fss + p; u,k|u|ﬁ).

Note that, as u — 0, II(Z,, Zou; 1, k) — o(Zss, Tu; i, k), where
Mo (Zss, Tus 1 k) = 0 :
58y Luy My k + Slgn(ﬂ)fﬁ
This convergence is uniform for (%, 7.) € [—1, I]x (0, I], where I is a positive
constant. Writing Il = I, + H, we have for r,s € N,
o+ H
O T 350°Ty,

for some ¢ > 0, n > 1 and for (Z, 7,) € [—1,1] x (0,I], k € [-E, E].

In the above situation, we can apply the following proposition from [35].

(@s,f“;u,m\ < const(r + )|l 7],

Proposition A.3 Let (T, T, 1, k) = [Ty, Tu; 1, k) be a map on [—1,I]x
(0, I], depending on parameters (ju, k), that decomposes as Il = Ily+ H, where

Hﬂ(fssaju;uak) = (k+5ign(ﬂ)f570)7
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with B between 0 and 1 depending smoothly on (u, k), and, for r,s € N, H
satisfies

ot H

(B, Tus 11, k)| < const(r + s)|p|¢|Z, |7,
S @B )| < const(r + )l

for some ¢ > 0, n > 1. Then II possesses a differentiable strong stable
foliation. O

By Proposition A.3, there is a strong stable foliation for I1(z, Z,; i, k)
on [~1I,1] x (0,I]. Therefore, IT has no n-periodic orbits, or n-homoclinic
orbits, with n > 2. Note that z, € (0,I] corresponds to z, € (0,I|,u|%],
an interval much smaller then (0,0dg] if p is small. As in the treatment of
parameters from W,, one sees that the above conclusion in fact hold for

Zy € (0,6p]. This finishes the proof of Theorem A.1.

B Exponential expansions

In this appendix we prove Lemma 2.8, providing a normal form for X, near
the singularity ¢,, and Proposition 2.9, yielding exponential expansions of
the local transition map Py, : S — X.

PROOF OF LEMMA 2.8. Given the set of differential equations (2.5), where
F*% and F* are quadratic and higher order terms, consider a coordinate
change (xss, Ts, ) ¥ (Yss, Ys, Yu) of the form

Yss = Tss + D" (Tu;V)Tss + D (Tu; 7)Ts)
Ys = Ts+ qss(l‘u; V)xss + qs(l‘u; 7)x87

Yu = Ty,

for functions p*s, p®, ¢°, ¢° which vanish at z, = 0. Write the differential
equations in the new coordinates (yss, ys, Yu) as

Yss = —Yss + G (Yssy Yss Yu; V)Yss + G (Ysss Ys Yui V) Ys:
ys = _Bys +Hss(yssaysayu§7)yss+Hs(yssaysayu;7)ysa
yu = Yu-
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At y,s,ys = 0, we have

G**(0,0,y5;7) = p*+hot,
G*(0,0,y457) = p*+ (a—B)p° + hot.,
H*(0,0,y457) = ¢* + (68— a)¢” +hot.,

H*(0,0,y4;7) = ¢°+ho.t.,

where h.o.t. stands for higher order terms in (p°**, p°, ¢°%, ¢°, y.), compare [32],
[9]. We seek functions p**, p*, ¢*°, ¢° of y, = z, so that G*°,... , H® vanish
at yss,ys = 0. Considering p**, p°, ¢**, ¢° as variables, this demand yields
differential equations for (p**, p°, ¢°%, ¢°, yu);

pss = h.ot.,

p* = (B—a)p’+hot.,

¢ = (a—B)¢* + ho.t.,

¢ = h.ot.,

Yo = Yu-
The eigenvalues of the linearized differential equations, at p**, p®, ¢*%, ¢*, y, =
0, are f — «,0,0,a— ,1. Note that  —a <0< a— (8 < 1. Hence we ob-

tain the desired functions p**, p®, ¢*, ¢° by constructing the one dimensional
strong unstable manifold for the above system of differential equations. [

The proof of Proposition 2.9 relies on a precisement of estimates derived
in [32], [8], [9].

PROOF OF PROPOSITION 2.9. Instead of determining an orbit piece between
the cross sections S and X by its initial coordinates in S, one can determine
it by one stable coordinate in S together with the transition time 7 required
to flow to X: for 7 > 0 and & with |&| < 1, there is a unique orbit

Jj(t, T, gs; 7) - (xssa Ts, l‘u)(t, T, 655 7)

of X, so

d
%x(tmﬁs;v) = X, (z(t, 7,857)),
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satisfying

xss((), 7_7 é‘s;fy) — 17
.’L‘S(O,T, gs;’y) = gs:

This statement is deduced from the usual initial value formulation by noting
that 2, (0, 7,&;v) = e 7. However, in the above formulation the asymptotics
for the local transition map become better amenable. The formulation gener-
alizes to more dimensions and goes then under the name Shil’nikov variables,
see [41], [8].

We will first show the following lemma, providing estimates on (¢, 7, &; )
and z4(t,7,&; 7). The asymptotics of x; is as in [41], [8]. For z we can
obtain a more precise expansion because of the eigenvalue conditions we as-
sume. Indeed, from |x,(t,7,&; )| < Coe P and 28(7y) > a(y) for v small,
it follows that |22(t, 7, &s;v)| < Coe=?Pt is much smaller than e~ for ¢ large.
As we will show in the next lemma, it follows from this and Lemma 2.8 that
xs(t, 7, ;) converges at an exponential rate e * to 0 as t — oo.

Lemma B.1 For k > 0, there are positive constants C}, so that, for 0 <t <
T and 7y near 0,

ok a
‘W%s(t,’ﬂ £;7) < Chre !
ok .
‘W%(t; 7,8s57)| < Cke_ﬁ .
Furthermore, for the derivatives with respect to T,
oF 0 b (l—T
‘mgm‘ss(tm &) < Cpem =7,

s

T Tt Esy)| < Cpe AT,
5(1577'; gsaV)k 87'3: ( ,7—,6 ’7) - k€

PrOOF. To simplify the notation we write e.g. xz(t) for z(t,7,&5;7). Re-
call that ¢ is the distance of the sections S and ¥ to the origin, before
rescaling, see (2.6), (2.7). Because of the applied rescaling (s, x5, T,) —
(x5, Ts, Ty) /0, We have

|F* (255, Ts, Ty Y) | | F* (255, Tsy Tus y)| < O, (B.1)
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for some C' > 0, uniformly in (z, x5, T4, 7). By the variation of constants
formula,

t
r(t) = e ™ +/ e U (1(s))ds, (B.2)
0
¢
z,(t) = e P, +/ e P B3 (2(s))ds. (B.3)
0
For x, A > 0 and a finite dimensional vector space E with norm || - ||, let

Tea([0,7), E) = {y € C°([0,7],E);  sup [[y(t)[le” T < oo}
0<t<r

Equipped with the norm

lyller = sup [ly(6)]e= =",
0<t<r
Y.A([0,7], E) is a Banach space.

Let 9 = (9%*,2°) be the map on C°([0, 7], R?) that maps (z,,, x,) to
the right hand side of (B.2), (B.3). Let By denote the ball of radius R in
Ya0([0, 7], R) x 5,0([0, 7], R). We claim that for ||£]| < 1, there exists R > 0
so that

¢ 2) maps By inside itself,
e ‘) is a contraction on Bp.

The fixed point of 9), providing the orbit z, therefore satisfies the estimates
in the statement of the lemma.

The claim is obtained using (B.1), Lemma 2.8, and the observation that
25(y) > a(y) for v small. Since the arguments closely follow those in [8],
we leave performing these estimates to the reader. One treats (higher order)
derivatives by differentiating (B.2), (B.3) and using the obtained identities
to define a map on an appropriate weighted Banach space. Performing esti-
mates as above one shows that this map is a contraction on some ball in the
weighted Banach space. For details we refer to [8]. O

To obtain more precise asymptotics, we study the functions

ZSS (u7 7_7 65; fy) - ea(’[-iUI)xSS(T - u’ 7_7 65; 7)7

Zs (ua T, gs; ’7) = eﬂ(T_u)xs (T —Uu,T, gs; ’7)'
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Lemma B.2 The limit functions

Z?;)(%gs;’y) = }H&ZSS(UaTang’Y)a
2o (u, &) = }Lrglozs(u,f,fs;v)

exist as smooth functions of (u,&s;y). For any 0 < 0** < 23(0) — «(0) and
0 < o < B(0), there are Cy. so that, for 0 < u < 1 and vy small,

ak o] 0% (u—r
‘m (255(u77_7€s§7) — Zgs (U,fs;’)/))‘ < Cke ( )7
oF s
‘m (Zs(ua T, gs? 7) - Z?o(ua gs; 7))‘ < Ckeg (UﬁT)-
Proor. We will first show that
8 S8
‘a_zss(ua T, gs; 7)‘ < Ce’ (u_T), (B4)
-
9 o (u—7)
Ezs(uaTa é‘s,,),) S Ce , (B5)

for some C. From this it follows that z52(u,&s;y) = lm, e 2ss(u, 7, &5 Y)
and z5°(u, & y) = lim, o0 25(u, 7, &; 7y) exist and

Cvefzrss('rfu),

Ceo" (7w,

|Zss(ua T, 657 ’7) - Z;): (U, gs, ’7)|
|ZS(U, T, gs; 7) - Z:o(ua gs; 7)|

VANV

As in the proof of Lemma B.1, we simplify the notation and write e.g.
25 (t) for zss(t, 7, &5 7). We have

() = 1+ /0 T o s () ds, (B.6)

zs(u) = §s+/07_ueﬁst(a:(s))ds. (B.7)

Compute

2zss(u) = eo‘(T_“)F”(x(T—u))—i-/ eo‘ng“(x(s))ds, (B.8)
or 0 or

%zs(u) = SUIES (2(r —u)) + /OTU eﬂsagTFs(x(s))ds. (B.9)
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Lemma B.1 yields, for i = ss, s,

‘F’(:r(s))‘ < Coe 2,

3F’(x(s)) ‘ < Cpe2st(s=m),
or

Direct estimates now prove (B.4) and (B.5), compare [9]. Estimates for
derivatives are obtained similarly, by differentiating (B.6) and (B.7). O

From the above lemmas we obtain expansions

Tss(T,7,8s37) = e (V*(Es;7) + T (&, 757)) (B.10)
ws(1,7,67) = e T (W (&) + T (&, T3y) - (B.11)

Here 7% and T* as well as their derivatives are of order O(e 7"") resp.

O(e7"'T) as 7 — oo. By (2.2) we have that ¢*(0;y) = 0. It is not hard
to see that 3—21/)5(0; 7v) # 0. Proposition 2.9 is now easily obtained. Indeed,
from x,(0,7,&;v) =€ =1 we get 7 = —Inxz,. Put this in the expansion

formulas (B.10), (B.11) for x4 (7, 7, &s; v) and xs(7, 7, &S5 7). O
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