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Abstract

We show how to compute families of periodic solutions of conservative systems with
two-point boundary value problem continuation software. The computations include
detection of bifurcations and corresponding branch switching. A simple example is
used to illustrate the main idea. Thereafter we compute families of periodic solutions
of the circular restricted 3-body problem. We also continue the figure-8 orbit recently
discovered by Chenciner and Montgomery, and numerically computed by Simé, as the
mass of one of the bodies is allowed to vary. In particular, we show how the invariances
(phase-shift, scaling law, and z,y, z translations and rotations) can be dealt with. Qur
numerical results show, among other things, that there exists a continuous path of
periodic solutions from the figure-8 orbit to a periodic solution of the restricted 3-body
problem.
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1 Introduction

There is much recent interest in new periodic solutions of the classical n-body problem of
celestial mechanics. A particularly surprising solution is the one where 3 bodies follow each
other along a single planar figure-8 orbit (see Fig. 15). The existence of this solution was
proved by Chenciner & Montgomery [2000], and it was computed numerically by Simé. Simé
has also discovered many other planar single-curve periodic solutions for n > 3 [Simd, 2000;
Simé, 2002].

In this paper we show how two-point boundary value problem continuation software like
AUTO [Doedel, 1981; Doedel et al., 1997; Doedel et al., 2000] can be used to compute
families of periodic solutions of conservative systems, i.e., systems having a first integral.
The method is applicable to the computation of periodic solutions of the n-body problem
and, in particular, to the numerical continuation of the figure-8 orbit, as the mass of one of
the bodies is allowed to vary. The basic idea of the method is very simple, and for the case
of one conserved quantity it was already used, without specific mention, in [Doedel, 1981],
and subsequently in many other applications, for example, [Zufiria, 1987] and [Doedel et al.,
1991a].

First, in Sec. 2.1 and Sec. 2.2, we recall some basic notions of numerical continuation. In
Sec. 2.3, we give a simple example to illustrate the principal idea used in the computation
of families of periodic solutions of conservative systems. In Sec. 2.4 we state a mathematical
result that illustrates justification of the general computational procedure under appropriate
assumptions. A much more detailed theoretical treatment is given in [Munoz-Almaraz et al.,
2002].

In Sec. 3 we apply the continuation method to the circular restricted 3-body problem
(CR3BP). The mass-ratio parameter used in our calculations is approximately that of the
Earth-Moon system. First we compute a family of planar periodic solutions of the CR3BP,
namely, the Lyapunov orbits that originate from the libration point L1. Our calculation
illustrates how easily these can be computed by numerical continuation until very close to a
collision orbit. Then, in Sec. 3.2, we give graphical results that illustrate the rich solution
structure of 3D periodic orbits in the CR3BP. Bifurcations are easily detected in our boundary
value continuation approach, and lead to previously known and possibly new periodic orbits.
The known orbits include the Halo orbits, whose behavior and stability properties have been
computed before; see, for example [Howell, 1984] for a detailed numerical study. In Sec. 3.3
we discuss the use of libration point orbits in space mission design and we give some related
references.

Our most elaborate application of the basic method for computing periodic orbits in
conservative systems is presented in Sec. 4, where we continue the figure-8 orbit of Chenciner
and Montgomery, as the mass of one of the bodies is allowed to vary. In Sec. 4.1 we show how
the multiple invariances (phase-shift, scaling law, and z, y, z translations and rotations) can
be dealt with. The local continuation of the figure-8 orbit, as the mass of one of the bodies
is allowed to vary on a very small scale, is presented in Sec. 4.2. In Sec. 4.3 we discuss the
global continuation of the figure-8 orbit, as the mass of one of the bodies varies between 1
and 0. Our numerical results show, among other things, that there exists a continuous path
of periodic solutions from the figure-8 orbit to a periodic solution of the restricted 3-body
problem.



2 Continuation of Solutions

Numerical continuation enables the computation of solution manifolds (“solution families”).
Most existing algorithms are for the computation of one-dimensional solution manifolds (“so-
lution branches”), see, e.g., [Rheinboldt, 1986; Doedel et al., 1991b; Doedel et al., 1991c; Sey-
del, 1995; Allgower & Georg, 1996; Beyn et al., 2002], and [Kuznetsov, 1998] (Chapter 10),
but continuation algorithms have also been developed for higher-dimensional manifolds; see,
in particular, the recent paper by Henderson [2002], and references therein. In this paper we
only consider the computation of solution branches.

2.1 Finite-dimensional systems

To recall the basic notions of continuation, first consider the finite-dimensional equation
F(X)=0, F : R — R, (1)

where F' is assumed to be sufficiently smooth. This equation has one more variable than it
has equations. Given a solution X, one has, generically, a locally unique branch of solutions
that passes through X,. To compute a next point, say, X;, on this branch, one can use
Newton’s method to solve the extended system

a) F(X;)=0, .

b) (Xl - Xo)*XO = As. (2)

Here X, is the unit tangent to the path of solutions at Xy, the symbol * denotes transpose,

Figure 1: Pseudo-arclength continuation.

and As is a step size in the continuation procedure. The vector X, is, of course, also a null
vector of the Jacobian matrix Fx(Xj), and can be computed at little cost [Doedel et al.,
1991b]. The geometrical interpretation of this well-known method, known as Keller’s pseudo-
arclength method [Keller, 1977], is shown in Fig. 1. The size of the pseudo-arclength step
size As is normally adapted along the branch, depending, for example, on the convergence
history of Newton’s method.

It can be shown that the above continuation method works near a reqular solution X,
i.e., if the null space of Fx(Xy) is one-dimensional. In fact, in this case the Jacobian of (2)
evaluated at Xy, ¢.e., the n + 1 by n 4+ 1 matrix

(74)
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is easily seen to be nonsingular. By the Implicit Function Theorem, this guarantees the
existence of a locally unique solution branch through X,. This branch can be parametrized
locally by As. Moreover, for As sufficiently small, and for sufficiently accurate initial ap-
proximation (e.g., X{O) = X, + AsXp), Newton’s method for solving (2) can be shown to
converge.

2.2 Periodic solutions

Here we recall how pseudo-arclength continuation can be used to compute a branch of periodic
solutions of a dynamical system

Z'(t) = f(z(t), N, f:R'xR —- R, (4)

where A € R is a physical parameter. In this case the continuation step corresponding to
Eq. (2) takes the form of the following constrained periodic boundary value problem:

a1)  x(t) = Tif(x1(t), M),
ag) X11(0) = xl( ),
ag) [, x1(7)* x o(T) dT =0, (5)

b) [ (@1(1) — zo(7)) " Fo(7) dr + (T2 — To)To + (A — Ao)ho = As.

This equation must be solved for X; = (z1(-), 71, A1), given a solution Xy = (zo(+), To, A¢) and
the path tangent Xo = (io(-), Ty, Ag). Here T3 € R is the unknown period. Equation (5ay)
imposes unit periodicity, after rescaling of the independent variable ¢. Equation (5a3) is a
phase condition, which fixes the phase of the new orbit z;(-) relative to the given orbit zg(-).
It may be replaced by the classical Poincaré phase condition

a3)  (x1(0) —x0(0))* x5(0) = 0.

However, the integral phase condition (5a3) has the desirable property of minimizing phase
drift relative to zo(-), which often allows bigger continuation steps to be taken. Equation (5b)
is the functional form of the pseudo-arclength constraint (2b). More details on this boundary
value approach for computing periodic solutions can be found in [Doedel et al., 1991c]; further
references include [Doedel, 1981; Jepson, 1981; Doedel et al., 1984].

In each continuation step Eq. (5) is solved by numerical boundary value algorithms. In
particular, AUTO uses piecewise polynomial collocation with Gauss-Legendre collocation
points (” orthogonal collocation”) [de Boor & Swartz, 1973; Ascher et al., 1995; Ascher & Pet-
zold, 1998, similar to COLSY'S [Ascher et al., 1981], and COLDAE [Ascher & Spiteri, 1995],
with adaptive mesh selection [Russell & Christiansen, 1978]. Combined with continuation,
this allows the numerical solution of “difficult” problems, as illustrated by the near-homoclinic
and near-collision orbits in this paper. (For other challenging applications see, for example,
[Doedel, 1997].) Orthogonal collocation also has the desirable property of preserving the
symplectic structure of Hamiltonian systems. AUTO determines the characteristic multipli-
ers (or Floquet multipliers), that reflect asymptotic stability and bifurcation properties, as a
by-product of the decomposition of the Jacobian of the boundary value collocation system
[Doedel et al., 1991c; Fairgrieve & Jepson, 1991]; see also [Lust, 2001].



2.3 A model conservative system

As a simple introductory example, consider the system

T = o,
zh = —x1(1 —x1),

(6)

which has one first integral, namely the Hamiltonian H(z,zy) = %x% + %:cg - %xi’ This
equation has a family of periodic solutions, of which representative orbits can be seen in
Fig. 2center- The family originates at (zq,z2) = (0,0), and terminates in a homoclinic orbit
containing the saddle point equilibrium (z1,z) = (1,0).

Note that Eq. (6) does not contain any parameters; yet it allows an entire family of
periodic solutions. This non-generic behavior is typical for conservative systems. However,
in Eq. (5) it is assumed that there is an explicitly available problem parameter, namely A,
which is part of the set of unknowns in each continuation step.

A straightforward approach to deal with this discrepancy is to use the conserved quantity
(the Hamiltonian, in the example above), to eliminate one of the variables; then choose a suit-
able Poincaré section for the flow, and look for periodic orbits in the reduced problem. This
scheme can be extended to the case of several constants of motion and has been extensively
used in the literature, see, for example, [Simd, 1996]. It requires numerical integration of the
differential equations, which can lead to instability in case of very stiff equations. Numerical
integration is also difficult to apply to very unstable orbits. It also makes it difficult to use
integral constraints, such as the integral phase condition (5a3) and the continuation equation
(5b), which have often significant computational advantages over pointwise constraints.

Another approach, adopted in this paper, is to reformulate the problem so that boundary
value continuation methods can be applied. In our model problem this can be done by simply
introducing an “unfolding” term, with unfolding parameter A, for example,

!
Ty = Ty,
xh = —x1(1 — z1) + Ao

(7)

The unfolding term chosen here, corresponds to damping. When the damping parameter A
is zero then Eqs. (6) and (7) are identical. When ) is non-zero then all non-trivial periodic
solutions disappear. Starting the computation from, for example, A = —1, with (z1,29) =
(0,0), AUTO locates (x1, 22, A) = (0,0, 0) as a Hopf bifurcation from the trivial solution, and
then computes the emanating branch of periodic solutions at A = 0 using the system (5).
Along the periodic solution branch the value of A, computed as part of the solution in each
continuation step, will be zero (up to numerical precision). Figure 2;,, shows the computed
bifurcation diagram, in which the vertical axis is chosen to be the Ls-norm of the solution.
Each point on the “vertical branch” in the bifurcation diagram represents a periodic solution.
Note that there is no “distinguished” parameter in pseudo-arclength continuation; A is just
one of the quantities solved for in each continuation step. This allows the computation past
folds and, as the current example illustrates, continuation of vertical solution branches.

As mentioned in Sec. 2.2, orthogonal collocation with adaptive mesh selection is used to
solve the boundary value problem (5) at each continuation step. This allows the solution to
be computed up to large periods; i.e., until very close to the homoclinic orbit that terminates
the branch. Periods as large as T = 10° are easily attained with a relatively small number of
mesh intervals.
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Figure 2: Top: Bifurcation diagram for Eq. (7), computed with AUTO. The vertical axis is the
Ly norm. For A # 0 there are no non-trivial periodic solutions, while for A = 0 there is a vertical
branch of periodic orbits. The computed branch terminates near a homoclinic orbit where ||z|| = 1.
Center: Phase plane representation of some representative periodic orbits. Bottom: As a function
of scaled time ¢, the solution component z; tends to a “downward delta function”, which stays at
practically the same location as the period T' tends to infinity, due to the phase condition (5a3).



Note that the integral phase condition (5a3) has the property of keeping the “dip” in
solution component x; at practically the same location when the period becomes large, as
can be seen in Fig. 2y0t0m. This allows much bigger continuation steps to be taken compared
to phase conditions that allow this sharp dip to move.

The unfolding term in Eq. (7) was chosen on the basis of a physical argument, namely
the effect of positive and negative damping. It is more satisfactory, however, to have a
precise procedure for regularizing periodic orbit continuation in conservative systems. The
general results in [Munoz-Almaraz et al., 2002]; (see Sec. 2.4 below) imply that the unfolding
parameter times the gradient of the conserved quantity is an appropriate choice for the
unfolding term. In the case of our test problem, Eq. (6), this gives the following alternate
formulation that can be used to continue the periodic orbits:

.Tll =$2+)\$1(1—$1), (8)
zh = —z1(1 — z1) + Azo.

2.4 A model result for conservative systems

Here we state a simple continuation result for the case of a conservative system with one
conserved quantity. More general results are given in [Munoz-Almaraz et al., 2002]. Consider
the dynamical system

z'(t) = f(x(t)), f: R = R, (9)
which has C': R®* — R as a conserved quantity, i.e., C'(z(t)) is constant along any orbit

z(t). Let zo(t) be a nontrivial periodic solution of Eq. (9) with period 7,. Finding a periodic
solution with period T of Eq. (9) is equivalent to solving the boundary value problem

#(t) = Tf(z(t) + AVO(x(t)),
z(1) = x(0), (10)

provided A vanishes. For theoretical purposes, the continuation problem can be formulated
as

p=2z(L;p,T,N), (11)
where z(t; p, T, \) is the solution of Eq. (10) with 2(0) = p as initial condition. By hypothesis,

zo(t) is a solution of Eq. (10) such that zo(1) = z¢(0), T = T and A = 0. Let V(¢) be the
fundamental solution matrix of the variational equation, i.e., V'(-) satisfies

VI(t) =To Df(zo(t)) V(1),  V(0)=1. (12)

Using, for simplicity of presentation, the classical Poincaré phase condition (5a;), rather than
the integral phase condition (5a3), we can formulate the continuation problem as finding the
zeros of

z(L;p,T,\) — p
(P — 20(0))"25(0)

The Implicit Function Theorem can now be used to prove the following:

F(p,T,)\) = (13)

Theorem 2.1 Let x4 be a solution of Eq. (10) whose monodromy matriz V(1) has 1 as
ergenvalue with geometric multiplicity 1. Then there exists a unique branch of solutions of
F(p,T,\) = 0 passing through (x¢(0),70,0). Moreover the parameter A vanishes along this
branch.



The eigenvalues of V(1) are the Flogquet multipliers (or “characteristic multipliers”) of
the periodic orbit zy [Meyer & Hall, 1999]. We note that the algebraic multiplicity of the
multiplier 1 is necessarily greater than one, for if it were equal to one then zy, would be a
locally unique periodic solution at A = 0. The above theorem is essentially a computationally
appropriate restatement of the cylinder theorem in conservative systems [Meyer, 1999]. It
forms the basis for the justification of the simplest cases presented in this paper, namely,
our model problem, and the continuation of periodic orbits in the restricted 3-body problem.
Our computational results for the general three body problem, starting from the figure-8
orbit of Chenciner and Montgomery, requires an extension of the theorem to the case of a
Hamiltonian system with several independent conserved quantities. General results of this
nature are given in [Mufioz-Almaraz et al., 2002].

3 The Restricted 3-Body Problem

The circular restricted 3-body problem (CR3BP) describes the dynamics of a body with
negligible mass under the gravitational influence of two massive bodies, called the primaries,
where the primaries move in circular orbits about their barycenter [Danby, 1992]. Let (z,y, z)
denote the position of the negligible-mass body in a rotating barycentric coordinate system,
where the x-axis points from the larger to the smaller primary; the z-axis is orthogonal to
the orbital plane, and the y-axis completes the orthogonal coordinate system. The parameter
1 represents the ratio of the mass of the smaller primary to the total mass. In this section
we consider the Earth-Moon system, for which g = 0.01215. The units are chosen so that
the distance between the primaries, the sum of the masses of the primaries, and the angular
velocity of the primaries are all equal to one. The larger and smaller primaries are then
located at (—u,0,0) and (1 — y,0,0), respectively, and the equations of motion are given by

o' =2+ o — (1= p)(+p)r = ple =14 p)r,”°,
y' = =20+ y— (1 —pyr® — pyry?, (14)
2" = —(1—p)ar]® — pary®,

where

r=VE+p)2+y2+22 re=(v— 1+ p)2+y2 + 22

This dynamical system has one integral of motion, namely the energy (or Jacobi constant)
E= (U£+U§+Ug)/2_ U(x,y,z) —,u(l—,u)/2 )
where v, = 2/, v, =¥, v, = 7/, and

U= 1(x2+y2)+—1_u+ﬁ :
2 T T9
In accordance with Eq. (5) we rewrite Eq. (14) as a first order system, we scale time,
so that the period T appears explicitly in the equations, and we add periodic boundary
conditions and the integral phase constraint (5ag). Following the discussion in the preceding
section, we also introduce the unfolding term AV E. The resulting system of differential



equations is

' =Tvy, + A OE /0,

y' =Tv, + X OE /0y,

Z'=Tv,+ X 0E/0z, (15)
vl =T, +x— (1 —p)(z+p)r;® — ple — 1+ p)ry ] + X 0E /Ov,,

vy =T[=2v, +y — (1 — pyr;° — pyry’] + A OE [dvy,

v =T[—(1 — p)ary® — pzry®] 4+ X 0E/0v,.

3.1 Periodic orbits near the libration points

The phase space of Eq. (14) has an invariant subspace of planar orbits, for which z = 2’ = 0.
The corresponding reduced system is given by

o =2y + o — (1= p)(o+p)r® — ple =1+ p)ry”,
"

K ! 16
y' =2 +y— (1 —pyry® — pyry?, (16)

where

=Vt re=y(a -1+ p)? + 2

It is well known that for each value of y Eq. (16) (and Eq. (14)) has five equilibria in the orbit
plane of the primaries, called Lagrange points or libration points [Szebehely, 1967; Gémez et
al., 2001b; Gémez et al., 2001c]. Three of the libration points, denoted L1, L2 and L3, are
collinear with the primary bodies; one of them, L1, lies between the primaries. In the case of
the Earth-Moon system, for which p = 0.01215, L2 is the libration point beyond the moon,
while L3 is the libration point beyond the earth. Each of the other two points, L4 and L5,
forms an equilateral triangle with the primaries. All five libration points can be seen in the
schematic bifurcation diagram in Fig. 4, which will be discussed in detail in Sec. 3.2 below.

The libration points L1, L2, L3, each give rise to a family of planar periodic orbits, the
Lyapunov orbits. Computational results for the Lyapunov orbits that emanate from L1 are
shown in Fig. 3. As solutions to (Eq. (16)), i.e., as orbits in 4-dimensional phase space, these
orbits are unstable, with two Floquet multipliers equal to 1, one real multiplier greater than
one, and one real multiplier less than one.

However, as orbits in 6-dimensional phase space, i.e., as solutions of Eq. (14), there are
various bifurcations from the Lyapunov orbits. On portions of the solution branch the orbits
have complex multipliers that move around the unit circle in the complex plane, as can be
determined numerically using AUTO, giving rise to invariant tori, sub-harmonic bifurcations
and period-doubling bifurcations. There are also bifurcation points', where distinct solution
branches intersect, with identical orbit and period at the point of intersection. (Recall that, in
our continuation setting, a periodic solution X has components (z(-), T, \), where z denotes
the orbit, T is the period, and where the unfolding parameter A is zero along the solution
branch.)

Moreover, in the full 6-dimensional model, the Jacobian at the libration points L1, L2,
and L3 has two pairs of purely imaginary eigenvalues, giving rise to a second branch of well-
known periodic solutions, namely the so-called Vertical orbits [Howell, 2001]. Furthermore,
for p less than a critical value, u; = 1/2 — 1/23/108 ~ 0.0385, each of the libration points
L4 and L5 gives rise to three families of periodic solutions. In the numerical results below

'In this paper we reserve the term bifurcation point (or bifurcation orbit), when not further qualified, for
transcritical and pitch-fork bifurcations, excluding period-doubling, torus, and subharmonic bifurcations.
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we restrict our presentation to the Lyapunov and Vertical families from L1, and some of the
branches that bifurcate from them. We do not present results here on branches of periodic
solutions that bifurcate from subharmonic- and period-doubling bifurcations. The solution
structure that we present can be viewed as a “skeleton” [Deprit & Henrard, 1969], from which
many other solutions may be reached. Also, to keep the presentation relatively simple, we
do not present results for the planar and Vertical families that originate from L2 and L3.
Some of the branches that we present lead to L4 and L5; however, we also omit results for
the remaining two families that emanate from each of L4 and L5.

1.5
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Figure 3: Top: x —y representation of a selection of Lyapunov orbits. The smallest orbits are close
to L1, while the largest orbits are near collision. The Earth and the Moon are located at (—u,0)
and (1 — p,0), respectively, where y = 0.01215. Bottom: Velocity component v,(t) as a function of
scaled time t for a near-collision orbit. Note the rapid changes of v, (¢) near the Earth and near the
Moon. (The highest velocity along the orbit occurs near the Earth.)
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3.2 A tour of the bifurcation diagram

Here we explain the bifurcation diagram in Fig. 4. The solution branches shown are those ob-
tained by following the two branches of periodic orbits that emanate from L1, and subsequent
branches that originate at bifurcation points along computed branches.

In Fig. 4 we use colored curves to represent various families of periodic solutions. For
reference, Fig. 4 and later figures in this section show the Earth and Moon as two textured
spheres. The five libration points are shown as grey cubes, and families of periodic orbits
are shown emanating from the appropriate cube. For example, the red line of Lyapunov
orbits emanates from the cube representing L.1. All bifurcation points are marked as small
white spheres except for four brown colored bifurcation points at which we do not display the
bifurcating branches. In addition, we include a grey rectangle in the x —y plane. Any solution
branch that touches this plane has a planar solution at that point. For example, since the
entire branch of Lyapunov orbits is planar, the entire red line lies in the grey plane. We
emphasize that even though the various visualization aids are in the proper physical position
with respect to each other; the bifurcating branches themselves are only schematic. The
relative positions of the various bifurcating branches should not be interpreted as signifying
any physical property of the solutions, other than those discussed above.

As mentioned, the red line in Fig. 4 emanating from L1 represents the Lyapunov orbits.
Two bifurcation points are shown along the path of Lyapunov orbits, the first giving rise to
the blue family of Halo orbits (see Figs. 9 and 10). On the green curve of Vertical orbits (see
Figs. 6 and 7) there is a bifurcation point which gives rise to a yellow family of orbits that
connects to the second bifurcation point on the Lyapunov family (see Fig. 11). On the blue
curve of Halo orbits there are two symmetry related bifurcation points giving rise to the cyan
family of orbits (see Fig. 12). The cyan family of orbits has two symmetry related bifurcation
points which give rise to the magenta family of orbits, which connects the “Vertical” orbits
emanating from L4 and L5 (see Figs. 13 and 14). There is a brown colored bifurcation point
on this branch through which one can reach L3 as well, although this connecting branch is
not shown here.

We begin our tour of the periodic orbits by discussing several well-known families which
emanate from L1, as shown in Fig. 5. Previous work has mapped portions of the families
of periodic orbits for various values of p; cf. [Howell, 2001] and references therein. Sev-
eral authors have investigated bifurcations of these families, including [Hadjidemetriou, 1975;
Ichtiaroglou & Michalodimitrakis, 1980; Markellos, 1981] and [Hénon, 1997; Hénon, 2001;
Howell & Campbell, 1999]. The red plane in Fig. 5 contains a subset of small-amplitude
Lyapunov orbits from Fig. 3 near L1, with selected individual orbits shown as curves. Sim-
ilarly, the green surface contains Vertical orbits and the blue surface contains Halo orbits.
The coloring scheme is the same as used in Fig. 4. As a visualization aid we show orbits
from which other families of periodic orbits bifurcate as thickened tubes. Accordingly, the
thick blue orbit which lies in the plane of the Lyapunov orbits is the orbit from which the
Halos bifurcate. To reduce clutter in the diagram we have only plotted the “northern” Halo
orbits and not the symmetry related “southern” Halo orbits which are a mirror image of the
“northern” Halo orbits reflected across the x — y plane.

We now turn our attention to the green Vertical orbits. In Fig. 6 we show the Vertical
orbits from their origin at L1 up to their first bifurcation point. In this and all following figures
in this section the bifurcation diagram from F'ig. 4 is shown on the right, with the appropriate
branch portion indicated by a white arrow. As before, the bifurcation orbit is shown as a

11



thickened tube. Similarly, Figs. 7 and 8 show the family of Vertical orbits starting at the first
bifurcation point. As can be seen, these orbits grow to encompass the Earth-Moon system,
and end in a period-doubling bifurcation from a family of planar solutions. Accordingly, the
green curve in Fig. 4 touches the grey plane in two places; the first corresponding to the
creation of the family at .1 and the second at the period-doubling bifurcation from a planar
solution (B2 in Fig. 7).

There are two bifurcation points on the green branch of Vertical solutions away from planar
solutions. As can be seen in Fig. 4, the first bifurcating branch connects the red Lyapunov
and green Vertical families, and the orbits themselves are shown in yellow in Fig. 11. The red
plane is a collection of Lyapunov orbits and the thick planar orbit is the second bifurcation
orbit on the Lyapunov family. The thick green orbit is the first bifurcation orbit on the
Vertical branch, as shown in Fig. 6. The yellow orbits are a representative collection of orbits
which connect these two bifurcation orbits. Some of the orbits on the ”Y” branch were plotted
in Zagouras and Kazantzis for the Sun-Jupiter case [Zagouras & Kazantzis, 1979]. There is
a second symmetry related branch not shown here, and the whole family of orbits forms a
loop as shown in Fig. 4.

The first bifurcation point on the red Lyapunov branch gives rise to the well-known Halo
orbits; see [Farquhar & Kamel, 1973; Breakwell & Brown, 1979], and [Howell, 1984; Howell &
Farquhar, 1993; Howell, 2001]. Figure 9 shows a selection of “northern” Halo orbits between
the bifurcation point on the Lyapunov branch from which they arise up to the first bifurcation
point on the Halo family itself. We have removed the surface of orbits from this figure in
order to make the two bifurcation orbits easier to distinguish. Figure 10 begins where Fig. 9
ends and shows the “northern” Halo orbits from the first bifurcation point on the Halo branch
up to the second bifurcation point which gives rise to a planar family of solutions, not shown
here. As can be seen in Fig. 4, the Halo branch can be continued past the planar bifurcation
point to obtain the symmetry related branch of “southern” Halos. Accordingly, the blue
family of Halo orbits in Fig. 4 is a loop.

As is evident, the connectivity of the bifurcation diagram is quite complex. On the branch
of Halo orbits there are two symmetry related bifurcation points. They are connected by the
cyan loop of orbits shown in Fig. 4. Two additional symmetry related bifurcation points
occur on the cyan loop, and they give rise to the magenta branch which twice intersects the
cyan loop transcritically.

On the cyan loop there are four symmetric segments separated by the four bifurcation
points. Figure 12 shows a representative collection of orbits on the cyan loop from one of
these segments. The other segments have the same structure as Fig. 12 except that they are
reflected across the z —y plane and/or the x — z plane. The small thick cyan orbit corresponds
to the larger bifurcation orbit in Fig. 9. The thick cyan figure eight orbit in the middle of
Fig. 12 is a bifurcation orbit and connects with the magenta family.

The magenta family of orbits is of particular interest in that it connects the “Vertical”-like
orbits from L4 with the “Vertical”-like orbits from L5. In fact, the “Vertical” orbits of L4
and L5 are the same family of orbits. The magenta family of orbits transcritically intersects
the cyan family of orbits in two places, and there is a third bifurcation point in between these
two (shown as the brown bifurcation point in Fig. 4).

Figure 13 shows a representative collection of orbits emanating from L4 which are very
similar to the Vertical orbits which emanate from L1. The thick magenta orbit is the same
bifurcation orbit as shown in Fig. 12, and is the first bifurcation point one encounters on the
magenta branch as one moves away from L4.
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Figure 14 shows a representative collection of orbits between the figure eight bifurcation
orbit shown in Figs. 12 and 13 and the brown bifurcation point on the magenta family. The
thick magenta orbit, which encompasses the Earth, is a bifurcation orbit which connects to
the “Vertical” orbits of L3, though this branch of orbits is not shown here. This bifurcation
point is shown in brown in Fig. 4. Continuation of the branch past the brown bifurcation
point gives a symmetry related family of “Vertical” orbits for L5. This family consists of the
symmetric version of Figs. 13 and 14 reflected through the x — z plane.

The family of magenta orbits shown in Fig. 13 is the Vertical family emanating from L4;
an analogous Vertical family emanates from L5. Zagouras [1985] used Poincaré-Lindstedt
series to study the continuation and bifurcation of the Vertical families emanating from the
equilateral libration points for the Sun-Jupiter case. Zagouras traced the Magenta family
of orbits from L4 to the Vertical family emanating from L5, and identified the bifurcation
points that we call L4V and L45 shown in Fig. 14. Zagouras identified L45 as a branch point
to the Vertical family emanating from L3, and numerically continued the family branching
from L4V which we call the Cyan family. The work in [Zagouras, 1985] was extended in
[Papadakis & Zagouras, 1992] to consider the families of three-dimensional periodic orbits for
other values of p.

For p less than the critical value p; ~ 0.0385 there are planar periodic orbits emanating from
L4 and L5 [Danby, 1992; Szebehely, 1967]. Also, L4 and L5 are linearly stable in the CR3BP
for ;4 < py1. Astronomers have therefore looked to see whether natural satellites exist near the
equilateral points in the solar system. The so-called Trojan asteroids have been observed near
the equilateral points in the Sun-Jupiter and Sun-Mars systems. In addition, the equilateral
points play a role in the intricate dynamics of Saturn’s moon and ring system [Murray &
Dermott, 1999]. The families of planar periodic orbits and their bifurcations emanating from
L4 and L5 have been studied extensively for subcritical values of p. See in particular [Deprit
& Henrard, 1968; Deprit & Henrard, 1970; Gémez & Noguera, 1985; Gémez et al., 2001b].
Ragos et al. [1997] examined the planar families around the equilateral libration points for
values of u both below and above the critical value p;.

Although our numerical results in this section are limited to the Earth-Moon system,
we have also applied the techniques to other values of the mass-ratio parameter p. In fact,
these calculations can be automated by means of scripts [Doedel & Paffenroth, 2001] that
generate bifurcation diagrams similar to that in Fig. 4 for any given value of u. Moreover,
these automated calculations can be made to follow all branches that emanate from each of
the five libration points. Furthermore, one can use numerical continuation of singular points
to follow the bifurcation points as y is allowed to vary. We do not report these more extensive
results in this paper; however, below we do include a discussion of the relevance of libration
points and their associated periodic orbits in actual space mission design.
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Figure 4: Schematic bifurcation diagram of periodic orbits emanating from L1 and from subsequent
bifurcation points. The five libration points are shown as grey cubes. The red line (labeled L)
represents the Lyapunov orbits and the green curve (V) represents the Vertical orbits (see Figs. 6, 7,
and 8). Any solution branch that touches the grey plane has a planar periodic solution at that
point. The red line of Lyapunov orbits shows two bifurcation points, the first gives the blue family
(H) of Halo orbits (see Figs. 9 and 10) and the second gives the yellow (Y) family of orbits that
connects the Lyapunov and Vertical families (see Fig. 11). The two symmetry related bifurcation
points on the blue curve of Halo orbits give rise to the cyan (C) family of orbits (see Fig. 12). The
cyan family of orbits has two symmetry related bifurcation points which give rise to the magenta
(M) family of orbits, which connects the “Vertical” orbits emanating from L4 and L5 (see Figs. 13
and 14).
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Figure 5: Some well-known periodic orbits: The red plane consists of Lyapunov orbits, with selected
orbits shown as curves. Similarly, the green surface consists of Vertical orbits, and the blue surface
of “northern” Halo orbits. The coloring scheme is the same as used in Fig. 4. The thick blue orbit
is the Lyapunov orbit from which the Halos bifurcate. The symmetry related family of “southern”
Halo orbits is not shown.

Figure 6: The Vertical orbits up to the first bifurcation point: The green surface contains all
Vertical orbits up to the first bifurcation point, which is shown as a thick green orbit. The part of
the bifurcation diagram where these orbits are found is indicated on the right by a white arrow.
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Figure 7: An overall view of the Vertical orbits on the indicated branch portion (V2), between the
white and the brown (B1) bifurcation points. The orbits at the bifurcation points are shown as a
thick green orbits. The branch of Vertical orbits connects via a “reverse period-doubling” (B2) to
a family of circular planar orbits (not shown) just beyond the second bifurcation point (B1). The
branch bifurcating from B1 is not shown.

Figure 8: A closeup view of the Vertical orbits near the first (white) bifurcation point in Fig. 7.
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Figure 9: The Halo orbits (H1) up to the first bifurcation point: The blue curves are a representative
collection of orbits from the “northern” families of Halo orbits. The thick blue orbit between the
Earth and Moon is the Lyapunov orbit from which the Halo orbits bifurcate. The thick blue orbit
near the Moon is the first bifurcation point on the branch of Halo orbits.

Figure 10: The “northern” Halo orbits (H2) after the first bifurcation point. For reference, a set
of red Lyapunov orbits is also shown. The thick blue orbit near the Moon is the first bifurcation
point on the branch of “northern” Halo orbits. The thick blue orbit which encompasses the Earth
is a bifurcation point to a family of planar orbits which is not shown here. Also not shown are the
symmetry related “southern” Halo orbits, although the corresponding branch does appear in the
bifurcation diagram.
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Figure 11: A family of orbits (Y) connecting the Lyapunov and Vertical orbits. The red plane
is a collection of Lyapunov orbits and the thick red orbit is the second bifurcation point in the
Lyapunov family. The thick green orbit is the first bifurcation point on the Vertical branch, as also
shown in Fig. 6. The yellow orbits are a representative collection of orbits which connect these two
bifurcation points. There is a second symmetry related branch not shown here which consists of the
above orbits reflected across the x — z plane. Accordingly, the whole family of orbits forms a loop
as shown in Fig. 4.

Figure 12: The cyan curves are a representative collection of orbits which emanate from the first
bifurcation point on the Halo family. The elliptical bifurcation orbit close to the Moon from Fig. 9
corresponds to the small thick cyan orbit. The thick cyan figure eight orbit in the middle of the
figure is a bifurcation orbit that connects with a family of “Vertical”-like orbits which emanates
from LA4.
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Figure 13: The L4 “Vertical” orbits: The magenta curves are a representative collection of orbits
emanating from L4 which are very similar to the Vertical orbits that emanate from L1. There are
two families of such orbits and the ones shown here (M1) can be found in the bifurcation diagram
between the white arrows marked “L4” and “L4V”. The other family is found in the bifurcation
diagram between the white arrows marked “L5” and “L5V”. The thick magenta orbit is the same
bifurcation orbit shown in Fig. 12.

Figure 14: The magenta curves are a representative collection of orbits between the bifurcation
points marked “L4V” and “L45”. The thick magenta orbit, which encompasses the Earth, is the
bifurcation point marked “L.45”. This orbit connects to the “Vertical” orbits of L3 which are not
shown here. Continuing on the branch past “L45” one reaches the symmetric image of “L4V”,
namely “L5V”, which connects to the “Vertical” orbits for L5.
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3.3 Libration point orbits in the solar system

As noted above, the periodic orbits around the equilateral libration points are significant in
the solar system dynamics. In addition, some of the libration point orbits discussed above
have been or could be exploited in space mission design. Due to the fixed positions of L1 and
L2 along the line between the primaries in the rotating frame, the regions around L1 and L2
provide excellent locations for scientific observation spacecraft and for communication relays
[Farquhar, 1968; Farquhar & Dunham, 1990; Farquhar, 2001] analogous to the geostationary
communications relays already proposed in [Clarke, 1945; Clarke, 1947].

In 1978, the NASA International Sun-Earth Explorer 3 (ISEE-3) became the first space-
craft to orbit the Sun-Earth L1 point, where it traced a Halo orbit [Farquhar, 2001]. The
Halo orbits for the ISEE-3 mission were computed using the Lindstedt-Poincaré method,
combined with Newton’s method, to provide an accurate first approximation [Farquhar &
Kamel, 1973; Breakwell & Brown, 1979; Richardson, 1980].

Since that time, the European Space Agency (ESA)/NASA SOHO mission and the NASA
ACE mission have used Halo orbits about the Sun-Earth L1 point for solar observations
[Rodriguez-Canabal & Hechler, 1989; Farquhar, 2001]. It is known that the libration points
L1 and L2 are linearly unstable in the CR3BP for all values of i [Danby, 1992], and the Halo
orbits used for these missions are themselves unstable. Nevertheless, a spacecraft can remain
in orbit around the Sun-Earth L1 or L2 point for years by performing small maneuvers every
few months [Dunham & Roberts, 2001]. Recent libration point mission design has exploited
dynamical systems theory to compute stable, unstable and center manifolds for libration point
orbits [Howell et al., 1997; Gémez et al., 2001a]. In 2001 the MAP spacecraft was placed in
orbit about the Sun-Earth L2 point [Folta & Richon, 1998]. Due to mission constraints the
MAP mission does not use an orbit from the Halo family, because the minimum amplitude of
the Halo family in the x—y plane is too large. Instead MAP uses a smaller, quasiperiodic orbit.
The Genesis mission, launched in 2001, calls for the spacecraft to first orbit the Sun-Earth L1
point, then follow a heteroclinic connection to an orbit around L2 before returning to Earth
[Koon et al., 1999; Koon et al., 2000; Lo et al., 2001]. Some other scientific missions that
are planned to orbit the Sun-Earth L2 point are NASA’s Next Generation Space Telescope
(NGST) [Folta et al., 2001a] and ESA’s FIRST and Planck missions [Felici et al., 2001]. In
a more elaborate design, the Terrestrial Planet Finder (TPF) mission will exploit the center
manifold of a Halo orbit to fly two spacecraft in formation along Lissajous orbits about the
Sun-Earth L2 point [Gémez et al., 1997; Barden & Howell, 1998; Gémez et al., 2001d]. The
large Vertical orbits shown in Fig. 7 may also be useful to observe the Earth’s polar regions
[Folta et al., 2001b].

During NASA’s Apollo program, it was proposed that an orbit about the Earth-Moon
L2 point be used for a relay satellite that would allow a lander on the far side of the Moon
to communicate with Earth [Farquhar, 1968; Farquhar, 2001]. This innovative concept was
never implemented. Recently a related study has considered placing spacecraft in orbits
about the Sun-Mars L1 and L2 points to support communications between Mars landers and
Earth [Strizzi et al., 2001].
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4 The General 3-Body Problem

Since the formulation of the law of gravitation by Newton, the 3-body problem of celestial
mechanics has been one of the most studied problems in physics and mathematics. It is easy
enough to state; in fact, the equations are given by

X" = —m X1 — X3 —m X1 — X3
' 2|X1—X2|3 3|X1—X3|3 ’
Xl = —my i (17)

' |1 — X[ o |x2 — x3[*
x! = —m, X3 — X2 — my X3 — X3

’ |x3 — X2 %1 — x3[*

where x; = (z;, Yi, 2;)*, and where m; denotes the mass of the ith body. This equation can be
written as a system of eighteen first order differential equations. It has seven independent con-
served quantitites, namely, the Hamiltonian, the three components of the linear momentum
P= Zg’zl m;X;, and the three components of the angular momentum L = 2?21 miX; \ X;.

Despite its apparent simplicity, it has been notoriously difficult to obtain detailed in-
formation on the global solution structure of Eq. (17). In particular, much effort has been
devoted to the study of periodic solutions; see, for example, [Hadjidemetriou, 1975; Arenstorf,
1976; Meyer, 1981a; Davoust & Broucke, 1982; Meyer, 1999; Bruno, 2001]. One well-known
periodic solution is the Lagrange equilateral triangle solution, in which three equal-mass bod-
ies are located at the vertices of an equilateral triangle that rotates with constant angular
velocity; the three bodies thereby describing a circle. Another well-known periodic solution
is Euler’s collinear solution, where two bodies rotate at constant angular velocity around a
circle, while the third body is at rest at the centre.

In a spectacular discovery, Chenciner & Montgomery [2000] recently proved the existence
of the planar figure-8 periodic solution of the equal-mass 3-body problem shown in Fig. 15.
Such a solution had earlier been predicted by Moore [1993]. The proof uses variational
arguments; after certain reductions the action integral is minimized over a restricted set of
symmetric arcs. The variational argument does not provide the stability properties of the
figure-8 solution. However, Simé [2000] numerically computed this remarkable solution with
great accuracy, and determined elliptic stability; i.e., the Floquet multipliers of the periodic
orbit are on the unit circle in the complex plane. As will be seen in Sec. 4.2, elliptic stability
is preserved for very small changes (of the order 107°) in one of the masses.

A periodic solution of Eq. (17) has eighteen Floquet multipliers and, as the system is
Hamiltonian, they appear in pairs (¢,1/1). Using Proposition 12 of [Munoz-Almaraz et
al., 2002] one can show that the presence of the seven independent conserved quantities
implies that at least 14 of these multipliers are located at 1 on the unit circle if the angular
momentum L is zero, and at least 12 if L # 0. (The linear momentum P is always zero along
a periodic orbit.) To study the stability and bifurcations of periodic solutions of Eq. (17),
one has to monitor the behavior of the remaining “non-trivial” multipliers. For the figure-8
orbit we have L = 0, so that there are four nontrivial multipliers, whose values are given by
Y = exp(£2miv;), with v; = 0.008422, v, = 0.298092. The smallness of v indicates that
the corresponding multipliers are very close to a double +1 situation. Indeed, the numerical
results in Sec. 4.2 show that there is a bifurcation point as well as a fold near the figure-8
orbit.
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Figure 15: The planar figure-8 orbit [Chenciner & Montgomery, 2000], [Sim6, 2000].

Sim¢ discovered hundreds of other single-curve planar periodic solutions for the 3-body
problem [Simd6, 2002], and many more for the case of n bodies, with n as high as 799 ! (see
[Simé, 2000]). Simé called these solutions “choreographies”; the defining property being that
all bodies follow a single closed curve in phase space with a fixed delay. From a historical
point of view, the solution of Lagrange in 1772 may be considered as the first “choreography”,
and it has taken more than two hundred years for other choreographies to be found!

4.1 Computational formulation

As in Sec. 2.2, we rewrite Eq. (17) as a first order system with scaled time variable ¢, so that
the unknown period 7" appears explicitly. We also supplement the equations with appropri-
ate unfolding terms, applying the procedure outlined in Sec. 2.4, generalized to the current
situation of seven conserved quantities. In [Mufoz-Almaraz et al., 2002] it is shown that the
continuation theorem of Sec. 2.1 can be extended, under certain nondegeneracy conditions,
to the case of k linearly independent conserved quantities (kK > 1). If H is the Hamiltonian,
and if P = (P,, P,, P,) (the linear momentum vector) and L = (L, Ly, L,) (the angular
momentum vector) are the additional six conserved quantities, then the resulting system has
the form

W =T JVH+ oVH + VP, + VP, + f5VP, + 1VL, + VL, + 5VL,,  (18)

where u(t) = (x,v) € R!® is the state vector, containing nine spatial coordinates and nine

velocities, and where
_ (O I
J= (_ f O)

is the standard symplectic matrix, with I denoting the 9—dimensional identity matrix. The
unfolding parameters «, and §;, ;, (i = 1,2, 3), which are treated as unknowns in the solution
procedure, are zero at periodic solutions.
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In full detail, the system (18) can be written as

Xll = TV1 + mlG(vl, A) s
Xy = Tvy + maG(va, A)

Xé = TV3 + m3G(V3, A) s

X1 — Xg X1 — X3

} 4+ miN(x1, vi, A), (19)

X1 — X3 ’ x; — x3®

X9 — X1 X2 — X3

N A
=% m3|x2—x3|3}+m2 (x2, Vo, A),

X3 — X2 X3 — X1

Vg = —T{mg } + m3N(X3a V3, )\)a

m
X3 — X ' x; — x3®

where the unfolding terms G' and N are given by

0 -, Uy
G(Va /\) =N Uz + 72 0 T Y3 | —Us )
—Uy Vg 0
(20)
B 0 z -y
N(X, v, /\) =av+ | B | +m | —2 |+ 0 + 3 x ,
B3 Y —T 0
with
A= (Oé, Blaﬂ25/33371372573) ; AE R7 .
Equation (18) is supplemented with the periodicity boundary conditions
Xl(O) — Xl(l) == 0, XQ(O) - X2(1) = 0, X3(0) — X3(1) =0 ;
(21)

Vl(O) — Vl(]_) = 0, VQ(O) - V2(1) = 0, V3(0) — V3(1) =0.

Even with fixed masses m;, (i = 1,2,3), a solution of Eq. (19) is not unique, due to
the freedom of phase-shift, translation, and rotation, and the scaling invariance x — ¢x,
v = ¢73v, T — ¢>T. As shown in [Munioz-Almaraz et al., 2002] (see, in particular, The-
orem 13 and the discussion following that theorem), the scaling invariance can be removed
by simply fixing the period. In our calculations we have fixed the period at 27. Further-
more, following the theory in [Mufioz-Almaraz et al., 2002], the remaining seven invariances
can be removed by adding appropriate additional boundary constraints. To be precise, let
u(t) = (x(t),v(t)) denote a reference periodic solution; as in Sec. 2 the reference solution
is typically the preceding solution in the continuation process. The additional boundary
conditions are then given by
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The computational formulation now consists of Egs. (19), (21) and (22); that is, 18 first
order ODEs, subject to 18 periodicity conditions and 7 additional boundary constraints. The
unknowns in each continuation step are the orbit (x(-),v(-)), the unfolding parameters A,
and one physical parameter. It follows from the theory in [Munoz-Almaraz et al., 2002| that
the unfolding parameters A vanish along the solution branch, as is also observed in actual
numerical computations.

In our calculations, as described in Sec. 4.2 and Sec. 4.3, we use the mass m; of Body 1,
as the free physical parameter; the remaining two masses have the fixed value 1. Numerical
continuation, starting from the figure-8 orbit of Chenciner and Montgomery, then gives rise
to a solution branch along which the computed values of the unfolding vector A are zero, up
to numerical precision. We note that one can also keep all masses fixed at value 1, while
allowing the period 7" to be the free physical variable. This calculation gives the family of
figure-8 orbits that arises from the scaling law; each solution is just a scaled version of the
previous one with exactly the same stability properties.

Calculations have been done using the unfolding term (20) and the extra boundary con-
straints (22). However, the choice of unfolding terms and corresponding constraints is not
unique. One alternative is to supplement the equations with additional integral constraints,
rather than boundary conditions. Although the theory in [Mufoz-Almaraz et al., 2002] is
based on additional boundary constraints (and unfolding parameters), it is possible to prove
similar results based on integral constraints (and unfolding parameters). Specifically, we have
done extensive calculations with the integral constraints described below, which basically cor-
respond to integrated versions of the boundary constraints in Eq. (22).

The phase can be fixed by the integral constraint (5a3), which, leaving out the v-component,
can here be written as

Z/O (i), %(7)) dr = 0 (23)
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Note that Eq. (23) is a necessary condition for the relative phase-drift measure

3 1
> [ it +o) sl dr
i=1 70

to be minimized over o € R [Doedel et al., 1991c|. As before, the reference solution (x(-), ¥v(+))
is normally the preceding solution computed in the continuation process. Thus, as already
mentioned in Sec. 2.2, the integral phase condition (23) has the effect of aligning the current
solution as much as possible with the previous solution. Often this allows much bigger
continuation steps to be taken along a solution branch.

The translation freedom can be removed by requiring

Zm, / [xi(T ()] dr=0. (24)

Note that (24) consists of three scalar integral constraints, which correspond to the necessary
conditions for minimizing the relative translation measure

3 1
Zmi/ i (7) + 8 — %:(7)|[2 d |
i=1 0

over s € R3.
The rotational freedom can be eliminated by adding the integral constraints

;mi /O xi(F) x %i() dr =0 | (25)

where we have left out the v-component. Equation (25) expresses the fact that the x; are
“on the average” parallel to the x;. Written individually, these constraints are given by the
equations

ZmZ/ {2:()yi(T) — 9i(7)zi(7)} dT =0,
Zmi/o {2:(7)2i(1) — 2:(T)zs(T)} dT =0, (26)

Zmz/ [(r)a(7) — 2 (r)} dr =0,

which fix rotation about the z, y, and z axis, respectively, relative to the reference orbit x(-).

The integral phase constraint (23) regularizes the continuation whenever the Poincaré
point-wise phase condition does [Doedel et al., 1991c]. Similar results hold for the integral
versus boundary conditions for fixing the translation and rotation invariances. The integral
phase condition often drastically reduces the number of steps required to trace out a solution
branch, especially near homoclinic orbits and near simple collisions. Properly chosen integral
constraints for fixing translation and rotation have similar advantages over corresponding
boundary constraints.
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For periodic orbits near heteroclinic orbits, or near multiple collisions, the advantage of
integral constraints over pointwise constraints is less clear. In this case there are multiple small
regions (in scaled time) where solutions vary rapidly, and these regions may necessarily move
relative to each other during continuation. This renders impossible the desirable property
of having all mesh point accumulations in fixed locations, as was the case, for example, in
Fig. 2pottom- Indeed, such calculations typically require very small continuation steps.

4.2 Local continuation of the figure-8 orbit

The local continuation of the Chenciner-Montgomery figure-8 solution, as the value of one of
the masses is allowed to vary on a very small scale, is represented in Fig. 16p0tt0m, Where the
Ly norm of the solution is plotted versus the mass m;. Solution 1 is the figure-8 orbit, and the
solid curve segment containing Solution 1 corresponds to the portion of the solution branch
where solutions are elliptically stable. The non-unity multipliers of the figure-8 solution are
given by v¢; = exp(£2miy;), with v; = 0.008422, and v, = 0.298092, which is in agreement
with Sim¢’s results. All solutions represented in Fig. 16y4t40m have angular momentum L = 0,
and, as discussed earlier, they therefore have four nontrivial multipliers.

For increasing m; the family reaches a fold bifurcation, or limit point (LP), where the
branch turns back towards lower values of m,. At the fold the solution loses stability and
becomes hyperbolic. Continuing past the fold, one arrives at another periodic orbit for
which all masses are equal to 1, namely, Solution la. (The ”straight line” solution branch
that appears to pass through Solution 1a will be described at the end of this section.) The
unstable solution 1a is homotopic to the figure-8 solution, as one can continuously deform one
orbit into the other. However, Solution la is hyperbolic and not a choreography; the three
bodies follow slightly different figure-8 paths. In fact, Solution 1 is the only choreography on
the branch.

Remarkably, within the precision of our calculations, the action integral of Solution la
is identical to that of the figure-8 orbit. Recall that if x(¢) is a trajectory that goes from
x; = x(t1) to x9 = x(t3), then the action, usually denoted by S, is the integral of the
Lagrangian over time from ¢; to t,, where the Lagrangian £ is the difference between the
kinetic energy K and the potential energy V :

s [Tewa= [ K@) - V@) dt .

t1 t1

The action depends therefore on the initial and final time and on the trajectory. The Principle
of Least Action states that the true trajectory, i.e., the one that satisfies Newton’s laws, is the
minimizer of the action. The problem is to find the minimizer among all possible trajectories,
i.e., minimizing the action is an alternative to applying Newton’s Laws. (For an excellent
exposition see Lecture 19 in Volume II of the Feynman Lectures on Physics [Feynman et al.,
1964].) Note that our solution algorithm, which uses a boundary value approach coupled
to a continuation algorithm, does not use the minimizing property of the action integral for
orbits. We can, of course, easily compute the action integral as a by-product of our numerical
scheme. For the figure-8 orbit its value is found to be S = 24.37197.

There has been some question about the stability of the actual minimizer of the action.
Apparently it is not clear whether the minimizer is elliptic. Minimizing orbits are unstable
in Hamiltonian systems with two degrees of freedom [Birkhoff, 1927]. However, for higher-
dimensional systems there are counter-examples to this statement. Thus it is possible that
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there exists a less symmetric solution that is the actual minimizer of the action for the equal-
mass three-body problem. From the variational view point, if one enlarges the space of arcs
over which the action is minimized, then obviously the action will not increase. The actual
minimizing orbit would be (i) in the same homotopy class as the figure-8 orbit, and (ii) no
longer a choreography. Note that Solution la in Fig. 16p.t10m Satisfies these two properties.
However, we cannot explain why the action integral of Solution 1a is, to numerical precision,
identical to that of the figure-8 orbit. T'wo other well-known periodic solutions of the equal-
mass three-body problem, with normalized period 27, have lower values of the action; namely,
the Lagrange solution S; = 373%3 ~ 19.60436, which is stable, and the Euler solution
Sg = 3w5%/3/21/3 ~ 21.87299, which is unstable.

Figure 17 shows Solution 1 and Solution la in projected phase space. The behavior of
the complex conjugate pair of Floquet multipliers closest to 1, as a function of the mass my,
is shown in Fig. 18. The upper panel is the logarithm of the modulus of this multiplier and
the lower panel is its principal argument. (The second complex conjugate pair, which is not
shown, remains complex in the parameter range under consideration, it varies very little, and
its argument is outside the scale of Fig. 18pottom-) The elliptic region is restricted to the
mq-interval where the multipliers have non-zero argument. Examining the non-zero values of
the logarithm of the modulus, one can identify two bifurcations in this diagram, namely, the
fold bifurcation mentioned above, and a pitch-fork bifurcation at a value of m; just below 1.

The pitch-fork bifurcation can be seen in Fig. 16p4tt0m, Where its two legs coincide due to
our choice of vertical axis. There are four distinct solutions having m; = 1 in this diagram,
namely, Solution 1 (the figure-8 orbit), Solution 1a, and the solutions at m; = 1 on the two
legs of the pitch-fork branch. In the bifurcation diagram the pitch-fork branch appears to
reconnect to the primary branch at Solution la. However, this is an artifact of our choice of
vertical axis and not an actual bifurcation point. Further continuation of the two legs of the
pitch-fork branch for m; > 1 leads to collision orbits that we do not discuss here.

4.3 Global continuation of the figure-8 orbit.

We now describe some computational results for the continuation of the figure-8 orbit as the
mass of Body 1 is allowed to vary on a larger scale, namely, between 1 and 0. As discussed
above, Fig. 16p0ttom Shows the local continuation of the figure-8 orbit, for values of m; very
close to 1. Solution 1 and Solution la lie on the same branch; they are connected via a
fold. It is of interest to continue these two solutions to smaller values of m;. The result of
this continuation is shown in Fig. 164,,. The two lower diagrams correspond to consecutive
blow-ups of the top diagram near m; = 1.

Solutions at labeled points in Fig. 16 are shown in separate Figures: Solution 1 is the
figure-8 orbit of Chenciner and Montgomery, which appears in Fig. 15 and Fig. 17, while
Solutions 2-7 are shown in Fig. 19.

The branch containing Solutions 1-4 consists entirely of planar periodic orbits with zero
angular momentum. Solution 2 marks a bifurcation point, where a solution branch consisting
of non-planar periodic orbits with non-zero angular momentum bifurcates. We have located
several more bifurcation points, for example, Solution 5, but to keep the presentation simple
we only show the branch that bifurcates from Solution 2.

Continuation of the figure-8 orbit, i.e., Solution 1, in the direction of decreasing m; leads
to a collision orbit near Solution 3, where the smaller mass, i.e., Body 1, collides with the
larger bodies. There are four such near-collisions along Solution 3. Continuation of the
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figure-8 orbit in opposite direction, via the fold and via Solution 1a in Fig. 16p0tt0m leads to
another type of collision orbit near Solution 4, where the two larger bodies collide with each
other. There are two such near-collisions along Solution 4, while the smaller body completes
a near-horizontal motion.

Solution 5 marks a bifurcation point on the branch of non-planar solutions; the branch
that bifurcates at this point is not shown. Solutions 6 and 7 are also on the branch of
non-planar solutions. Note that m; = 0 at Solution 7; therefore it is also a solution of
the restricted 3-body problem. (Note, however, that the mass-ratio parameter p is equal to
0.5 here, while in Sec. 3 we had p = 0.01215, corresponding to the Earth-Moon system.)
Our computations therefore establish a homotopy from the figure-8 orbit of Chenciner and
Montgomery to a periodic solution of the restricted 3-body problem. The complete homotopy
path requires branch switching at the bifurcation point denoted as Solution 2. More extensive
computations, that we do not report here, establish the existence of further homotopy paths
from the figure-8 orbit to other solutions of the restricted 3-body problem. All these paths
pass through Solution 2 and switch to the branch of 3D orbits there. We have not found a
homotopy from the figure-8 solution to a solution of the restricted 3-body problem, where
the orbits remain planar along the entire homotopy path.

As mentioned before, the figure-8 orbit is elliptically stable, and this stability is preserved
in a very small neighborhood of m;-values. However, most solutions determined in the con-
tinuation process are unstable (hyperbolic). Our computational scheme does not distinguish
between stable and unstable periodic solutions; it can compute both solution types equally
well. In real astronomical observations, on the other hand, only stable periodic orbits are
observed. By carefully monitoring the Floquet multipliers along solution branches and by
following more bifurcating branches, we have located other regions along solution branches
where elliptically stable periodic orbits exist. However, some of these regions are very small,
so that the likelihood of encountering such orbits in physical observations is exceedingly small.

5 Conclusion

We have shown how standard numerical continuation and bifurcation methods can be used to
compute families of periodic orbits in conservative systems and determine their bifurcations.
We have applied the computational techniques to the restricted 3-body problem and to the
general 3-body problem, and we have presented a limited collection of numerical results that
illustrate the power and ease of application of the methods. Systematic application of the
techniques can lead to new discoveries that increase our understanding of the global periodic
solution structure of these problems.

Future work on the restricted 3-body problem includes a complete classification of the
periodic solution branches that emanate from all five libration points, and their subsequent
bifurcations, for all values of the mass-ratio parameter y. Future work on the general n-body
problem includes the extension of the methods in order to deal with the continuation of peri-
odic solutions from the Euler solution and the Lagrange solution. An interesting conjecture
is the existence of a homotopy from the figure-8 solution of Chenciner and Montgomery to
the 3-body Lagrange solution. In fact, it was this conjecture of Professor J. B. Keller that
motivated us to design the current computational scheme for the continuation of periodic
solutions of the 3-body problem. The conjecture remains open, however.
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Figure 16: Continuation of the figure-8 orbit. The solution L, norm is plotted versus the mass
of Body 1. The lower Figures are successive blow-ups of the top Figure. Solutions at labeled
points appear in Figs. 15, 17, and 19. Top: The primary branch of planar solutions obtained by
continuing the figure-8 orbit (Solution 1), and a branch of non-planar solutions that bifurcates at
Solution 2. The end points of the primary branch, Solutions 3 and 4, are near collision orbits.
Solution 5 is a bifurcation point on the non-planar solution branch; the bifurcating branch is not
shown. Solutions 6 and 7 are further non-planar solutions. Solution 7 is also a solution of the
restricted 3-body problem. Center: A blow-up of the primary solution branch near the figure-8
orbit. Solution 4 is near a collision orbit. Bottom: A further blow-up of the primary solution branch
near the figure-8 orbit. Solution la is another solution at mq = 1 on the primary branch; however, it
is not a choreography (see Fig. 17). LP and BP denote a fold and a pitch-fork bifurcation; at these
points the primary solutions lose stability. The bifurcating pitch-fork branch appears to reconnect
to the primary branch at Solution 1la; however, this is not an actual bifurcation point.
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Figure 18: The behavior of the complex conjugate pair of Floquet multipliers that is closest to 1,
for the family of orbits that passes through the figure-8 orbit. Top: The logarithm of the modulus
of the Floquet multipliers. Bottom: The principal argument of the Floquet multipliers.



Figure 19: Selected orbits from Fig. 16: Top left: Solution 2 (at the bifurcation point to non-planar
solutions). Top right: Solution 3 (close to small body-large bodies collisions). Center left: Solution 4
(near collisions of the large bodies). Center right: Solution 5 (a non-planar solution at a bifurcation
point). Bottom left: Solution 6 (another non-planar solution). Bottom right: Solution 7 (a solution
of the restricted 3-body problem).
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Supplementary Bibliography

A more general and detailed theoretical treatment of our computational methods for con-
servative systems can be found in [Munoz-Almaraz et al., 2002]. For related theory see
[Vanderbauwhede, 1982], [Meyer, 1973; Schmidt, 1978; Kirchgraber, 1980] and, more re-
cently, [Sepulchre & MacKay, 1997]. For recent papers with alternate numerical approaches
for conservative systems see [Jorba, 1999] and [Viswanath, 2001].

We can only give some pointers to the vast literature on the general n-body problem,
the CR3BP, and related topics. Les Méthodes Nouvelles de la Mécanique Céleste of Poincaré
[1899] (English translation [1993]) is a seminal work on the CR3BP which developed fun-
damental concepts in dynamical systems. Orbital mechanics texts that examine the n-body
problem and the CR3BP in particular, include [Roy, 1988] and [Danby, 1992]. Meyer & Hall
[1999] considered the n-body problem and the CR3BP from the point of view of Hamiltonian
systems theory, while Meyer [1999] focused on periodic solutions. For books on the 3-body
problem see [Szebehely, 1967] and [Bruno, 1994], both of which focus on the planar problem,
and [Marchal, 1990].

The use of libration points for space missions was already mentioned by Clarke [1947].
The January-March 2001 issue of the Journal of the Astronautical Sciences contains many
articles on libration point missions, including several already cited here. Other references
on orbits near libration points can be found in [Bray & Goudas, 1967a], [Bray & Goudas,
1967b], [Meer, 1985], and [Gabern & Jorba, 2001]. Corresponding mission design aspects
are considered in [Gémez et al., 1991] and [G6émez et al., 1993]. For additional literature on
3D orbits near the libration points see [Goudas, 1963|, [Kazantzis, 1978], [Kazantzis, 1979a],
[Kazantzis, 1979b], [Robin & Markellos, 1980], and [Jorba & Masdemont, 1999]. Recent
results on vertical orbits can be found in [Jorba & Villanueva, 1998], and for collisions see
[Simd, 2001a]. Some other relevant papers on the CR3BP include [Michalodimitrakis, 1978],
[Kwok, 1980], [Meyer, 1981a], and [Meyer & Schmidt, 2000].

For more papers on the figure-8 orbit see [Chenciner et al., 2001] and [Simé, 2001b].
Further pointers to the general n-body literature include [Broucke, 1978], [Hulkower, 1980],
[Gémez & Llibre, 1981], [Montgomery, 1997], and [Stuchi et al., 2000].
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