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Time series from dynamical system

Finite dimensional system f : X → X

f may represent difference equations or time-T map of
autonomous differential equations

Observation function h : X → Rm

m = 1 univariate time series

m > 1 multivariate time series

Goal
Find invariant set and dynamics



Attractor reconstruction

Use observations to construct embedding, or at least 1-1 function,
from attractor’s phase space to some Rm.

Example

Periodic orbit in R3

E (x , y , z) = (x , y) to R2 may or may not unfold periodic orbit

To guarantee embedding of a periodic orbit, 3 independent
observations are need, generically.



Whitney Embedding Theorem 1936

Smooth manifold A of dimension d

Whitney

There is a C 1 - open and dense set of maps into R2d+1 which
embed A.

Consider m = 2d + 1 independent measurements as a map

Embedding means individual states are distinguished by the
observations



Not all attractors are manifolds!

U. Dressler et al., Daimler-Benz



Fractal attractor

Fractal attractors lead to fractal dimensions
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Middle-third Cantor set

0 1/3 2/3 1

At step i , 2i intervals of length 3−i remain.

Cover set with N(ε) boxes of diameter ε

N(ε) ∼ ε−d

dbox = lim
ε→0

log N(ε)

log 1/ε

Middle-third Cantor set requires 2i one-dim boxes of diameter
(1/3)i , so

dbox = lim
log 2i

log 3i
=

log 2

log 3
≈ 0.63



Middle-3/5 Cantor set

0 1/5 4/5 1

At step i , 2i intervals of length 5−i remain.

dbox = log 2/ log 5 ≈ 0.43



Fractal Whitney Embedding Theorem

Theorem
Let A be a compact subset of Rk of box-counting dimension d .
Let n be an integer, n > 2d . Then for a dense set of smooth maps
F : Rk −→ Rn,

1. F is one-to-one on A

2. F is an immersion on each compact subset C of a smooth
manifold contained in A

Dense can be replaced by “prevalent”.



Fractal Whitney Embedding Theorem

Idea of proof

Assume A (compact) ⊂ Rk , dbox(A) = d , n > 2d .
Let F : Rk −→ Rn.

Let L = L(Rk ,Rn) denote kn-dimensional cube of linear maps.

For each pair of ε-boxes B1,B2 ⊂ A, perturbations F ′ of F by
functions from L cause B1 ∩ B2 with probability ∝ εn.

A can be covered by ε−d boxes of size ε, so there are ε−2d pairs to
consider.

The probability that two ε-boxes intersect in the image of F ′ is
approximately εn−2d . If n > 2d , the probability goes to 0 with ε.



Intersection theory in R1

Example: Middle-third Cantor set

0 1/3 2/3 1

Cantor set C = {.b1b2b3 . . . in base 3 : bi = 0 or 2}

dbox(C ) ≈ 0.63



Middle third Cantor sets always overlap

C = middle third Cantor set

Let v ∈ [0, 1]. Do C and C + v intersect?

Then v+1
2 ∈ [0, 1]

v + 1

2
= .02112012 . . . for example

= .01111011 . . . + .01001001 . . .

v + 1 = .02222022 . . . + .02002002 . . .

= c1 + c2

Therefore v + 1− c1 = c2.



Middle 3/5 Cantor sets almost never overlap

C = middle 3/5 Cantor set
C = {.b1b2b3 . . . in base 5 : bi = 0 or 4}

0 1/5 4/5 1

dbox = log 2/ log 5 ≈ 0.43

Note that . . . 22 . . . in v implies translates don’t intersect.

Lebesgue almost every v ∈ [0, 1] contains a 22



Hausdorff dimension

There is no corresponding Whitney result for Hausdorff dimension.

Example

There exists a set of Hausdorff dimension 0 in Rm such that all
linear projections to Rk , k < m, fail to be one-to-one.

(Ittai Kan)



Univariate time series

Fractal Whitney Embedding Theorem assumes multivariate
observations.

What can be done with a single observation function h(x)?

Idea

Replace independent observations with time delays

Define H : Rk → Rm by

x −→ [h(x), h(f−τ (x), h(f−2τ (x), . . . , h(f−(m−1)τ (x)]



Univariate time series

What can be done with a single observation function h(x)?

Are
h(xt), h(xt−τ ), h(xt−2τ ), . . .

independent coordinates?

Mathematical translation
Is

H(x) = [h(x), h(f−τ (x)), . . . , h(f−(m−1)τ (x))]

one-to-one on A for generic h : Rk −→ R?



Univariate time series

Main question

Is

H(x) = [h(x), h(f−τ (x)), . . . , h(f−(m−1)τ (x))]

one-to-one on A for generic h : Rk −→ R?

Short answer: No.

Example

Periodic orbit, period τ . For each point on the orbit,

xt = xt−τ = xt−2τ = . . .

and the orbit is projected to a line segment. H cannot be 1-1.



Univariate time series

Main question

Is

H(x) = [h(x), h(f−τ (x)), . . . , h(f−(m−1)τ (x))]

one-to-one on A for generic h : Rk −→ R?

Example

Periodic orbit, period 2τ . The function

h(x)− h(f−τ (x))

has at least one zero crossing x0 on A. Then

h(x0) = h(f−τ (x0)) = h(f−2τ (x0)) = h(f−3τ (x0)) = . . .

so x0 and f−τ (x0) are mapped together. F cannot be 1-1.



Fractal Takens Embedding Theorem

Theorem.
Let A be a compact subset of Rk of box-counting dimension d ,
invariant under diffeomorphism f . Let n be an integer, n > 2d .
Assume:

1. For every p ≤ n, the set Ap of periodic points of period p
satisfies dbox(Ap) < p/2

2. Df p has distinct eigenvalues for each of these orbits

Then for a dense set of smooth maps h : Rk −→ R,

1. the corresponding delay map H is one-to-one on A

2. H is an immersion on each compact subset C of a smooth
manifold contained in A



Distinct eigenvalues necessary for immersion

Let x be a fixed point of f such that Df (x) has 2 linearly
independent vectors v0, v1 with same eigenvalue λ.

Set u = (Dh(x)v1)v0 − (Dh(x)v0)v1. Then u is an eigenvalue of
Df (x) with eigenvalue λ and Dh(x)u = 0.

For each i ,

D(h(f i (x)))u = Dh(f i (x))Df (x) · · ·Df (x)u = Dh(x)λiu = 0

Therefore H(x) = [h(x), hf (x), . . . , hf i (x)] is not an immersion at
x .



Takens Embedding Theorem

Packard, Crutchfield, Farmer, Shaw (PRL, 1980)

Takens (1981)

Roux, Swinney (1981)

Aeyels (1981)

Sauer, Takens, Casdagli (1991 fractal version)



Time series from Lorenz system
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Hénon map

-2

0

2

-2 0 2

y

x

-4

-2

0

2

0 100 200

h(
i)

i

-4

-2

0

2

-4 -2 0 2

h(
i-1

)

h(i)



Belousov-Zhabotinskii reaction
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Time series from dynamical system
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Applications - Analysis

Calculating system invariants from data stream

I dimension
I often focused on correlation dimension
I + surrogate data as sanity check

I Lyapunov exponents
I Eckmann, Ruelle. Rev. Mod. Phys. 1985

I determinism tests
I Kaplan, Glass. Phys. Rev. Lett. 1992

I critical exponents, scaling laws (bifurcations, crises, etc.)
I E.g. Sommerer et al. Phys. Lett A 1991

I unstable periodic orbits (symbolic dynamics)
I Gilmore, Mindlin, Glorieux, etc.



Applications

I Time series prediction

I Noise reduction

I Control of chaos

I Tracking, targeting and goal dynamics

Coping with Chaos (Ott, Sauer, Yorke) Wiley, 1994.

Nonlinear Time Series (Kantz, Schreiber) Cambridge, 1997, 2003.

TISEAN package (Hegger, Kantz, Schreiber, 1999)



Time series prediction

Typical methodology:

Fit local linear AR model in embedding space of dynamics, using
evolution of near neighbors over short time interval. Use local
model to predict.
(Long history of nearest-neighbor prediction in statistical
literature.)

Ingredients:

I weighted linear regression (Tukey’s tricubic)

I Fourier interpolation to ”fatten” attractor

I Use of principal component analysis to project out noise

Time Series Prediction (Weigend, Gershenfeld) Addison-Wesley
1994.



Noise reduction

Sample technique:

Embedding threshold estimator used in Fourier frame

9
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Fig. 10. SNRs gain for the estimates of 10 speech signals and Gaussian
additive noise using: the block thresholding estimator of [CS](right), the
embedding threshold estimator(left).
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Fig. 11. Signal ‘SPEECH2’ scaled to have norm1.
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Fig. 12. Noisy measurement of SPEECH2 with Tukey white noiseand scaled
SNR of about4.4db.
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Fig. 13. Attenuated embedding estimate of SPEECH2 from the measurement
in Figure 12, scaled to have norm 1,SNRs is ≈ 8.1db.

0 2000 4000 6000 8000 10000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Fig. 14. Noisy measurement of SPEECH2 with bimodal white noise and
scaled SNR of about4.5db.
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Fig. 15. Attenuated embedding estimate of SPEECH2 from the measurement
in Figure 14, scaled to have norm 1,SNRs is ≈ 8.1db.
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Fig. 16. Signal ‘SPEECH7’ scaled to have norm1.
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Fig. 17. Noisy measurement of SPEECH7 with Tukey white noiseand scaled
SNR of about7.3db.
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Fig. 10. SNRs gain for the estimates of 10 speech signals and Gaussian
additive noise using: the block thresholding estimator of [CS](right), the
embedding threshold estimator(left).
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Fig. 16. Signal ‘SPEECH7’ scaled to have norm1.
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Fig. 17. Noisy measurement of SPEECH7 with Tukey white noiseand scaled
SNR of about7.3db.
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Fig. 18. Attenuated embedding estimate of SPEECH7 from the measurement
in Figure 17, scaled to have norm 1,SNRs is ≈ 6.
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Fig. 19. Noisy measurement of SPEECH7 with Gaussian white noise and
scaled SNR of about11.1db.

Data files for the signal, measurement and reconstructions
used to compute the quantities in all the figures are available
upon request for direct evaluation of the perceptual quality.

VI. FURTHER DEVELOPMENTS

Given that the embedding threshold ideas were implemented
with the specific goal of denoising speech signals, it may be
worth emphasizing that in principle the construction of classes
of paths can be applied to other dictionaries well adapted to
other classes of signals, more paricularly, letD = {g1, ..., gP }
be a generic frame dictionary ofP > N elements so that
X =

∑P
m=1 XD[m]g̃m, XD[m] =< X, gm >, where g̃m

are dual frame vectors (see [M] ch.5). Given such a general
representation forX , let Cp = {γ1, ..., γQ}, Q > P , be
a collection of ordered subsets ofD of length p, that is,
γi = {gi1 , ..., gip

}, so that
⋃

γi = D and the cardinality
of the set {γi such thatgj ∈ γi} is constant for every
j = 0, ..., P − 1 (this ensures that the discrete covering of
the frame atoms is locally uniform). Note thatCp needs not
be the entire set of ordered subsets ofD. We call eachγi a
‘path’ in D for reasons that will be clear in the following.
Let Xγi

= {XD[m] =< X, gm >, gm ∈ γi} be an ordered
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Fig. 20. Attenuated embedding estimate of SPEECH7 from the measurement
in Figure 19, scaled to have norm 1,SNRs is ≈ 7.7.
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Fig. 21. Block thresholding estimate of SPEECH7 from the measurement in
Figure 19, scaled to have norm 1,SNRs is ≈ 7.6, note low intensity details
are removed by the estimator.

collection of coefficients ofX in the dictionaryD.

Then a a semi-local estimator inD can be defined as:

F̃ =

P−1
∑

m=0

dI,T (XD[m])g̃m (11)

where dI,T (XD[m]) = XD[m] if I(Xγ) ≥ T for someγ
containingm, anddI,T (XD[m]) = 0 if I(Xγ) < T for all γ
containingm.

The construction of significant sets of pathsCp will
depend from the application, we are currently exploring
even the possibility of using random walks along the atoms
of the dictionaryD. In any case, afterCp is selected, our
specifc choice of indexIsvd can be used and the attenuated
embedding estimator can certainly be applied and tested,
soft threshold embedding estimators are an interesting open
possibility as well.
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Control from time series reconstruction

BZ reaction in continuous-flow stirred-tank reactor (Showalter et
al., 1992)

Single measurement: Bromide electrode potential vs. time

Delay time = 13 sec.

Control parameter: reactant inflow rate (cerium/bromate solution)

RESULT: Stabilized period 1 and 2 limit cycles



Control from time series reconstruction
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Control from time series reconstruction
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Open problems in applications

Determination of directionality in coupled time series

Estimation of delay

Characterization of on-off intermittency from time series

Determinism tests

Measuring noise, observational noise, dynamical noise

Parameter and unobserved component estimation from time series
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Extensions

1. Reconstruction from spike trains

2. Nonautonomous Takens Theorem

3. Stochastic Takens Theorem

4. Driver reconstruction



1. Reconstruction from spike trains

Reconstruction of Integrate-and-Fire Dynamics 3Our approach is a simple paradigm that shares qualitative characteristics withreal systems, and that demonstrates feasible ways in which complicated informationabout system states can be communicated and transformed in type. In particular,we will focus on the linkage between continuous dynamics and the interspike in-tervals (ISI's) produced by them, rather than modeling the detailed mechanism ofany single system.
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timeFigure 1 The upper trace is a solution of the Lorenz equations graphed as afunction of time. The lower trace shows the times at which spikes are generatedaccording to equation (2.1), with S(t) = (x(t) + 2)2 and � = 60.For concreteness, we make a simple hypothesis connecting an underlying contin-uous dynamical system to the point process. The time series from the dynamicalsystem is integrated with respect to time; when it reaches a preset threshold, aspike is generated, after which the integration is restarted. This integrate-and-�remodel is chosen for its simplicity and potential wide applicability. In our simula-tions we hypothesize that the input to be integrated is a low-dimensional chaoticattractor. We use the Mackey-Glass equation and the Lorenz equations as simplerepresentative examples.Let S(t) denote the signal produced by a positive function measured on thestate space of a �nite-dimensional dynamical system. Assume that the trajectoriesof the dynamical system are asymptotic to a compact attractor A. Let � be apositive number which represents the �ring threshold. After �xing a starting timeT0 and initial condition x for the dynamical system, a series of \�ring times" T1 <T2 < T3 < : : : can be recursively de�ned by the equationZ Ti+1Ti S(t) dt = � (2.1)From the �ring times Ti, the interspike intervals can be de�ned as ti = Ti � Ti�1.



2. Nonautonomous Takens

D
g

- X
f fd

-
h

R

di+1 = g(di ) and xi+1 = f (xi , di )

Goal
Reconstruct D × X , recording only from X .



3. Stochastic Takens

D - X
f fd

-
h

R

Ω = D∞

ω = (. . . , d−1, d0, d1, . . .)
σ is shift map and xi+1 = f (xi , ω)

Goal
Reconstruct fibers over ω.



4. Driver reconstruction
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R

di+1 = g(di )

x1
i+1 = f 1(x1

i , di )

x2
i+1 = f 2(x2

i , di )

Goal
Reconstruct D, recording from X1 and X2.



Reconstruction from spike trains

Reconstruction of Integrate-and-Fire Dynamics 3Our approach is a simple paradigm that shares qualitative characteristics withreal systems, and that demonstrates feasible ways in which complicated informationabout system states can be communicated and transformed in type. In particular,we will focus on the linkage between continuous dynamics and the interspike in-tervals (ISI's) produced by them, rather than modeling the detailed mechanism ofany single system.
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timeFigure 1 The upper trace is a solution of the Lorenz equations graphed as afunction of time. The lower trace shows the times at which spikes are generatedaccording to equation (2.1), with S(t) = (x(t) + 2)2 and � = 60.For concreteness, we make a simple hypothesis connecting an underlying contin-uous dynamical system to the point process. The time series from the dynamicalsystem is integrated with respect to time; when it reaches a preset threshold, aspike is generated, after which the integration is restarted. This integrate-and-�remodel is chosen for its simplicity and potential wide applicability. In our simula-tions we hypothesize that the input to be integrated is a low-dimensional chaoticattractor. We use the Mackey-Glass equation and the Lorenz equations as simplerepresentative examples.Let S(t) denote the signal produced by a positive function measured on thestate space of a �nite-dimensional dynamical system. Assume that the trajectoriesof the dynamical system are asymptotic to a compact attractor A. Let � be apositive number which represents the �ring threshold. After �xing a starting timeT0 and initial condition x for the dynamical system, a series of \�ring times" T1 <T2 < T3 < : : : can be recursively de�ned by the equationZ Ti+1Ti S(t) dt = � (2.1)From the �ring times Ti, the interspike intervals can be de�ned as ti = Ti � Ti�1.



Reconstruction from spike trains

4 Tim SauerFigure 1 shows a time trace of the x-coordinate of the Lorenz [1963] equations_x = �(y � x)_y = �x� y � xz_z = ��z + xy (2.2)where the parameters are set at the standard values � = 10; � = 28; � = 8=3. Thepositive \signal function" to be integrated is S(t) = (x(t) + 2)2. In the lower partof the �gure, the spiking times generated by (2.1) with threshold � = 60 are shownas vertical line segments.
Figure 2 Reconstruction of Lorenz dynamics from a spike train. Three-dimensional vectors of successive interspike time intervals are plotted, con-nected by line segments. The series of time intervals used to make the recon-truction was created using integrate-and-�re model (2.1), with an input signalfrom the Lorenz attractor.Under certain genericity conditions on the underlying dynamics, signal andthreshold, the series ftig of ISI's can be used to reconstruct the attractor A. The-orem 2.1 below state that there is a one-to-one correspondence between m-tuplesof ISI's and attractor states, which associates each vector (ti; ti�1; : : : ; ti�m+1) ofISI's with the corresponding point x(Ti�1) on the attractor. In analogy with thegeneralization in Sauer et al. [1991] of the Takens [1981] theorem, the conditionm > 2D0 is su�cient, where D0 is the box-counting dimension of the attractor A.The one-to-one property is useful because the state of a deterministic dynamicalsystem, and thus its future evolution, is completely speci�ed by a point in the fullphase space. Suppose that when the system is in a given state x one observes theISI-vector G(x) in the reconstruction space, and that this is followed one secondlater by a particular event. If G is one-to-one, each appearance of the measurementsrepresented by G(x) will be followed one second later by the same event. This isbecause there is a one-to-one correspondence between the attractor states in phasespace and their image vectors in reconstruction space. Thus there is predictivepower in measurements that are matched to the system state x in a one-to-onemanner.Figure 2 shows a delay plot of interspike intervals produced by the x-coordinateof the Lorenz attractor. Since the box-counting dimension of the Lorenz attractor isslightly greater than 2, the theorem stated above says that generic reconstructionsin m = 5 dimensions are topologically equivalent to the original Lorenz attrac-tor, although its orientation in �ve dimensional Euclidean space could be rather

Reconstruction coordinates are interspike intervals

[Ti+1 − Ti ,Ti+2 − Ti+1,Ti+3 − Ti+2].



Reconstruction of spike trains

Integrate and fire hypothesis

Let S(t) > 0 be a signal, Θ > 0 threshold.

Define “firing times” T1 < T2 < T3 . . . by

∫ Ti+1

Ti

S(t)dt = Θ.

Interspike intervals are Ti+1 − Ti .

Example. Lorenz equations

ẋ = σ(y − x)

ẏ = ρx − y − xz

ż = −βx + xy

where σ = 10, ρ = 28, β = 8/3,S(t) = (x + 2)2,Θ = 60.



Reconstruction from spike trains
Let S(t) > 0 be a signal, Θ > 0 threshold.

Define “firing times” T1 < T2 < T3 . . . by

∫ Ti+1

Ti

S(t)dt = Θ.

Theorem. Let ẋ = f (x) be an autonomous system of differential
equations on Rk with compact invariant set A. Assume that A
contains at most a finite number of equilibrium points and
m > 2dbox(A). Then there is a residual set of positive-valued
output functions h for which the interspike intervals

[Ti+1 − Ti ,Ti+2 − Ti+1, . . . ,Tm+1 − Tm]

created from the integrate-and-fire hypothesis uniquely define
states of A.

T. Sauer, “Reconstruction of integrate-and-fire dynamics”, in Nonlinear

dynamics and time series: Building a bridge between the natural and statistical

sciences, Eds. C. Cutler, D. Kaplan, AMS (1997)
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-5 0 5 10 15(a) (b)Figure 3 Subthreshold control of the unstable \�gure-eight" orbit of theLorenz attractor, using the interspike interval history only. (a) A plot inreconstructed state space. The three dimensions of the space are three consec-utive time intervals. After an initial transient, the systems becomes trapped inthe �gure-eight orbit. (b) A plot of the time series from the Lorenz attractor,which is being integrated to form the spikes. The vertical line shows the timeat which the control protocol is turned on.used in the controlling process, and is shown here simply to verify success of thecontrol procedure.Superthreshold control of spike train dynamics is conceptually simpler. In thisscenario, the goal is to change an erratic �ring pattern to a regular pattern. Thecontroller has the capability of causing the system to �re at any time, say througha large pulse applied to the system. We choose a desired �xed interspike intervaland then ask the contoller to apply superthreshold spikes to regulate the systemto spiking rhythmically at that interval. In the on-demand pacing protocol, thecontroller applies the external spike whenever the interspike interval has exceededthe desired value. Obviously, this will cause the spike intervals to be capped at thedesired level. What we will show is that in addition, under realistic assumptionson the dynamics, the spike times will be bounded from below as well, resulting inan evenly-timed spike sequence.To make a model which is perhaps closer to a neurophysiological process, weadd to the integrate-and-�re model (2.1) some relative refractoriness. For thisexperiment we use a time series from the Mackey-Glass equation as the signal tobe integrated. The Mackey-Glass [1977] delay di�erential equation is_x(t) = �0:1x(t) + 0:2x(t��)1 + x(t��)10 : (3.1)When � = 30, the attractor for this system has dimension around 3:5, accordingto numerical estimation. For � = 100, the correlation dimension is approximately7:1. (See Ding et al. [1993].)The relative refractoriness is included by changing the constant threshold � inthe integrate-and-�re hypothesis (2.1) to a simple \leaky potential" function. Thethreshold � will decrease at a constant rate ( _� = �0:5 in our example) until �ring,at which time � is replaced by � + 50, representing the repolarization stage.

Small perturbations based on spike train observations are used to
control Lorenz attractor input to integrate-and-fire generator.
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A physical point process generated by passing a continuous, deterministic, chaotic signal through an
integrate-and-fire device is controlled using proportional feedback incorporating only the time intervals be-
tween events. This system is unique in that the mean time between events can be adjusted independent of the
dynamics of the underlying chaotic system. It is found that the range of feedback parameters giving rise to
control as a function of the mean firing time exhibits surprisingly complex structure, and control is not possible
when the mean interspike interval is comparable to or larger than the underlying system memory time.
@S1063-651X~98!00708-7#

PACS number~s!: 05.45.1b, 07.05.Dz, 84.30.Ng, 87.10.1e

Many systems evolve such that long periods of inactivity
are punctuated by brief, nearly identical bursts of activity.
Typical examples of such systems include certain laser insta-
bilities @1# or a spontaneously firing collection of neurons
@2#. Such ‘‘point processes’’ may be characterized by the
sequence of time intervals between events~interspike inter-
vals, or ISI’s! rather than a dynamical variable sampled at
regular time intervals. In some instances, the ISI’s fluctuate
in a deterministically chaotic manner. For example, Wit-
kowski et al. @3# have suggested that the interbeat intervals
recorded from a fibrillating heart are chaotic. Since the oc-
currence of chaos often degrades the performance of devices
or indicates disease, it is valuable from a clinical as well as a
fundamental standpoint to investigate the implementation of
chaos control@4# of point process generated by various
mechanisms.

Recently, Carroll@5# studied experimentally a system that
naturally produces pointlike events: a network of four
coupled electronic circuits whose individual dynamics are
governed by equations similar to the FitzHugh-Nagumo
model of a neuron. He demonstrated that the dynamics of the
network can be controlled using proportional feedback incor-
porating the ISI’s where the mean ISI time~denoted byT* )
is set approximately by the inverse of the decay rate of a
‘‘slow’’ variable. In a separate investigation, Ding and Yang
@6# demonstrated theoretically control of a point process gen-
erated by passing a continuous chaotic signal through a
threshold-crossing device using a similar feedback protocol.
In this case,T* is set approximately by the characteristic
time scale of the chaotic fluctuations of the underlying dy-
namical system.

In this article, we investigate experimentally the control
of a point process generated by passing a continuous signal
s(t)5n̂Ty(t) from a chaotic electronic circuit through an
integrate-and-fire device as shown schematically in Fig. 1~a!,
wherey is the state vector of the circuit andn̂ is the mea-
surement direction in phase space. The device generates a
chaotic sequence of spikes when the value of an integral
reaches a thresholdQ, determined recursively from

E
tn

tn11
@s~ t !1f#dt5Q, ~1!

where the time interval between spikes is given byTn11
5tn112tn . The offsetf ensures that the argument of the
integral is positive definite when the dynamical system is in
the neighborhood of the desired stabilized state. The inter-
spike intervalsTn constitute a point process, derived from
the underlying systems(t).

Our goal is to convert the chaotic sequence of ISI’s to a
periodic sequence by applying small perturbations to an ac-
cessible variable or parameter of the underlying system using
a proportional feedback algorithm. We note that there exist
two types of signalss(t) giving rise to a periodic sequence
of ISI’s. One is a constant signal~denoted bys* ) giving rise
to a period-1 sequence whereT* 5Q/(s* 1f). For this sig-
nal, the sequence of ISI’s remains periodic even when the
parameters of the underlying dynamical system or the
integrate-and-fire device change slightly~e.g., from param-
eter drift!. The other type of signal is a periodic wave form,
generating a periodic sequence of ISI’s only whenQ andf
are tuned precisely. Extremely small parameter changes will
render this sequence quasiperiodic. Therefore, only the con-
tinuous signal, corresponding to a period-1 periodic se-
quence of events, can be observed~and hence stabilized! in
an experimental setting.

FIG. 1. ~a! Scheme for controlling a chaotic series of interspike
intervals using negative feedback where the intervals are generated
by passing a signal from a continuous chaotic system through an
integrate-and-fire device.~b! Chaotic electronic circuit.
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Our experimental system differs from those of Carroll@5#
and Ding and Yang@6# in thatT* can be adjusted arbitrarily
independent of the time scales characterizing the underlying
chaotic system. We note that Sauer@7# has demonstrated that
an ISI sequence such as that generated from Eq.~1! contains
all information necessary to reconstruct the topology of the
underlying chaotic system for an arbitrary setting ofT* . This
suggests that control might be possible for some range of
experimental parameters. On the other hand, Racicot and
Longtin @8# recently observed that nonlinear forecastability
of the system dynamics is lost whenT* is comparable to or
larger than the characteristic memory time of the underlying
system, where the memory time is given approximately by
the inverse of the largest positive Lyapunov exponent. We
provide experimental evidence that this loss of forecastabil-
ity dramatically limits the ability to control the chaotic dy-
namics. In addition, we show that the range of feedback pa-
rameters for which control is effective as a function ofT*
exhibits nontrivial structure.

The underlying chaotic system is an electronic circuit
consisting of a negative resistorRn and passive linear and
nonlinear components connected as shown schematically in
Fig. 1~b!. The dynamics of this system are well described@9#
by the set of dimensionless equations

dV1 /dt5V1 /Rn2g@V12V2#1q1 , ~2a!

dV2 /dt5C1~g@V12V2#2I !/C21q2 , ~2b!

dI/dt5V22RmI 1q3 , ~2c!

where V1 and V2 are the voltage drops across capacitors
C1545 nF andC2545 nF, respectively, andI is the current
flowing through the inductorL5252 mH. In Eq.~2! and in
the following, all voltages are normalized to the diode volt-
ageVd50.8 V, all currents toI d5(Vd /R)50.34 mA for R
5AL/C152.37 kV, all resistances toR, and time to t
5ALC151.06 ms. The current flowing through the parallel
combination of the resistor and diodes~type 1N914B! is de-
noted by g@V#5(V/Rd)1I r@exp(aV)2exp(2aV)#, where
Rd53.4, I r51.6431025 is the reverse current of the diodes,
anda511.6. The other circuit parameters areRm5RL1Rs
50.195, whereRL50.041 is the dc resistance of the induc-
tor, and Rs50.154 is a resistor placed in series with the
inductor. The elements of the vectorqn5(q1 ,q2 ,q3)T are

the closed-loop feedback signals that attempt to stabilize the
system about its fixed points. We denote the circuit state
vector in phase space byy5(V1 ,V2 ,I )T.

The circuit displays ‘‘double scroll’’ behavior as shown in
Fig. 2~a! for Rn51.07~kept fixed throughout this study! and
qn50, where the unstable steady states at the center of the
‘‘scrolls’’ with coordinates6y* and 0 are indicated. Our
task of stabilizing a periodic sequence of ISI’s corresponds
to stabilizing the dynamics of the underlying system about
one of these fixed points. The most unstable eigenvalues
characterizing the fixed points6y* are given bylu* 50.95
6 i5.88 as determined experimentally by observing the dy-
namics of the system in a neighborhood of the fixed points.
For future reference, the ‘‘memory time’’ corresponding to
these states is given approximately bytm51/Re(lu* )51.05.

Figure 2~b! shows an experimental reconstruction of the
attractor from the ISI’s withn̂5(1,0,0)T, f51.84, andQ
50.56, where the three possible ISI’s corresponding to the
periodic sequencesT6* andT0* ~corresponding to6y* and0
of the underlying system! are indicated. The ISI’s are deter-
mined by measuringV1(t) with a high-impedance voltage
follower, summing this voltage with an adjustable offset
voltage f, and feeding the combined signal to an analog
electronic integrator whose value is monitored by a Schmidt
trigger that fires when the thresholdQ is crossed, and then
resets. An analog time-to-voltage converter is initialized by
the firing of the Schmidt trigger. The value of this converter
is sampled and held at a value proportional toTn when the
Schmidt trigger fires at the next threshold-crossing event,
and is then reset. This process is repeated to determine the
next ISI while the previous valueTn21 is transferred to aux-
iliary sample-and-hold device. It is seen that the attractor
undergoes some deformation during the reconstruction, but
general topological features appear to be preserved, consis-
tent with the work of Sauer@7#.

We control the sequence of ISI’s by perturbing an acces-
sible system parameter using a standard closed-loop feed-
back protocol given by

«n5g1~Tn2T* !1g2~Tn212T* !, ~3!

whereg j ( j 51,2) are gain parameters. Note that the pertur-
bations vanish when the system is stabilized about the de-
sired stateTn5Tn215T* . For simplicity, we consider only
adjustments to the current injected into theV1 node of the

FIG. 2. ~a! Projection in phase space of the chaotic attractor of the electronic circuit shown in Fig. 1~b!. ~b! Reconstruction of the chaotic
attractor using the interspike intervals.
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FIG. 1. A schematic diagram of the experimental setup:
top panel­ top view, bottom panel­ side view. A 5 mm 3
20 mm specimen of hairy skin from the hindlimb of an
adult rat, depilated using Nair, was removed with its sensory
innervation sNd, a branch of the saphenous nerve, intact.
The long axis of the skin corresponded with that of the
femur. The specimen was positioned in a Lucite chamber
sLd filled with gassed (95% O2, 5% CO2) rat interstitial
fluid [16] at room temperature. The patchsT d was held by
5 mm wide clamps, through which the stretch stimuli were
applied. One clamp was fixedsC1d while the other sC2d
was coupled to a Ling 203 linear actuatorsAd via a linear
variable differential transformer (LVDT). The actuator was
position controlled through a feedback system. Control signals
were generated on a personal computer. The nervesNd was
led into a small oil-filled chamber, where it was dissected.
Extracellular signals from the nerve were recorded using fine
gold wire electrodessRd. These signals were conventionally
amplified. Action potential responses were discriminated using
a template-matching algorithm (Signal Processing Systems,
Prospect, Australia). Occurrences of action potentials were
recorded with an accuracy of50 ms.

embedding space. The average movement of these points
h steps ahead is taken as a prediction of how the index
point will move in h steps. This prediction is compared
with the actual movement of the index point, and the dif-
ference between the two is the error of the prediction [13].

In mathematical terms, the first step of the non-
linear prediction algorithm involves constructing
from the ISI series a set of embedded vectorsVn ­
sIn2m11, In2m12, . . . , In21, Ind, where m is the embed-
ding dimension. An intervalIn is then selected as an
index point and thek nearest neighbors of the related
m-dimensional vectorVn (wherek is 1% of all embedded
vectors) are found. (Near-in-time neighbors are ignored to
make the prediction an out-of-sample estimate.) A future
ISI value at some prediction horizonIn1h from the index
point In is then estimated by averaging the ISI values

h steps ahead of the nearest neighborsIk1h. The error
associated with this prediction isek

n ­ In1h 2 sIk1hdave.
The series mean can also be used to estimate the interval
h steps ahead. The error associated with this prediction
is em

n ­ In1h 2 Imean. Both types of error are calculated
for the series using each interval in turn as the index
interval. Theh-step normalized prediction error (NPE)
for the entire series is then

NPE ­

rX
sek

n d2
. X

sem
n d2 . (1)

An NPE value less than 1.0 indicates that there is fore-
castability in the ISI series beyond the base-line prediction
of the series mean.

We applied the nonlinear prediction algorithm to each
of the recorded ISI series, using embedding dimensions of
2–4 and prediction horizons of 1–6 steps. Figure 2 shows
results from four neurons, typical of the behavior found in
eight of the ten neurons. For prediction horizons up to 3–
6 steps (depending on the neuron), the NPE values for the
stochastically driven ISI series were all near 1.0, whereas
those for the chaotically driven ISI series were significantly
smaller sp , 0.05d. The ninth neuron, which fired at a
relatively low rate, exhibited similar behaviorsp , 0.05d
for prediction horizons up to 1–4 steps (depending on the
trial). In the case of the tenth neuron, the NPE values
for the chaotically driven ISI series from the first trial
were significantly smaller than those for the stochastically
driven ISI series from the second and third trials for
prediction horizons up to 3 stepssp , 0.05d; however,
during its fourth and final trial, the neuron fired at a
sufficiently low rate such that its ISIs were longer than
the prediction horizon of the chaotic input signal, leading
to NPE values that were near 1.0. Thus, for the majority
of neurons, it was possible to distinguish the chaotically
driven ISI series from the stochastically driven ISI series
on the basis of NPE.

Linear autocorrelation, which is present in correlated
noise, can lead to NPE values [9] that are less than 1.0.
To control for this effect as a source of forecastability
in the recorded spike trains, we generated and analyzed
stochastic surrogates from the chaotically driven ISI series.
We considered two types of surrogates [12,13]: phase-
randomized (PR) surrogates and Gaussian-scaled (GS)
shuffle surrogates. The PR surrogates were generated
using the procedure described above, which preserves the
autocorrelation of the original series while eliminating its
nonlinear deterministic structure (if present). We used the
PR surrogates to test the null hypothesis that the original
ISI series was produced by a linear stochastic process.
The GS surrogates were formed using the method of
Ref. [12]. In brief, this procedure consisted of randomly
shuffling the original ISI series while retaining much
of its serial correlation. We used the GS surrogates to
test the null hypothesis that the original ISI series was a
monotonically scaled version of amplitudes produced by a
Gaussian stochastic process with a similar power spectrum.
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FIG. 2. Normalized prediction error as a
function of prediction horizon for four rep-
resentative neurons. Shown for each neu-
ron are NPE results for chaotic and sto-
chastic surrogate input signals. The plot-
ted surrogate values represent the mean
values from the four surrogate-input tri-
als for each neuron, and each set of error
bars represents the respective standard de-
viation. An embedding dimension of three
was used for all results shown. Similar re-
sults were obtained for embedding dimen-
sions of two and four. Significance was
evaluated by a two-tailedt test comparing
NPE values from the respective chaotically
driven ISI series with the mean and stan-
dard deviation of the NPE values from the
stochastically driven ISI series. The in-
sets show the results from the significance
analysis. Heress is the standard devia-
tion of the NPE values for the stochasti-
cally driven ISI series, andDNPE is the
difference between the NPE value of the
respective chaotically driven ISI series and
the mean NPE value for the stochastically
driven ISI series. A dashed line is plotted
at the significance level which corresponds
to a p value of 0.05.

We applied the nonlinear prediction algorithm to each
of the chaotically driven ISI series and the two sets of
stochastic surrogates generated from each series. Figure 3
shows results from four neurons, typical of the behavior
found in nine of the ten neurons. For prediction horizons
up to 3–6 steps (depending on the neuron), the NPE
values for the original ISI series were significantly smaller
sp , 0.05d than those for the two types of surrogates,
respectively. In the case of the tenth neuron, we obtained
similar results for its first chaotic-input trialsp , 0.0001d;
however, the NPE results for its second chaotic-input
trial were not significantly different from those for the
stochastic surrogates. (This latter result was again due to
the low firing rate of the neuron during the trial.) Thus, for
all but one chaotic-input trial for the entire study, we were
able to distinguish the chaotically driven ISI series from
their stochastic surrogates on the basis of NPE. We were

therefore able to reject the aforementioned null hypotheses.
These findings indicated that the chaotically driven ISI
series contained true evidence of determinism.

These novel results show that dynamical information
can be retained when an analog chaotic signal is trans-
ferred through a sensory neuron and converted into a spike
train. This work also supports the notion that embedding
theory can be extended to point processes [8–10,15] and
need not be restricted simply to amplitude-measurement
time series. These findings suggest that sensory neurons
may be able to encode the structure of high-dimensional
external stimuli in single spike trains. Such information
could conceivably be utilized by the central nervous sys-
tem, via vector transformations, to discriminate between
deterministic and noisy signals.

This work was supported by the U.S. National Science
Foundation and the National Institutes of Health.
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In the case k � 1:77, the ISI attractor splits into sev-
eral parts and the neuron ®res only in several speci®c
regions of the RoÈ ssler attractor in the state space as
shown in Fig. 2a. This tendency is remarkable with
k � 2 where the ISI attractor becomes a very narrow set.

These ®gures show that the reconstruction of the
``shape'' of the attractor fails when the leak is large.

4.2 Attractor of a discrete dynamical system

Suppose the state of the system and that of the leaky
integrator are xi 2 X and u � 0, respectively. Let
xi�1 2 X be the state when the next spike is generated.
Then, we can de®ne a homeomorphism g : X ! X as
g�xi� � xi�1. This map de®nes a discrete dynamical
system �X ; g� (Suzuki and Aihara 1997; Broomhead
and Huke 1998). In other words, X corresponds to the
PoincareÂ section de®ned as u � 0 in the dynamical
system on X � U , and g is the PoincareÂ map on X � f0g.
Note that both the original continuous dynamical
system �X ;U� and the derived discrete dynamical system
�X ; g� have the same state space X .

An invariant set in the continuous dynamical system
is also invariant in the discrete dynamical system. If an
attractor of the discrete dynamical system exists, it is a
subset of the attractor of the continuous system; they are
not always the same.

Since the reconstructed ISI attractors in Fig. 2b and d
are independent of the choice of the initial state (not
shown), these ®gures show the attractors of the derived
discrete dynamical system. In this case, these attractors
are smaller than that of the continuous dynamical sys-
tem, and this is the reason why the reconstruction of the
shape of the original attractor fails.

For this reason, even if the ISI reconstruction is one-
to-one, the ISI attractor reconstructed from successive
ISIs does not necessarily preserve the shape of the
original attractor. What is preserved is the structure of
the derived discrete dynamical system. We have to take
care of this fact when we use ISI reconstruction from
successive ISI data.

Figure 3 shows the characteristics of the NPE as a
function of k. The NPE gradually increases as k in-
creases when k is smaller than 1.7. Around k � 1:7, the
NPE drops to smaller values as mentioned by Racicot
and Longtin (1997). This value of k corresponds to that
where the ISI attractor splits into several distinct parts.

Therefore, this phenomenon may be produced because
of the di�erence between the attractor structure of the
continuous system and that of the discrete system.

5 Cricket sensory neurons

A cricket detects a moving object at close range, such as
an approaching predator, by sensing air motion (Gnatzy
and Heuûlein 1986). The wind receptor is an important
organ for cricket survival. Information about the
external air motion is encoded into the ®ring patterns
of spike trains of the wind receptor cells. In this section,
we show the result of ISI reconstruction applied to the
spike train of the wind receptor cell of the cricket,
Gryllus bimaculatus, in response to the wind stimulus
generated by the RoÈ ssler system. We use the nonlinear
prediction and the surrogate data method to examine
whether the structure of the stimulating dynamical
system is preserved in the spike train.

A cricket has a pair of appendages called cerci, on
which a few hundred wind receptor hairs are located (see
Fig. 4). Each wind receptor hair has one receptor cell in
its base. When the hair is de¯ected by wind, the hair base

Fig. 3. Normalized predictor error (NPE) as a function of the leak
parameter k. NPE drops to smaller values around k � 1:7

Fig. 4. A Cercus (arrow) of Gryllus bimaculatus. B Cercus. A few
hundred wind receptor hairs are located on a cercus. C Each wind
receptor hair has one sensory cell in its base. The spike train generated
by the cell is transmitted to the central nervous system along the axon

308



Experimental spike train reconstruction

Analysis of neural spike trains with ISI reconstruction

H. Suzuki, K. Aihara, J. Murakami, T. Shimozawa at Univ. Tokyo

Figures 6a and 7a show part of the input signals fed
into the speakers of the wind tunnel (upper wave form)
and the corresponding part of the spike train responding
to the stimulus signal. While neuron 1 ®res around the
maximum peaks of the input, neuron 2 tends to ®re at
increasing slopes of the input. Figure 6b and c shows ISI
reconstruction with dimension three and the states of the
RoÈ ssler system at the instants of ®ring for neuron 1. The
cell ®res only for a very limited region of the attractor
space. Figure 7b and c shows ISI reconstruction and the
states of the system at the instants of ®ring for neuron 2.
The cell ®res for a limited portion of the attractor where
y is small and x is increasing. Since the input is only x,
the cell can be considered to ®re when dx=dt is large.

Furthermore, the state space for neuron 2 ®ring
shows a striped pattern. This striped structure in the
state space agrees with that of numerical simulation of a
leaky integrator. ISI reconstruction for neuron 2 is quite
di�erent from the RoÈ ssler attractor. Figure 8 shows a
return plot of 1/ISI for a leaky-integrator (H � 1,

k � 0:1), which is driven by the RoÈ ssler system output
through an observer h�x; y; z� � 3=�1� exp�2ÿ dx=dt��.
In this case, the leaky integrator can produce similar
dynamics with that of a living neuron in Fig. 7.

Figure 6e shows the values of NPE for the original ISI
sequence recorded from neuron 1 and its RS, FS, and
AAFT surrogates. NPE is calculated using ISI recon-
struction with dimension three. The horizontal axis de-
notes steps of prediction; 100 surrogates are generated
for each surrogate method. The average and the stan-
dard deviation are drawn as points and error bars, re-
spectively. For small prediction steps, the NPE of the
original sequence is signi®cantly smaller than its surro-
gates. However, the di�erence vanishes as the number of
steps increases.

Figure 7e shows the values of NPE for the original ISI
sequence recorded from neuron 2 and its RS, FS, and
AAFT surrogates. NPE is calculated using ISI recon-
struction with dimension three and 100 surrogates are
generated for each surrogate method. In this experiment,

Fig. 7a±f. Analysis of neuron 2. a Input
(above) and output (below). b ISI reconstruc-
tion. c States of the RoÈ ssler system when the
neuron ®res. d ISI histogram. e NPE of the
original sequence and its RS, FS, and AAFT
surrogates. For each method, 100 surrogate
data were generated. The NPE of the original
sequence is signi®cantly smaller than its sur-
rogates. f The return plot of 1/ISI

Fig. 8a,b. A numerical experiment with a leaky-integrator
whereH � 1 and h�x; y; z� � 3=�1� exp�2ÿ dx=dt��. a States
of the RoÈ ssler system at the ®ring instants of the neuron
model. b The return plot of 1=ISI. This leaky integrator
shows similar dynamics with that of the neuron 2 in Fig. 7
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Nonautonomous Takens

Theorem 1. Let D and X be compact manifolds, dim(D) = d ,
dim(X ) = k ≥ 1. Let m ≥ 2d + 2k + 1, and assume the periodic
orbits of period < 2m of g : D → D are isolated and have distinct
eigenvalues. Then there exists and open, dense set of C 1 functions
f : D × X → X and h : X → R for which the m-dimensional delay
map is an embedding.

J. Stark (1999)



Nonautonomous Takens

Theorem 2. (Fiber version) Let D and X be compact manifolds,
dim(D) = d , dim(X ) = k ≥ 1. Let m ≥ 2k + 1, and assume the
periodic orbits of period < m of g : D → D are isolated and have
distinct eigenvalues. Then there exists a residual set of C 1

functions f : D × X → X and h : X → R and for any such f , h an
open dense subset of d ∈ D for which the m-dimensional delay
map is an embedding of the fiber over d .

J. Stark (1999)



Stochastic Takens
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ω = (. . . , d−1, d0, d1, . . .)
σ is shift map and xi+1 = f (xi , ω)

Goal
Reconstruct fibers over ω.



Stochastic Takens

Theorem 1. (Fiber version) Let D and X be compact manifolds,
dim(D) = d , dim(X ) = k ≥ 1. Let m ≥ 2k + 1. Then there exists
a residual set of C 1 functions f : D × X → X and h : X → R and
for any such f , h an open dense subset of ω ∈ Ω for which the
m-dimensional delay map is an embedding of the fiber over ω.

J. Stark, D. Broomhead, M. Davies, J. Huke (2003)



Stochastic Takens

Theorem 2. (Measure theoretic fiber version) Let D and X be
compact manifolds, dim(D) = d , dim(X ) = k ≥ 1, and let µ be a
probability measure on D which is absolutely continuous w.r.t.
Lebesgue. Let m ≥ 2k + 1. Then there exists a residual set of C 1

functions f : D × X → X and h : X → R and for any such f , h the
subset of ω ∈ Ω for which the m-dimensional delay map is an
embedding of the fiber over ω is full measure.

J. Stark, D. Broomhead, M. Davies, J. Huke (2003)



Driver reconstruction
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Driver reconstruction

Algorithm based on Nonautonomous Takens Theorem uses
observed time series to identify states of driver as equivalence
classes.

Equivalence classes give semi-conjugacy with driver dynamics g .

where a2 � b2 � 0:1, undergoing period-three dynamics.
The attractors X1 and X2 were reconstructed from a
length 1 K time series, using h1 � h2 to be the identity
functions, and are displayed together in Fig. 3(a). The
output A� of the algorithm is shown in Fig. 3(b). The set
A� comprises equivalence classes based on the part of X1

at upper right in Fig. 3(a). The topology of the driver A, a
circle, is reconstructed up to the discretization enforced
by the neighborhood size " set in the algorithm. Although
quasiperiodic circle dynamics is used for the sake of
clarity in this example, driving with fractal chaotic at-
tractors yields similar results (not shown).

A second example shows that the algorithm success-
fully discriminates shared behavior even when the Bi are
nearly identical but different systems. In addition, the
example shows that continuity in the dynamics is not
essential. Define the driver A to be the logistic map in
the period-three window

x ! �x�1
 x�; (3)

with � � 3:835, and let Bi; i � 1; . . . ; 4 be discontinuous
logistic maps

y ! aiy�1
 y� � bix�mod1�; (4)

where a1 � 3:81; a2 � 3:82; a3 � 3:83; a4 � 3:84, and
bi � 0:45 for all 1 � i � 4. Time series from the Bi, using
the identity function for hi, are shown in Fig. 1.

Figure 4(a) shows the skew dynamics of B1, recon-
structed from a time series of length 1 K. The remaining
Bi are not shown, but bear great similarity to B1. Despite
the similarity, the algorithm is able to correctly group all
fibers over points in the driver A. Figure 4(b) shows that
A� � A, which is the correct answer.

The efficiency of reconstructing the driver dynamics
from the response signals grows with the length of time
series, as the neighborhood size " in the algorithm can be
decreased accordingly. For example, the A� in Fig. 3(b)
can be extracted with greater resolution using a larger
data set. Efficiency also depends on the heterogeneity of
the Bi. The more alike the Bi dynamics, as in Eq. (4), the
more difficult the discrimination between fibers over A,
and the more data will be required.

Nonlinear and chaotic dynamical systems are known
for emergent properties and other obstructions to reduc-
tionist analysis. We do not expect to develop a theory of

nonlinear transfer functions analogous to the relatively
well-understood linear case. However, it is our hope that
the theorem and associated algorithms presented here
spur the development of methodologies to break down
nonlinear systems into smaller, simpler parts where pos-
sible. This kind of nonlinear network analysis will be
useful whenever less than full connectivity exists, a sce-
nario that essentially contradicts the assumptions made in
Takens’s theory. In addition to physical systems, many
biological systems where ‘‘wiring diagrams’’ are known
to connect important subsystems may provide fertile
application areas for this type of analysis.
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FIG. 4. Shared dynamics algorithm
for system (3) and (4). (a) Recon-
struction of X1 shown; X2; X3; X4 are
similar in appearance. (b) The set A�

determined by the algorithm agrees
with the period-three dynamics of the
driver A.
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Future directions

1. Under what conditions can measurements from subsystems be
used to (generically) reconstruct system dynamics?

2. Network dynamics: use multiple measurements from network
to reconstruct dynamics of network components

3. Fractal versions of nonautonomous and stochastic Takens

4. Reconstruction of leaky integrate-and-fire spike trains.

5. System identification and signal processing using multiple
spike trains.


