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Time series from dynamical system

Finite dimensional system f : X — X

f may represent difference equations or time-T map of
autonomous differential equations

Observation function h: X — R™

m = 1 univariate time series

m > 1 multivariate time series

Goal

Find invariant set and dynamics



Attractor reconstruction

Use observations to construct embedding, or at least 1-1 function,
from attractor’s phase space to some R,

Example
Periodic orbit in R3

E(x,y,z) = (x,y) to R? may or may not unfold periodic orbit

To guarantee embedding of a periodic orbit, 3 independent
observations are need, generically.



Whitney Embedding Theorem 1936

Smooth manifold A of dimension d

Whitney

There is a C! - open and dense set of maps into R+ which
embed A.

Consider m = 2d + 1 independent measurements as a map

Embedding means individual states are distinguished by the
observations



Not all attractors are manifolds!

motor and generator unit

parallel
computer
D-A

U. Dressler et al., Daimler-Benz



Fractal attractor
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Fractal attractors lead to fractal dimensions



Box counting dimension
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Box counting dimension
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N(€) = number of boxes to cover oc e~

dpoxapprox1.4



Middle-third Cantor set
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At step 1/, 2/ intervals of length 3~/ remain.

Cover set with N(e) boxes of diameter ¢
N(e) ~ e

. log N(e)
=
dbox bl log1/e

Middle-third Cantor set requires 2/ one-dim boxes of diameter
(1/3), so

log 2/ _log2

log3’  log3 ~0.63

dbox = lim



Middle-3/5 Cantor set
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At step i, 2 intervals of length 57/ remain.

dbox = log2/log5 ~ 0.43



Fractal Whitney Embedding Theorem

Theorem

Let A be a compact subset of R¥ of box-counting dimension d.

Let n be an integer, n > 2d. Then for a dense set of smooth maps
F:RK — R",

1. F is one-to-one on A

2. F is an immersion on each compact subset C of a smooth
manifold contained in A

Dense can be replaced by “prevalent”.



Fractal Whitney Embedding Theorem

Idea of proof

Assume A (compact) C R, dpox(A) = d, n > 2d.
Let F: Rk — R",

Let L = L(R*, R") denote kn-dimensional cube of linear maps.

For each pair of e-boxes By, B, C A, perturbations F’ of F by
functions from L cause By N By with probability oc €”.

A can be covered by ¢~ 9 boxes of size ¢, so there are ¢ 29 pairs to
consider.

The probability that two e-boxes intersect in the image of F' is
approximately €"729_ If n > 2d, the probability goes to 0 with e.



Intersection theory in R!

Example: Middle-third Cantor set
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Cantor set C = {.bybob3 ... in base 3: b; =0 or 2}

dbox(C) ~ 0.63



Middle third Cantor sets always overlap

C = middle third Cantor set
Let v € [0,1]. Do C and C + v intersect?

Then YL €[0,1]

1

V;r — .02112012... for example
— .01111011...+ .01001001...

v+l = .02222022...+ .02002002...

= ag+o

Therefore v+ 1 — ¢ = o.



Middle 3/5 Cantor sets almost never overlap

C = middle 3/5 Cantor set
C ={.bibybs...inbase 5: b; =0 or 4}

u u u u
0 1/5 45 1

dbox = log2/log5 ~ 0.43
Note that ...22... in v implies translates don't intersect.

Lebesgue almost every v € [0, 1] contains a 22



Hausdorff dimension

There is no corresponding Whitney result for Hausdorff dimension.

Example

There exists a set of Hausdorff dimension 0 in R™ such that all
linear projections to RX, k < m, fail to be one-to-one.

(Ittai Kan)



Univariate time series

Fractal Whitney Embedding Theorem assumes multivariate
observations.

What can be done with a single observation function h(x)?

Idea
Replace independent observations with time delays
Define H : RK — R™ by

x — [h(x), h(f—7(x), h(f-27(x), - - ., A(f_(m—1)+(x)]



Univariate time series

What can be done with a single observation function h(x)?

Are
h(Xf)7 h(Xf—T)? h(Xf—2T)7 ce

independent coordinates?

Mathematical translation
Is

H(x) = [h(x), h(f-r(x)); - - s A(F_(m-1)r (x))]

one-to-one on A for generic h: RK — R?



Univariate time series

Main question
Is

H(X) = [h(X)> h(f*T(X))7 SRR h(f—(m—l)T(X))]

one-to-one on A for generic h: R — R?

Short answer: No.

Example
Periodic orbit, period 7. For each point on the orbit,

Xt = Xt—r = Xt—27 = ...

and the orbit is projected to a line segment. H cannot be 1-1.



Univariate time series

Main question

H(X) = [h(X)v h(f,T(X)), SRR h(f—(m—l)T(X))]

one-to-one on A for generic h: Rk — R?

Example

Periodic orbit, period 27. The function

h(x) — h(F_. (x))

has at least one zero crossing xg on A. Then

h(x0) = h(F+(x0)) = h(F-2:(x0)) = h(F-3(x0)) = ...

so xp and f_,(xp) are mapped together. F cannot be 1-1.



Fractal Takens Embedding Theorem

Theorem.

Let A be a compact subset of Rk of box-counting dimension d,
invariant under diffeomorphism f. Let n be an integer, n > 2d.
Assume:

1. For every p < n, the set A, of periodic points of period p
satisfies dhox(Ap) < p/2
2. DfP has distinct eigenvalues for each of these orbits
Then for a dense set of smooth maps h: Rk — R,
1. the corresponding delay map H is one-to-one on A

2. His an immersion on each compact subset C of a smooth
manifold contained in A



Distinct eigenvalues necessary for immersion

Let x be a fixed point of f such that Df(x) has 2 linearly
independent vectors vy, vi with same eigenvalue \.

Set u = (Dh(x)vi)vo — (Dh(x)vp)vi. Then u is an eigenvalue of
Df(x) with eigenvalue A and Dh(x)u = 0.

For each 1,

D(h(f(x)))u = Dh(f(x))Df (x) - - - Df (x)u = Dh(x)\'u = 0

Therefore H(x) = [h(x), hf(x),..., hfi(x)] is not an immersion at

X.



Takens Embedding Theorem

Packard, Crutchfield, Farmer, Shaw (PRL, 1980)
Takens (1981)

Roux, Swinney (1981)

Aeyels (1981)

Sauer, Takens, Casdagli (1991 fractal version)



Time series from Lorenz system
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Belousov-Zhabotinskii reaction
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Time series from dynamical system
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Applications - Analysis

Calculating system invariants from data stream

» dimension
» often focused on correlation dimension
> + surrogate data as sanity check

» Lyapunov exponents
» Eckmann, Ruelle. Rev. Mod. Phys. 1985
» determinism tests
» Kaplan, Glass. Phys. Rev. Lett. 1992
» critical exponents, scaling laws (bifurcations, crises, etc.)
» E.g. Sommerer et al. Phys. Lett A 1991
» unstable periodic orbits (symbolic dynamics)
» Gilmore, Mindlin, Glorieux, etc.



Applications

» Time series prediction

» Noise reduction

» Control of chaos

» Tracking, targeting and goal dynamics

Coping with Chaos (Ott, Sauer, Yorke) Wiley, 1994.
Nonlinear Time Series (Kantz, Schreiber) Cambridge, 1997, 2003.

TISEAN package (Hegger, Kantz, Schreiber, 1999)



Time series prediction

Typical methodology:

Fit local linear AR model in embedding space of dynamics, using
evolution of near neighbors over short time interval. Use local
model to predict.

(Long history of nearest-neighbor prediction in statistical
literature.)

Ingredients:
» weighted linear regression (Tukey's tricubic)
» Fourier interpolation to "fatten” attractor
» Use of principal component analysis to project out noise

Time Series Prediction (Weigend, Gershenfeld) Addison-Wesley
1994.



Noise reduction

Sample technique:
Embedding threshold estimator used in Fourier frame

006

002

Delay coordinate embedding as a tool for denoising speech signals

D. Napoletani, C. Berenstein, T. Sauer, D. Struppa, D. Walnut (2005)



Control from time series reconstruction

BZ reaction in continuous-flow stirred-tank reactor (Showalter et
al., 1992)

Single measurement: Bromide electrode potential vs. time
Delay time = 13 sec.

Control parameter: reactant inflow rate (cerium/bromate solution)

RESULT: Stabilized period 1 and 2 limit cycles



Control from time series reconstruction
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Control from time series reconstruction

LETTERS TO NATURE
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Open problems in applications

Determination of directionality in coupled time series
Estimation of delay

Characterization of on-off intermittency from time series
Determinism tests

Measuring noise, observational noise, dynamical noise

Parameter and unobserved component estimation from time series
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Extensions

1. Reconstruction from spike trains
2. Nonautonomous Takens Theorem
3. Stochastic Takens Theorem

4. Driver reconstruction



1. Reconstruction from spike trains
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2. Nonautonomous Takens

d,'+1 = g(d,-) and Xi+1 = f(X,', d,')

Goal

Reconstruct D x X, recording only from X.



3. Stochastic Takens

Q=D>
w:(...,dfl,do,dl,...)

o is shift map and xj11 = f(x;,w)
Goal

Reconstruct fibers over w.




4. Driver reconstruction

fl
f2

diyi = g(d)
Xi1+1 = fl (Xila di
Xy = 04, d;

Goal
Reconstruct D, recording from Xj and Xz.



Reconstruction from spike trains
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Reconstruction from spike trains

Reconstruction coordinates are interspike intervals

[Tiz1— Ti, Tiga — Tig1, Tigz — Tigo].



Reconstruction of spike trains

Integrate and fire hypothesis

Let S(t) > 0 be a signal, © > 0 threshold.

Tin1
Define “firing times” Ty < To < T3... by/ S(t)dt =0©.
T;
Interspike intervals are T; 11 — T;.

Example. Lorenz equations

oy —x)
= pX—y—xz

z = —fpBx+xy

where ¢ =10, p = 28,3 = 8/3, 5(t) = (x + 2)2,© = 60.



Reconstruction from spike trains
Let S(t) > 0 be a signal, © > 0 threshold.

Tiy1
Define “firing times" Ty < To < T3... by/ S(t)dt =0©.
T;

Theorem. Let X = f(x) be an autonomous system of differential
equations on R¥ with compact invariant set A. Assume that A
contains at most a finite number of equilibrium points and

m > 2dyox(A). Then there is a residual set of positive-valued
output functions h for which the interspike intervals

(Tiv1—Ti, Tivo — Tigts -+, Tng1 — T

created from the integrate-and-fire hypothesis uniquely define
states of A.

T. Sauer, "Reconstruction of integrate-and-fire dynamics”, in Nonlinear
dynamics and time series: Building a bridge between the natural and statistical
sciences, Eds. C. Cutler, D. Kaplan, AMS (1997)



Subthreshold control of spike trains

Small perturbations based on spike train observations are used to
control Lorenz attractor input to integrate-and-fire generator.



Experimental control

Experimental control of a chaotic point process using interspike
intervals

G. M. Hall, S. Bahar, D. Gauthier at Duke University
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Experimental control

Experimental control of a chaotic point process using interspike

intervals

G. M. Hall, S. Bahar, D. Gauthier at Duke University
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Experimental spike train reconstruction

Encoding chaos in neural spike trains

K. Richardson, T. Imhoff, P. Grigg, J. Collins at Boston Univ.
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Experimental spike train reconstruction
Encoding chaos in neural spike trains

K. Richardson, T. Imhoff, P. Grigg, J. Collins at Boston Univ.
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Experimental spike train reconstruction
Analysis of neural spike trains with ISI reconstruction

H. Suzuki, K. Aihara, J. Murakami, T. Shimozawa at Univ. Tokyo
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Experimental spike train reconstruction

Analysis of neural spike trains with ISI reconstruction

H. Suzuki, K. Aihara, J. Murakami, T. Shimozawa at Univ. Tokyo
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Nonautonomous Takens

d,'+1 = g(d,-) and Xi+1 = f(X,', d,')

Goal

Reconstruct D x X, recording only from X.



Nonautonomous Takens

Theorem 1. Let D and X be compact manifolds, dim(D) = d,
dim(X) = k > 1. Let m > 2d + 2k + 1, and assume the periodic
orbits of period < 2m of g : D — D are isolated and have distinct
eigenvalues. Then there exists and open, dense set of C! functions
f:DxX— Xand h: X — R for which the m-dimensional delay
map is an embedding.

J. Stark (1999)



Nonautonomous Takens

Theorem 2. (Fiber version) Let D and X be compact manifolds,
dim(D) = d, dim(X) = k > 1. Let m > 2k 4+ 1, and assume the
periodic orbits of period < m of g : D — D are isolated and have
distinct eigenvalues. Then there exists a residual set of C*
functions f : D x X — X and h: X — R and for any such f  h an
open dense subset of d € D for which the m-dimensional delay
map is an embedding of the fiber over d.

J. Stark (1999)



Stochastic Takens

Q=D>
w:(...,dfl,do,dl,...)

o is shift map and xj11 = f(x;,w)
Goal

Reconstruct fibers over w.




Stochastic Takens

Theorem 1. (Fiber version) Let D and X be compact manifolds,
dim(D) = d, dim(X) = k > 1. Let m > 2k + 1. Then there exists
a residual set of C! functions f: D x X — X and h: X — R and
for any such f, h an open dense subset of w € € for which the
m-dimensional delay map is an embedding of the fiber over w.

J. Stark, D. Broomhead, M. Davies, J. Huke (2003)



Stochastic Takens

Theorem 2. (Measure theoretic fiber version) Let D and X be
compact manifolds, dim(D) = d, dim(X) = k > 1, and let u be a
probability measure on D which is absolutely continuous w.r.t.
Lebesgue. Let m > 2k + 1. Then there exists a residual set of C!
functions f : D x X — X and h: X — R and for any such f, h the
subset of w € Q for which the m-dimensional delay map is an
embedding of the fiber over w is full measure.

J. Stark, D. Broomhead, M. Davies, J. Huke (2003)



Driver reconstruction

fl
f2

diyi = g(d)
Xi1+1 = fl (Xila di
Xy = 04, d;

Goal
Reconstruct D, recording from Xj and Xz.



Driver reconstruction

Algorithm based on Nonautonomous Takens Theorem uses
observed time series to identify states of driver as equivalence
classes.

Equivalence classes give semi-conjugacy with driver dynamics g.

Sauer (2004)



Future directions

1. Under what conditions can measurements from subsystems be
used to (generically) reconstruct system dynamics?

2. Network dynamics: use multiple measurements from network
to reconstruct dynamics of network components

3. Fractal versions of nonautonomous and stochastic Takens
4. Reconstruction of leaky integrate-and-fire spike trains.

5. System identification and signal processing using multiple
spike trains.



