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Synchrony Subspaces
A polydiagonal is a subspace

∆ = {x : xc = xd for some subset of cells}

A synchrony subspace is a flow-invariant polydiagonal

Let σ = be a permutation. Then Fix(σ) is a polydiagonal

1 2

43

Fix((2 3)(1 4)) = {(x1, x2, x3, x4) : x2 = x3;x1 = x4}

Let Σ be a subgroup of network permutation
symmetries. Then Fix(Σ) is a synchrony subspace
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Coupled Cell Overview
Coupled cell system: discrete space, continuous time system
Has information that cannot be understood by phase space theory alone

symmetry synchrony and phase shifts

network architecture input sets, balanced colorings,
quotient networks

Primary Question Which aspects of coupled cell dynamics are
due to network architecture?

Beginner Question: Are all synchrony spaces fixed-point spaces?

Answer: No

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)
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Asymmetric Three-Cell Network

1 2

3
ẋ1 = f(x1, x2, x3) x1 ∈ R

k

ẋ2 = f(x2, x1, x3) x2 ∈ R
k

ẋ3 = g(x3, x1) x3 ∈ R
`

Y = {x : x1 = x2} is flow-invariant

Restrict equations ẋ1, ẋ2 to Y : ẋ1 = f(x1, x1, x3)

ẋ2 = f(x1, x1, x3)

Robust synchrony exists in networks without symmetry

Cells 1 and 2 are identical within the network
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ẋ3 = g(x3, x1) x3 ∈ R
`

Y = {x : x1 = x2} is flow-invariant
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Input Sets
Input set of cell j: the arrows that connect to cell j

Key idea: cells 1, 2 have isomorphic input sets

1 2

3

1 2

3

1

3
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Coupled Cell Network Definition
A set of cells C = {1, . . . , N}

Each cell has its own phase space

An equivalence relation on cells
Equivalent cells have the same phase space

Each cell c has set of input arrows I(c)

Arrows represent coupling

An equivalence relation on arrows
Equivalent arrows represent same coupling

Equivalent arrows have equivalent tail and head cells
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Local Network Symmetry
coupled cell networks represented by directed graphs
For each class of cells choose node symbol ©,�,4

For each class of arrows choose arrow symbol →,⇒, 

Input isomorphism is arrow type preserving bijection
β : I(c) → I(d)

Input isomorphic cells have same equations

BG = groupoid of all input isomorphisms

Coupled cell systems: ODEs that commute with BG
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Asymmetric Three-Cell Network (2)

1 2

3
ẋ1 = f(x1, x2, x3) x1 ∈ R

k

ẋ2 = f(x2, x1, x3) x2 ∈ R
k

ẋ3 = g(x3, x1) x3 ∈ R
`

Two cell types: © �

Three arrow types:

Equivalent cells 1 and 2 have same phase space R
k

Cells 1 and 2 are input isomorphic
Have same systems of differential equations f
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Balanced Coloring
Let ∆ be a polydiagonal

Color equivalent cells the same color
if cell coord’s in ∆ are equal

Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color and a
given arrow type

1 2

3

Theorem: synchrony subspace ⇐⇒ balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)
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2D-Lattice Dynamical Systems
Consider square lattice with nearest neighbor coupling
Form a two-color balanced relation

Each black cell connected to two black and two white
Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)
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Lattice Dynamical Systems (1)
On Black/White diagonal interchange black and white

Result is balanced

Continuum of different synchrony subspaces
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Lattice Dynamical Systems (2)
There are eight isolated balanced two-colorings on
square lattice with nearest neighbor coupling

4B →W ; 4W → B 2B →W ; 4W → B 1B →W ; 4W → B 3B →W ; 3W → B

2B →W ; 3W → B 2B →W ; 1W → B 2B →W ; 1W → B 1B →W ; 1W → B

Wang and G. (2004) indicates nonsymmetric solution
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Lattice Dynamical Systems (3)
There are two infinite families of balanced two-colorings

2B →W ; 2W → B 1B →W ; 3W → B

Up to symmetry these are all balanced two-colorings
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Lattice Dynamical Systems (4)
Architecture is really important

For square lattice with nearest and next nearest
neighbor coupling

No infinite families

For each k a finite number of balanced k colorings

All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)
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NEAREST NEIGHBOR NEXT NEAREST NEIGHBOR

W0 = {0} and Wi+1 = I(Wi)

Input set of U = I(U) = {c ∈ C : c connects to cell in U}

L = W0 ∪ W1 ∪ · · ·

Wk−1 contains all k colors of a balanced k-coloring
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Windows 2
bd(U) = I(U) r U

c ∈ bd(U) is 1-determined if color of c is determined by
colors of cells in U and fact that coloring is balanced

Define p-determined inductively

All NN boundary cells are not 1-determined

NNN boundary cells are 1- or 2-determined
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Windows 3: Square Lattice
Nearest and next nearest
neighbor coupling

Black • indicates cells
whose colors are known

× indicates
1-determined cells of W2 ◦
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• Three cells in corners of square are 2-determined
• U determines its boundary if all c ∈ bd(U) are

p-determined for some p

• Wi determines its boundary for all i ≥ 2
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Windows 4
Square lattice with Nearest neighbor coupling

W2 is not 1-determined
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Windows 5
Wi0 is a window if Wi determines its boundary ∀ i > i0

Suppose a balanced k-coloring restricted to int(Wi) for
some i > i0 contains all k colors. Then

k-coloring is uniquely determined on whole lattice by
its restriction to Wi

Thm: Suppose lattice network has window. Fix k. Then

Finite number of balanced k-colorings on L

Each balanced k-coloring is multiply-periodic

Antoneli, Dias, G., and Wang (2004)
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Quotients: Self-Coupling & Multiarrows

Balanced two-coloring of bidirectional ring

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x3, x1) where f(x, y, z) = f(x, z, y)

ẋ3 = f(x3, x1, x2)

Quotient network:

ẋ1 = f(x1, x1, x3)

ẋ3 = f(x3, x1, x1) where f(x, y, z) = f(x, z, y)
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ẋ2 = f(x2, x3, x1) where f(x, y, z) = f(x, z, y)
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Quotient Networks
Given cell network C and balanced coloring ./

Define quotient network:
C./ = {c : c ∈ C} = C/ ./

Quotient arrows are projections of C arrows

Thm: Admissible DE restricts to quotient admissible DE
Quotient admissible DE lifts to admissible DE

G., Stewart, and Török (2005)
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Multiple Equilibria in LDE

Recall
balanced
relation

LDE on square lattice has form

ẋij = f(xij, xi+1,j , xi−1,j , xi,j+1, xi,j−1)

Quotient network: Ḃ = f(B,B,B,W,W )

Ẇ = f(W,W,W,B,B)

All quotient networks in continuum are identical
One equilibrium implies a continuum of equilibria
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Asym Network; Symmetric Quotient

1

2

3

4

5

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

2

4

5

1 3

Quotient is bidirectional 3-cell ring with D3 symmetry

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.02

0

0.02

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.02

0

0.02

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.5

0

0.5

0 5 10 15
−0.02

0

0.02

– p. 24/30
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Population Models
Cell system is homogeneous if cells are input equivalent
Cell system has identical edges if all arrows are equivalent
Cell system is regular if homogeneous & identical edges

Any quotient of a regular network is regular
Two networks are ODE-equivalent if they have the same
admissible vector fields. For example

1 2 1 2

ẋ1 = f(x1, x2)

ẋ2 = f(x2, x1)
and ẋ1 = g(x1, x1, x2)

ẋ2 = g(x2, x2, x1)

g(a, b, c) = f(a, c) and f(a, b) = g(a, a, b)
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Regular Two-cell Networks

m1

m2

k1 k2

1 2

valency = # inputs in each cell n = k1 + m1 = k2 + m2

WLOG k1 ≤ k2

Dias & Stewart: Two networks are ODE-equivalent
if their linear admissible vector fields are identical
Up to ODE-equivalence, can assume k1 = 0 and m1 = n

There are three two-cell networks with valency 1 or 2
1 2 1 2 12

Lift 3 1 2
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Regular Three Cell Networks

1

23

a13

a33

a32

a21

a12 a22

a31

a11

a23

aij = number of inputs cell i receives from cell j

Valency = n = total number of inputs per cell

ai1 + ai2 + ai3 = n for j = 1, 2, 3

Up to ODE-equivalence there are

34 regular three-cell valency 2 networks

Leite and G. (2005)
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Asymptotically Stable Equilibria
Theorem: Given balanced k-coloring with polydiagonal
∆ and X0 ∈ ∆. Then X0 is an asymptotically stable
equilibrium for some admissible system

Can assume homogeneous network with 1D dynamics

X0 has at most k distinct coordinates with distinct values
x1

0, . . . , x
`
0. Choose interpolation polynomial g such that

g(xi
0) = 0 and g′(xi

0) = −1 for 1 ≤ i ≤ `

Then system ẋi = g(xi) has equilibrium at X0 with
Jacobian equal to −I.
So X0 is asymptotically stable equilibrium
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Detection of Patterns by Equilibria

Let X0 = (x0
1, . . . , x

0
N ). Let

∆X0
= {x : xc = xd iff c ∼C d and x0

c = x0
d}

∆X0
is the smallest polydiagonal that contains all points

with the same pattern of synchrony.

Let X0 be a hyperbolic equilibrium of a C1 admissible
cell system. The pattern of synchrony defined by X0 is
rigid if in each C1 perturbed admissible system the
hyperbolic equilibrium near X0 remains in ∆X0

Theorem: The equilibrium X0 is rigid if and only if the
coloring associated to ∆X0

is balanced
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Network Summary
synchrony iff polydiagonal flow-invariant

iff balanced
iff quotient network

different kind of pattern formation

genericity in quotient network
implies

genericity in original network
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