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Synchrony Subspaces

f # A polydiagonal is a subspace T

A={x:x.=1x4 forsome subset of cells}

#® A synchrony subspace IS a flow-invariant polydiagonal
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Synchrony Subspaces

A polydiagonal is a subspace T
A={x:x.=1x4 forsome subset of cells}

A synchrony subspace Is a flow-invariant polydiagonal

Let o = be a permutation. Then Fix(o) is a polydiagonal

H=—

| ]

D=0
Fix((23)(14)) = {(x1,r2,23,24) : T2 = x3; 71 = T4}

Let X be a subgroup of network permutation
symmetries. Then Fix(X) is a synchrony subspace J
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Coupled Cell Overview

fCoupIed cell system: discrete space, continuous time system T
Has information that cannot be understood by phase space theory alone

» symmetry synchrony and phase shifts

iInput sets, balanced colorings,

» network architecture .
quotient networks

LStewart, G., and Pivato (2003); G., Stewart, and Torok (2005) J

—n. 4/-



Coupled Cell Overview

fCoupIed cell system: discrete space, continuous time system T
Has information that cannot be understood by phase space theory alone

» symmetry synchrony and phase shifts

iInput sets, balanced colorings,

» network architecture .
quotient networks

Which aspects of coupled cell dynamics are

» Primary Question
Y due to network architecture?

® Beginner Question:  Are all synchrony spaces fixed-point spaces?

Answer: No

LStewart, G., and Pivato (2003); G., Stewart, and Térok (2005)
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Asymmetric Three-Cell Network
-

-3
/ \ r1 = f(ajl,itz,ibg) T < R
@ @ Ty = f(aig, T, :Cg) T9 € Rk
t3 = g(x3, 1) z3 € RY



-

Asymmetric Three-Cell Network

13
RN 1 =
\ 0

D@ 5

® Y ={x:x; =z} Is flow-invariant

Restrict equations 7,79 to Y':

# Robust synchrony exists in networks without symmetry

=

f(ajl,itg,ibg) Tr1 € Rk
f(ajg,itl,ibg) Tro & Rk

g(xs, 1)
1 = f(x1,71,73)
j32 — f(flfl,llfl,ﬂfg)

® Cells 1 and 2 are identical within the network

LEgERe

-
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Input Sets
-

® Input set of cell j:  the arrows that connect to cell j

o Key idea: cells 1, 2 have isomorphic input sets

—n. B/~



Coupled Cell Network Definition
-

® Asetofcells C={1,...,N} T

Each cell has its own phase space

#® An equivalence relation on cells

Equivalent cells have the same phase space



Coupled Cell Network Definition

Asetofcells C={1,...,N} T

Each cell has its own phase space

An equivalence relation on cells

Equivalent cells have the same phase space

Each cell ¢ has set of input arrows 1(c)

Arrows represent coupling

An equivalence relation on arrows

Equivalent arrows represent same coupling
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Coupled Cell Network Definition
C={1,....N)} -

Each cell has its own phase space

A set of cells

An equivalence relation on cells

Equivalent cells have the same phase space

Each cell ¢ has set of input arrows 1(c)

Arrows represent coupling

An equivalence relation on arrows

Equivalent arrows represent same coupling

Equivalent arrows have equivalent tail and head cells J
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Local Network Symmetry

o .

# coupled cell networks represented by directed graphs
For each class of cells choose node symbol (), [, A

For each class of arrows choose arrow symbol —, =, ~~
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Local Network Symmetry
-

coupled cell networks represented by directed graphs
For each class of cells choose node symbol (), [, A

For each class of arrows choose arrow symbol —, =, ~~

Input isomorphism is arrow type preserving bijection
B:1(c) — I(d)

Input isomorphic cells have same equations
B¢ = groupoid of all input isomorphisms

Coupled cell systems: ODEs that commute with B¢

-
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Asymmetric Three-Cell Network (2)
B o

3

/ \ 1 = f(z1,72,23) 71 € R*

| To = f(x2,$1,$3) Tro & Rk

@ - @ 3 = g(3,71) r3 € R
o Two cell types: O O

Three arrow types:

# Equivalent cells 1 and 2 have same phase space RF*

o Cells 1 and 2 are input isomorphic
Have same systems of differential equations f

o -
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Balanced Coloring

f # |et A be a polydiagonal T

# Color equivalent cells the same color
if cell coord’s in A are equal

# Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color and a
given arrow type

~ Stewart, G., and Pivato (2003); G., Stewart, and Térok (2005) .
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Balanced Coloring

f # |et A be a polydiagonal T

# Color equivalent cells the same color
if cell coord’s in A are equal

# Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color and a
given arrow type

N
o @

~ Stewart, G., and Pivato (2003); G., Stewart, and Térok (2005) .
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Balanced Coloring

f # |et A be a polydiagonal T

# Color equivalent cells the same color
if cell coord’s in A are equal

# Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color and a
given arrow type

N
o @

® Theorem: synchrony subspace <— balanced
~ Stewart, G., and Pivato (2003); G., Stewart, and Térok (2005) .
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2D-Lattice Dynamical Systems

f’ Consider square lattice with nearest neighbor coupling T

® Form a two-color balanced relation

< -—

o

Eans

o

Ean.

—O—0—0—0—0—0—0—0—

Eans

Eans

Eans

Eans

Eans

o

Eans

Eans

Eans

Eans

o

o

o

o

e H I e i R P e I

Eans

o

-

Eans

o

o

o

o

Eans

Eans

Eans

Eans

® Each black cell connected to two black and two white

Each white cell connected to two black and two white

-

\_Stewart, G. and Nicol (2004)
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Lattice Dynamical Systems (1)

f # On Black/White diagonal interchange black and white T

B——E——B——8—
R IR S TS S NS S

Nl —[]
H I S R N
N~ E—[] 8 —]
H I S T R
B——N——8——8—]
roINg L]
T TNl 1Ty
AN
11T NI T
m——E—0— —0
B——E——~B——8—
A I S TS S RS S

) —E— ]l —[]
H I S R R
B—N—E——~B—]—8—]
H I N T R
B —W——8——8—
o INd Pl
N
AN
11T NI T
m——E—0— —0
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Result is balanced



Lattice Dynamical Systems (1)

.
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f # On Black/White diagonal interchange black and white T
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Lattice Dynamical Systems (2)

fThere are eight isolated balanced two-colorings on T
square lattice with nearest neighbor coupling

BEEEEE]
5 EEEER
EEE N
HEE o
EEEEEREE
5 EEEER
EEE N
N N
BEEEEHE)
5 EEEEE
EEE u
o EE u
BEEEENE)
5 EEEEE
EEE B |
RN N
4B — W:;4W — B 2B - W;4W — B 3B —-W;3W — B

2B - W:3W - B 2B—W:1W =B 2B — W:;1W — B 1B — W;1W — B

~ Wang and G. (2004) indicates nonsymmetric solution
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Lattice Dynamical Systems (3)

o .

# There are two infinite families of balanced two-colorings

2B —- W;2W — B 1B — W;3W — B

# Up to symmetry these are all balanced two-colorings

o -
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Lattice Dynamical Systems (4)

o .

# Architecture is really important

Antoneli, Dias, G., and Wang (2004)



Lattice Dynamical Systems (4)

o .

# Architecture is really important

# For square lattice with nearest and next nearest
neighbor coupling

» No infinite families
s For each £ a finite number of balanced k colorings

s All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)

—n. 15/~



O
O
O
O

O

NEAREST NEIGHBOR

Wo = {0}

® Inputsetof U =1(U) ={ceC:c connectsto cellin U}

Windows 1

O O O
O O

O O
O O O

® L=WguUuWiuU---

# W, 4 contains all £ colors of a balanced k-coloring

.

O O O O

O

O O O O

O

O O O
¢« o o

N | 7

71N\
¢ ®

o O O

O O O O

O

NEXT NEAREST NEIGHBOR

and Wz'_|_1 = ](Wz)

-
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Windows 2
-

® bd(U)=IU)\U -
c € bd(U) is 1-determined if color of ¢ is determined by

colors of cells in U and fact that coloring is balanced

# Define p-determined inductively
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Windows 2
-

® bd(U)=IU)\U -
c € bd(U) is 1-determined if color of ¢ is determined by

colors of cells in U and fact that coloring is balanced
# Define p-determined inductively

# All NN boundary cells are not 1-determined

NNN boundary cells are 1- or 2-determined

—n. 17/~



Windows 3: Square Lattice
-

fNearest and next nearest
neighbor coupling

Black e indicates cells
whose colors are known

x Indicates
1-determined cells of W5

O O O O O O 0O O O
O O O X X X O O O
O O © @ @ @ @ O O
O X © © @ @ @ X O
O X © © @ @ @ X O
O X © © @ @ @ X O
O O © @ @ @ @@ O O
O O O X X ® O O O
O O O O O O O O O
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Windows 3: Square Lattice
-

fNearest and next nearest
neighbor coupling

Black e indicates cells
whose colors are known

x Indicates
1-determined cells of W5

O O O O O O 0O O O
O O O X X X O O O
O O © @ @ @ @ O O
O X © © @ @ @ X O
O X © © @ @ @ X O
O X © © @ @ @ X O
O O © @ @ @ @@ O O
O O O X X ® O O O
O O O O O O O O O

e Three cells in corners of square are 2-determined

o -
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Windows 3: Square Lattice
-

fNearest and next nearest
neighbor coupling

Black e indicates cells
whose colors are known

x Indicates
1-determined cells of W5

O O O O O O 0O O O
O O O X X X O O O
O O © @ @ @ @ O O
O X © © @ @ @ X O
O X © © @ @ @ X O
O X © © @ @ @ X O
O O © @ @ @ @@ O O
O O O X X ® O O O
O O O O O O O O O

e Three cells in corners of square are 2-determined

e U determines its boundary if all ¢ € bd(U) are
p-determined for some p

L. W; determines its boundary for all i > 2 J
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Windows 4

quuare lattice with Nearest neighbor coupling

W5 is not 1-determined

ONONONONONONONONG,
O0O0OO0OXOOOO
O0OO0OX@eXOOO
OO0OX®®®XOO
ol N N N N J:¥e)
O0OX®®®XOO
OO0OO0OX@eXOOO
O0O0OO0OXOOOO
O ONONONONONONONG,
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Windows 5

o .

o W, is a window if W; determines its boundary V i > i

# Suppose a balanced k-coloring restricted to int(W;) for
some ¢ > ip contains all £ colors. Then

s k-coloring is uniquely determined on whole lattice by
its restriction to W;

# Thm: Suppose lattice network has window. Fix k. Then

s Finite number of balanced k-colorings on £
s Each balanced k-coloring is multiply-periodic

LAntoneIi, Dias, G., and Wang (2004) J
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Quotients: Self-Coupling & Multiarrows

B o
TN
e
» Balanced two-coloring of bidirectional ring o
1 = f(z1,72,73)
Ty = f(an:ESa:El) where f(ZC,y,Z) — f(ZC,Z,y)
3 = [f(xs, 21,72



Quotients: Self-Coupling & Multiarrows

o o .

Ny
e
» Balanced two-coloring of bidirectional ring @
1 = f(x1,22,73)
jJQ — f(x273337331) Where f(xayaz):f(xazay)
3 = f(x3,71,72)
#® Quotient network: C‘%‘
1 = flo1, 21, 23)

j33 — f(x?)axlaxl) Where f(xayaz):f(xazay)

o -



Quotient Networks

o .

# Given cell network C and balanced coloring <
o Define quotient network:

o Ca={c:ceC}=C/x

» Quotient arrows are projections of C arrows

o Thm: Admissible DE restricts to quotient admissible DE
Quotient admissible DE lifts to admissible DE

G., Stewart, and Torok (2005)

o -
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Multiple Equilibria in LDE
B : : o

Recall - -

: - CO=00

® balanced
relation - -

—{J— = —E—[—E—[]—H0—
] B—=—0——0—]—0—
o B—={—0—[—0—[]—0—
] =L ]—0—[]—0—[]—0—
] B—=—0——0—]—H0—
o B—={—0—[]—0—[]—0—
] =L ]—0—[]—0—[]—0—
alibeg dlibed Roglibed Rodlibed Bod

# LDE on square lattice has form

Tij = f(Tij, Tit1,j, Ti-1,5> Tij+1, Ti,j—1)

® Quotient network: B = f(B,B,B,W,W)
W = f(W,W.W.B.,B)

# All quotient networks in continuum are identical
L One equilibrium implies a continuum of equilibria J
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Asym Network; Symmetric Quotient

# Quotient is bidirectional 3-cell ring with D3 symmetry




Asym Network; Symmetric Quotient

o ®
- H I ‘ -
o )
/ L / \
NN ot
& & o o
# Quotient is bidirectional 3-cell ring with D3 symmetry
A Va2 VaVaVaVa
TAAAAAAAAAAAN
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Population Models

system is homogeneous if cells are input equivalent T
system has identical edges if all arrows are equivalent
system is regular if homogeneous & identical edges
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Population Models

f # Cell system is homogeneous if cells are input equivalent T
# Cell system has identical edges if all arrows are equivalent

# Cell system is regular if homogeneous & identical edges
# Any quotient of a regular network is regular
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Population Models

Cell system is homogeneous if cells are input equivalent T
Cell system has identical edges if all arrows are equivalent
Cell system is regular if homogeneous & identical edges

Any quotient of a regular network is regular

© o o o 0

Two networks are ODE-equivalent if they have the same
admissible vector fields. For example

50 @
= g(r1, 21, 372)

o= flz,2) and
Ty = f(xe,71) iz = g(x2,72,21)

g(a,b,c) = f(a,c) and f(a,b) = g(a,a,b)

o -
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-

o

°

Regular Two-cell Networks

k; % T
valency = # inputs In each cell n = k1 + m1 = ko + mo

WLOG k1 < k9

Dias & Stewart: Two networks are ODE-equivalent
iIf their linear admissible vector fields are identical

Up to ODE-equivalence, can assume ky =0and m; =n
There are three two-cell networks with valency 1 or 2

O=—=0C) (O—@ CeO=U
Lift C=)—) o
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Regular Three Cell Networks

ajq
2
ay 1

a3
SoArta o)

d3n

® a;; = number of inputs cell : receives from cell j
# \Valency = n = total number of inputs per cell
a;1 + a9 +a;3 =n for j=1,2.3

o Up to ODE-equivalence there are

34 reqular three-cell valency 2 networks

u_eite and G. (2005) J
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Asymptotically Stable Equilibria
-

Theorem: Given balanced k-coloring with polydiagonal
A and Xy € A. Then X is an asymptotically stable
equilibrium for some admissible system

Can assume homogeneous network with 1D dynamics

Xo has at most £ distinct coordinates with distinct values
zg, ..., z5. Choose interpolation polynomial ¢ such that

glz))=0 and g(z))=—-1 for1<i</

Then system z; = ¢g(z;) has equilibrium at X, with
Jacobian equal to —1.

So X Is asymptotically stable equilibrium

—Dn. 28/



Detection of Patterns by Equilibria
- o

® Let Xy = (x(l)v e 737(])\7) Let
Ax, ={r: 2, =24iff c~odand 20 = 29}

Ax, Is the smallest polydiagonal that contains all points
with the same pattern of synchrony.

® Let X, be a hyperbolic equilibrium of a C'' admissible
cell system. The pattern of synchrony defined by X is
rigid if in each C! perturbed admissible system the
hyperbolic equilibrium near Xy remains in Ay,

# Theorem: The equilibrium Xj is rigid if and only if the
coloring associated to Ay, Is balanced

o -
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Network Summary

o .

# synchrony iff polydiagonal flow-invariant
iff balanced
Iff quotient network
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Network Summary

o .

# synchrony iff polydiagonal flow-invariant
iff balanced
Iff quotient network

# different kind of pattern formation
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Network Summary

o .

# synchrony iff polydiagonal flow-invariant
iff balanced
Iff quotient network

# different kind of pattern formation
® genericity in quotient network

implies
genericity in original network

—n. 30/~
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