Coupled Systems: Theory & Examples

Lecture 2

Synchrony and Balanced Coloring

Reference: Golubitsky and Stewart. Nonlinear dynamics of networks: the groupoid formalism. *Bull. Amer. Math. Soc.* **43** No. 3 (2006) 305–364

Martin Golubitsky Department of Mathematics University of Houston http://www.math.uh.edu/~mg/

Thanks

Ian Stewart Warwick

Fernando Antoneli Ana Dias Maria Leite Matthew Nicol Marcus Pivato Andrew Török Yunjiao Wang Sao Paulo Porto Purdue Houston Trent Houston Houston

Synchrony Subspaces

A polydiagonal is a subspace

 $\Delta = \{ x : x_c = x_d \quad \text{for some subset of cells} \}$

A synchrony subspace is a flow-invariant polydiagonal

Synchrony Subspaces

A polydiagonal is a subspace

 $\Delta = \{ x : x_c = x_d \quad \text{for some subset of cells} \}$

- A synchrony subspace is a flow-invariant polydiagonal
- Let σ = be a permutation. Then $Fix(\sigma)$ is a polydiagonal

• Fix((23)(14)) = { $(x_1, x_2, x_3, x_4) : x_2 = x_3; x_1 = x_4$ }

• Let Σ be a subgroup of network permutation symmetries. Then $Fix(\Sigma)$ is a synchrony subspace

Coupled Cell Overview

Coupled cell system: discrete space, continuous time system Has information that cannot be understood by phase space theory alone

- symmetry synchrony and phase shifts
- network architecture input sets, balanced colorings, quotient networks

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Coupled Cell Overview

Coupled cell system: discrete space, continuous time system Has information that cannot be understood by phase space theory alone

- symmetry synchrony and phase shifts
- network architecture input sets, balanced colorings, quotient networks
- Primary Question
 Which aspects of coupled cell dynamics are due to network architecture?
- Beginner Question: Are all synchrony spaces fixed-point spaces? Answer: No

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Asymmetric Three-Cell Network

 $\dot{x}_1 = f(x_1, x_2, x_3) \quad x_1 \in \mathbf{R}^k$ $\dot{x}_2 = f(x_2, x_1, x_3) \quad x_2 \in \mathbf{R}^k$ $\dot{x}_3 = g(x_3, x_1) \quad x_3 \in \mathbf{R}^\ell$

Asymmetric Three-Cell Network

• $Y = \{x : x_1 = x_2\}$ is flow-invariant Restrict equations \dot{x}_1, \dot{x}_2 to Y: $\dot{x}_1 = f(x_1, x_1, x_3)$ $\dot{x}_2 = f(x_1, x_1, x_3)$

- Robust synchrony exists in networks without symmetry
- Cells 1 and 2 are identical within the network

Input Sets

- Input set of cell j: the arrows that connect to cell j
- Key idea: cells 1, 2 have isomorphic input sets

Coupled Cell Network Definition

- A set of *cells* $C = \{1, ..., N\}$ Each cell has its own phase space
- An equivalence relation on cells
 Equivalent cells have the same phase space

Coupled Cell Network Definition

- A set of *cells* $C = \{1, ..., N\}$ Each cell has its own phase space
- An equivalence relation on cells
 Equivalent cells have the same phase space
- Each cell c has set of input arrows I(c)
 Arrows represent coupling
- An equivalence relation on arrows
 Equivalent arrows represent same coupling

Coupled Cell Network Definition

- A set of *cells* $C = \{1, ..., N\}$ Each cell has its own phase space
- An equivalence relation on cells
 Equivalent cells have the same phase space
- Each cell c has set of input arrows I(c)
 Arrows represent coupling
- An equivalence relation on arrows
 Equivalent arrows represent same coupling
- Equivalent arrows have equivalent tail and head cells

Local Network Symmetry

coupled cell networks represented by directed graphs
 For each class of cells choose node symbol ○, □, △
 For each class of arrows choose arrow symbol →, ⇒, →

Local Network Symmetry

- coupled cell networks represented by directed graphs
 For each class of cells choose node symbol ○, □, △
 For each class of arrows choose arrow symbol →, ⇒, →
- Input isomorphism is arrow type preserving bijection $\beta: I(c) \to I(d)$

Input isomorphic cells have same equations

- **\square** \mathcal{B}_G = groupoid of all input isomorphisms
- Coupled cell systems: ODEs that commute with \mathcal{B}_G

Asymmetric Three-Cell Network (2)

- $\dot{x}_1 = f(x_1, x_2, x_3) \quad x_1 \in \mathbf{R}^k$ $\dot{x}_2 = f(x_2, x_1, x_3) \quad x_2 \in \mathbf{R}^k$ $\dot{x}_3 = g(x_3, x_1) \qquad x_3 \in \mathbf{R}^\ell$
- Two cell types:
 Three arrow types:
- Equivalent cells 1 and 2 have same phase space \mathbf{R}^k
- Cells 1 and 2 are input isomorphic
 Have same systems of differential equations *f*

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color and a given arrow type

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color and a given arrow type

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color and a given arrow type

● Theorem: synchrony subspace ↔ balanced
Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

2D-Lattice Dynamical Systems

- Consider square lattice with nearest neighbor coupling
- Form a two-color balanced relation

Each black cell connected to two black and two white Each white cell connected to two black and two white

Lattice Dynamical Systems (1)

On Black/White diagonal interchange black and white

Result is **balanced**

Lattice Dynamical Systems (1)

On Black/White diagonal interchange black and white

Result is **balanced**

Continuum of different synchrony subspaces

Lattice Dynamical Systems (2)

There are eight isolated balanced two-colorings on square lattice with nearest neighbor coupling

 $4B \to W; 4W \to B$

 $2B \to W; 4W \to B$

 $1B \to W; 4W \to B$

 $3B \to W; 3W \to B$

 $2B \to W; 3W \to B$

 $2B \to W; 1W \to B$

 $2B \to W; 1W \to B$

 $1B \to W; 1W \to B$

Wang and G. (2004)

indicates nonsymmetric solution

Lattice Dynamical Systems (3)

There are two infinite families of balanced two-colorings

//		/	/	/	/		/	/	/	/	/	/	/	/
/ /	/	/	/	/	/	/	/	/	/	/	/	/	/	/
/ /		/	/	/	/	/	/	/	/	/	/	/	/	/
		/	/	/	/	/	/	/	/	/	/	/	/	/
/ /		/	/	/	/	/	/	/	/	/	/	/	/	/
//	/	/	/	/	/	/	/	/	/	/	/	/	/	/
			/	/	/		/	/		/	/		/	/
			/							/				

 $2B \to W; 2W \to B$

Up to symmetry these are all balanced two-colorings

Lattice Dynamical Systems (4)

Architecture is really important

Antoneli, Dias, G., and Wang (2004)

Lattice Dynamical Systems (4)

- Architecture is really important
- For square lattice with nearest and next nearest neighbor coupling
 - No infinite families
 - For each k a finite number of balanced k colorings
 - All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)

$$W_0 = \{0\}$$
 and $W_{i+1} = I(W_i)$

Input set of $U = I(U) = \{c \in \mathcal{C} : c \text{ connects to cell in } U\}$

• W_{k-1} contains all k colors of a balanced k-coloring

• $\operatorname{bd}(U) = I(U) \smallsetminus U$

 $c \in bd(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced

Define *p*-determined inductively

• $\operatorname{bd}(U) = I(U) \smallsetminus U$

 $c \in bd(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced

- Define *p*-determined inductively
- All NN boundary cells are not 1-determined NNN boundary cells are 1- or 2-determined

Windows 3: Square Lattice

Nearest and next nearest neighbor coupling

Black • indicates cells whose colors are known

 \times indicates 1-determined cells of W_2

Windows 3: Square Lattice

Nearest and next nearest neighbor coupling

Black • indicates cells whose colors are known

 \times indicates **1-determined** cells of W_2

• Three cells in corners of square are 2-determined

Windows 3: Square Lattice

Nearest and next nearest neighbor coupling

Black • indicates cells whose colors are known

 \times indicates **1-determined** cells of W_2

- Three cells in corners of square are 2-determined
- U determines its boundary if all $c \in bd(U)$ are p-determined for some p
- W_i determines its boundary for all $i \geq 2$

Square lattice with Nearest neighbor coupling

 W_2 is not 1-determined

- W_{i_0} is a window if W_i determines its boundary $\forall i \ge i_0$
- Suppose a balanced *k*-coloring restricted to int(*W_i*) for some *i* ≥ *i*₀ contains all *k* colors. Then
 - *k*-coloring is uniquely determined on whole lattice by its restriction to W_i
- **•** Thm: Suppose lattice network has window. Fix k. Then
 - Finite number of balanced k-colorings on \mathcal{L}
 - Each balanced k-coloring is multiply-periodic

Antoneli, Dias, G., and Wang (2004)

Quotients: Self-Coupling & Multiarrows

Balanced two-coloring of bidirectional ring

$$\dot{x}_1 = f(x_1, x_2, x_3)$$

 $\dot{x}_2 = f(x_2, x_3, x_1)$
 $\dot{x}_3 = f(x_3, x_1, x_2)$

where f(x, y, z) = f(x, z, y)

Quotients: Self-Coupling & Multiarrows

Balanced two-coloring of bidirectional ring

$$\dot{x}_1 = f(x_1, x_2, x_3)$$

 $\dot{x}_2 = f(x_2, x_3, x_1)$
 $\dot{x}_3 = f(x_3, x_1, x_2)$

where
$$f(x, y, z) = f(x, z, y)$$

Quotient network:

 $\dot{x}_1 = f(x_1, x_1, x_3)$

 $\dot{x}_3 = f(x_3, x_1, x_1)$ where f(x, y, z) = f(x, z, y)

Quotient Networks

Given cell network C and balanced coloring

- Define *quotient network*:
 - $\mathbf{C}_{\bowtie} = \{ \overline{c} : c \in \mathcal{C} \} = \mathcal{C} / \bowtie$
 - Quotient arrows are projections of C arrows
- Thm: Admissible DE restricts to quotient admissible DE Quotient admissible DE lifts to admissible DE
- G., Stewart, and Török (2005)

Multiple Equilibria in LDE

LDE on square lattice has form

$$\dot{x}_{ij} = f(x_{ij}, \overline{x_{i+1,j}, x_{i-1,j}, x_{i,j+1}, x_{i,j-1}})$$

- Quotient network: $\dot{B} = f(B, \overline{B, B, W, W})$ $\dot{W} = f(W, \overline{W, W, B, B})$
- All quotient networks in continuum are identical One equilibrium implies a continuum of equilibria

Asym Network; Symmetric Quotient

• Quotient is bidirectional 3-cell ring with D_3 symmetry

Asym Network; Symmetric Quotient

• Quotient is bidirectional 3-cell ring with D_3 symmetry

Population Models

- Cell system is homogeneous if cells are input equivalent
- Cell system has identical edges if all arrows are equivalent
- Cell system is regular if homogeneous & identical edges

Population Models

- Cell system is homogeneous if cells are input equivalent
- Cell system has identical edges if all arrows are equivalent
- Cell system is regular if homogeneous & identical edges
- Any quotient of a regular network is regular

Population Models

- Cell system is homogeneous if cells are input equivalent
- Cell system has identical edges if all arrows are equivalent
- Cell system is regular if homogeneous & identical edges
- Any quotient of a regular network is regular
- Two networks are ODE-equivalent if they have the same admissible vector fields. For example

$$1 \xrightarrow{2} 2$$

$$\dot{x}_{1} = f(x_{1}, x_{2})$$

$$\dot{x}_{2} = f(x_{2}, x_{1})$$

$$g(a, b, c) = f(a, c)$$

$$() \xrightarrow{1} \xrightarrow{2} 2$$

$$\dot{x}_{1} = g(x_{1}, x_{1}, x_{2})$$

$$\dot{x}_{1} = g(x_{1}, x_{1}, x_{2})$$

$$\dot{x}_{2} = g(x_{2}, x_{2}, x_{1})$$

$$f(a, b) = g(a, a, b)$$

Regular Two-cell Networks

- valency = # inputs in each cell $n = k_1 + m_1 = k_2 + m_2$
- WLOG $k_1 \leq k_2$
- Dias & Stewart: Two networks are ODE-equivalent if their linear admissible vector fields are identical
- Up to ODE-equivalence, can assume $k_1 = 0$ and $m_1 = n$

2

2

2

There are three two-cell networks with valency 1 or 2

1

3

2

Regular Three Cell Networks

• a_{ij} = number of inputs cell *i* receives from cell *j*

• Valency = n = total number of inputs per cell

 $a_{i1} + a_{i2} + a_{i3} = n$ for j = 1, 2, 3

Up to ODE-equivalence there are

34 regular three-cell valency 2 networks

Leite and G. (2005)

Asymptotically Stable Equilibria

- Theorem: Given balanced k-coloring with polydiagonal Δ and $X_0 \in \Delta$. Then X_0 is an asymptotically stable equilibrium for some admissible system
- Can assume homogeneous network with 1D dynamics
- X_0 has at most k distinct coordinates with distinct values $x_0^1, \ldots, x_0^{\ell}$. Choose interpolation polynomial g such that

$$g(x_0^i) = 0$$
 and $g'(x_0^i) = -1$ for $1 \le i \le \ell$

• Then system $\dot{x_i} = g(x_i)$ has equilibrium at X_0 with Jacobian equal to -I.

So X_0 is asymptotically stable equilibrium

Detection of Patterns by Equilibria

• Let
$$X_0 = (x_1^0, \dots, x_N^0)$$
. Let

$$\Delta_{X_0} = \{ x : x_c = x_d \text{ iff } c \sim_C d \text{ and } x_c^0 = x_d^0 \}$$

 Δ_{X_0} is the smallest polydiagonal that contains all points with the same pattern of synchrony.

- Let X_0 be a hyperbolic equilibrium of a C^1 admissible cell system. The pattern of synchrony defined by X_0 is rigid if in each C^1 perturbed admissible system the hyperbolic equilibrium near X_0 remains in Δ_{X_0}
- Theorem: The equilibrium X_0 is rigid if and only if the coloring associated to Δ_{X_0} is balanced

Network Summary

synchrony

iff

iff polydiagonal flow-invariant iff balanced quotient network

Network Summary

- synchrony iff polydiagonal flow-invariant iff balanced iff quotient network
- different kind of pattern formation

Network Summary

- synchrony iff polydiagonal flow-invariant iff balanced iff quotient network
- different kind of pattern formation
- genericity in quotient network implies genericity in original network