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Introduction

First we consider some simple examples of nonlinear equations, in order to
motivate the numerical methods discussed later.
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Persistence of Solutions

If
G : Rn × Rn → Rn ,

with

G(u0, λ0) = 0 ,

and if

Gu(u0, λ0)
−1 exists ,

then u0 is said to be an isolated solution of G(u, λ0) = 0 .

The IFT (Implicit Function Theorem) states that isolation (plus Lipschitz con-
tinuity assumptions) implies the existence of a locally unique solution family
(or solution branch)

u = u(λ) , u(λ0) = u0 .
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Example: a Predator-Prey Model






u′
1 = 3u1(1 − u1) − u1u2 − λ(1 − e

−5u1 ) ,

u′
2 = −u2 + 3u1u2 .

Here u1 may be thought of as “fish” and u2 as “sharks”, while the term

λ (1 − e
−5u1 ) ,

represents “fishing”, with “fishing-quota” λ .

When λ = 0 the stationary solutions are

3u1(1 − u1) − u1u2 = 0

−u2 + 3u1u2 = 0





⇒ (u1, u2) = (0, 0) , (1, 0) , (

1

3
, 2) .
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The Jacobian matrix is

J =

(
3 − 6u1 − u2 − 5λe

−5u1 −u1

3u2 −1 + 3u1

)

= J(u1, u2;λ) .

J(0, 0; 0) =

(
3 0
0 −1

)

; eigenvalues 3, -1 (unstable) .

J(1, 0; 0) =

(
−3 −1

0 2

)

; eigenvalues -3, 2 (unstable) .

J(
1

3
, 2; 0) =

(
−1 −1

3
6 0

)

; eigenvalues − 1

2
± i

√
7

2
(stable) .

All three Jacobians at λ = 0 are nonsingular.

Thus, by the IFT, all three stationary points persist for (small) λ %= 0 .

5



In this problem we can explicitly find all solutions (see Figure 1) :

I :

(u1, u2) = (0, 0) .

II :

u2 = 0 , λ =
3u1(1 − u1)

1 − e−5u1
.

(Note that lim
u1 → 0

λ =
3

5
.)

III :

u1 =
1

3
, u2 = 2 − 3λ(1 − e−5/3) .

These solution families intersect at two branch points, one of which is

(u1, u2, λ) = (0, 0, 3/5) .
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Figure 1: Stationary solution branches of the predator-prey model. Solutions 2
and 4 are branch points. Solution 8 is a Hopf bifurcation point.
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Figure 2: Bifurcation diagram of the predator-prey model. The periodic solu-
tion branch is also shown. Solid/dashed lines denote stable/unstable solution.
Open squares are branch points; the solid square is a Hopf bifurcation.
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Figure 3: Some periodic solutions of the predator-prey model. The final orbits
are very close to a heteroclinic cycle.
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• Stability of branch I :

J((0, 0);λ) =

(
3 − 5λ 0

0 −1

)

; eigenvalues 3 − 5λ, − 1 .

Hence the trivial solution is :

unstable if λ < 3/5 ,

and

stable if λ > 3/5 ,

as indicated in Figure 2.

• Stability of branch II :

This branch has no stable positive solutions.
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• Stability of branch III :

At
λH ≈ 0.67 ,

(Solution 8 in Figure 2) the complex eigenvalues cross the imaginary axis.

This crossing is a Hopf bifurcation.

Beyond λH there are periodic solutions of increasing period T .

(See Figure 3 for some representative periodic orbits.)

The period becomes infinite at λ = λ∞ ≈ 0.7 .

This final orbit is called a heteroclinic cycle.
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From Figure 2 we can deduce the solution behavior for (slowly) increasing λ :

- Branch III is followed until λH .

- Periodic solutions of increasing period until λ = λ∞ .

- Collapse to trivial solution (Branch I).

DEMO.

Use AUTO to repeat the numerical calculations (demo pp2) .

Sketch phase plane diagrams for λ = 0, 0.5, 0.68, 0.70, 0.71 .
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The Gelfand-Bratu Problem






u′′(x) − λ eu(x) = 0 , ∀x ∈ [0, 1] ,

u(0) = u(1) = 0 .

If λ = 0 then u(x) ≡ 0 is a solution.

This solution is isolated, so that there is a continuation

u = ũ(λ) , for |λ| small .

DEMO. Compute the solution branch of the Gelfand-Bratu problem as rep-
resented in Figures 4 and 5. (AUTO demo exp.)
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Figure 4: Bifurcation diagram of the Gelfand-Bratu equation. There are two
solutions for 0 < λ < λC , where λC ≈ 3.51 .
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Figure 5: Some solutions to the Gelfand-Bratu equation.
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Continuation of Solutions

We discuss the computation of families of solutions to nonlinear equations.
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Consider the equation

G(u, λ) = 0 , u , G(·, ·) ∈ Rn , λ ∈ R .

Let
x ≡ (u , λ) .

Then the equation can be written

G(x) = 0 , G : Rn+1 → Rn .

DEFINITION.

A solution x0 of G(x) = 0 is regular if the n by n + 1 matrix

G0
x ≡ Gx(x0) ,

has maximal rank, i.e., if
Rank(G0

x) = n .
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In the parameter formulation,

G(u, λ) = 0 ,

we have

Rank(G0
x) = Rank(G0

u | G0
λ) = n ⇐⇒






(i) G0
u is nonsingular,

or

(ii)






dim N (G0
u) = 1 ,

and
G0

λ %∈ R(G0
u) .

Above,

N (G0
u) denotes the null space of G0

u ,

and

R(G0
u) denotes the range of G0

u ,

i.e., the linear space spanned by the n columns of G0
u .
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FACT: Let
x0 ≡ ( u0 , λ0 )

be a regular solution of
G(x) = 0 .

Then, near x0 , there exists a unique one-dimensional continuum of solutions

x(s) with x(0) = x0 .

PROOF. Since

Rank( G0
x ) = Rank( G0

u | G0
λ ) = n ,

then either G0
u is nonsingular and by the IFT we have

u = u(λ) near x0 ,

or else we can interchange colums in the Jacobian G0
x to see that the solution

can locally be parametrized by one of the components of u .

Thus a unique solution family passes through a regular solution. •

19



REMARKS.

Such a continuum of solutions is called a solution family or a solution branch.

Case (ii) above is that of a simple fold (or saddle-node bifurcation).
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Figure 6: Note the fold at Solution 5 in the predator-prey model.
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Keller’s Pseudo-Arclength Continuation

This method allows continuation of a branch past folds.

Suppose we have a solution (u0, λ0) of

G( u , λ ) = 0 ,

as well as the direction vector of the solution branch (u̇0, λ̇0) .

Pseudo-arclength continuation solves the following equations for (u1, λ1) :

G(u1, λ1) = 0 ,

(u1 − u0)
∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

See Figure 7 for a graphical interpretation.
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Figure 7: Graphical interpretation of pseudo-arclength continuation.
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Newton’s method for pseudo-arclength continuation :




(G1

u)
(ν) (G1

λ)
(ν)

u̇∗
0 λ̇0





(
∆u(ν)

1

∆λ(ν)
1

)

= −




G(u(ν)

1 , λ(ν)
1 )

(u(ν)
1 − u0)∗u̇0 − (λ(ν)

1 − λ0)λ̇0 − ∆s



 .

Next direction vector :



G1

u G1
λ

u̇∗
0 λ̇0




(

u̇1

λ̇1

)
=




0

1



 .

REMARKS .

• In practice (u̇1, λ̇1) can be computed with one extra backsubstitution.

• The orientation of the branch is preserved if ∆s is sufficiently small.

• The direction vector must be rescaled, so that indeed ‖ u̇1 ‖2 + λ̇2
1 = 1 .
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Parameter-independent representation

Let
x ≡ (u, λ) ∈ Rn+1 .

Then pseudo-arclength continuation can be written as

G(x1) = 0 ,

(x1 − x0)
∗ ẋ0 − ∆s = 0 , (‖ ẋ0 ‖ = 1 ) .

(See Figure 8 for a graphical interpretation.)
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Figure 8: Parameter-independent pseudo-arclength continuation.
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FACT:

The pseudo-arclength Jacobian is nonsingular at a regular solution point.

PROOF. The matrix in Newton’s method at ∆s = 0 is

(
G0

x

ẋ∗
0

)
.

At a regular solution we have

N (G0
x) = Span{ẋ0} .

It is now easy to see that
(

G0
x

ẋ∗
0

)

is nonsingular at a regular solution.
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EXAMPLE. The Gelfand-Bratu problem :

u′′(x) + λ eu(x) = 0 for x ∈ [0, 1] , u(0) = 0 , u(1) = 0 .

Fact: If λ = 0 then u(x) ≡ 0 is an isolated solution.

Discretize by introducing a mesh ,

0 = x0 < x1 < · · · < xN = 1 ,

xj − xj−1 = h , (1 ≤ j ≤ N) , h = 1/N .

The discrete equations are :

uj+1 − 2uj + uj−1

h2
+ λ euj

= 0 , j = 1, · · · , N − 1 ,

with u0 = uN = 0 .
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Let
U ≡ (u1 , u2 , · · · , uN−1) .

Then we can write the above as

G( U , λ ) = 0 ,

where

G : RN−1 × R → RN−1 .
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Pseudo-arclength continuation:

G( U1 , λ1 ) = 0 ,

(U1 − U0 )∗ U̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

Repeat the above procedure to find U2 , U3 , · · · .

The matrix in Newton’s method is bordered tridiagonal :




• • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • •

• • • • • • • • •





.

Such linear systems can be solved very efficiently.
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DEMO.

Compute the branch of complex solutions that bifurcates from the fold in the
complexified Gelfand-Bratu problem. (AUTO demo ezp.)
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Figure 9: The bifurcation diagram of the complex Gelfand-Bratu equation.
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Figure 10: Imaginary part of solutions to the complex Gelfand-Bratu equation.
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Boundary Value Problems
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Boundary Value Problems.

Consider the first order system of ordinary differential equations

u′(t) − f( u(t) , µ , λ ) = 0 , t ∈ [0, 1] ,

where

u(·) , f(·) ∈ Rn , λ ∈ R, µ ∈ Rnµ ,

subject to boundary conditions

b( u(0) , u(1) , µ , λ ) = 0 , b(·) ∈ Rnb ,

and integral constraints

∫ 1

0
q( u(s) , µ , λ ) ds = 0 , q(·) ∈ Rnq .
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REMARKS .

• We must solve the boundary value problem (BVP) for u(·) and µ .

• Think of λ as the parameter in which a solution (u, µ) is continued.

• In order for problem to be formally well posed we require that

nµ = nb + nq − n ≥ 0 .

• A simple case is

nq = 0 , nb = n , for which nµ = 0 .
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Discretization

Here we discuss the method of “orthogonal collocation with piecewise polyno-
mials”, for solving boundary value problems. This method is very accurate,
and allows adaptive mesh-selection.
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Orthogonal Collocation

The equations are

u′(t) − f( u(t) , µ , λ ) = 0 , t ∈ [0, 1] ,

where
u(·) , f(·) ∈ Rn , λ ∈ R , µ ∈ Rnµ ,

subject to boundary conditions

b( u(0) , u(1) , µ , λ ) = 0 , b(·) ∈ Rnb ,

and integral constraints
∫ 1

0
q( u(s) , µ , λ ) ds = 0 , q(·) ∈ Rnq ,

with
nµ = nb + nq − n ≥ 0 .

The “extra” parameter λ will be freed in continuation.
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Introduce a mesh

{ 0 = t0 < t1 < · · · < tN = 1 } ,

where

∆tj ≡ tj − tj−1 , (1 ≤ j ≤ N) ,

Define the space of piecewise polynomials Pm
h as

Pm
h = { ph ∈ C[0, 1] : ph

∣∣∣
[tj−1,tj ]

∈ Pm } ,

where Pm is the space of polynomials of degree less than or equal to m .
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The collocation method consists of finding

ph ∈ Pm
h , µ ∈ Rnµ ,

such that the following collocation equations are satisfied:

p′h(zj,i) = f( ph(zj,i) , µ, λ ) , j = 1, · · · , N , i = 1, · · · , m ,

and such that ph satisfies the boundary and integral conditions.

The collocation points zj,i in each subinterval

[ tj−1 , tj ] ,

are the (scaled) roots of the mth-degree orthogonal polynomial (Gauss points) .

See Figure 11 for a graphical interpretation.
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Figure 11: The mesh {0 = t0 < t1 < · · · < tN = 1} . Collocation points
and “extended-mesh points” are shown for the case m = 3, in the jth mesh
interval. Also shown are two of the four local Lagrange basis polynomials.
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Since each local polynomial is determined by

(m + 1) n ,

coefficients, the total number of degrees of freedom (considering λ as fixed) is

(m + 1) n N + nµ .

This is matched by the total number of equations :

collocation : m n N ,

continuity : (N − 1) n ,

constraints : nb + nq (= n + nµ) .
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Assume that the solution u(t) is sufficiently smooth.

Then the global accuracy of the orthogonal collocation method with piecewise
polynomials, is of order m , i.e.,

‖ ph − u ‖∞ = O(hm) .

At the main meshpoints tj we have superconvergence :

maxj | ph(tj) − u(tj) | = O(h2m) .

The scalar variables µ are also superconvergent.
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Implementation

For each subinterval [ tj−1 , tj ] , introduce the Lagrange basis polynomials

{ "j,i(t) } , j = 1, · · · , N , i = 0, 1, · · · , m ,

defined by

"j,i(t) =
m∏

k=0,k %=i

t − tj− k
m

tj− i
m

− tj− k
m

,

where

tj− i
m

≡ tj − i

m
∆tj .

The local polynomials can then be written

pj(t) =
m∑

i=0

"j,i(t) uj− i
m

.

With the above choice of basis

uj ∼ u(tj) and uj− i
m

∼ u(tj− i
m

) ,

where u(t) is the solution of the continuous problem.
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The collocation equations are

p
′

j(zj,i) = f( pj(zj,i) , µ , λ ) , i = 1, · · · , m, j = 1, · · · , N .

The discrete boundary conditions are

bi( u0 , uN , µ , λ ) = 0 , i = 1, · · · , nb .

The integrals can be discretized as

N∑

j=1

m∑

i=0

ωj,i qk ( uj− i
m

, µ , λ) = 0 , k = 1, · · · , nq ,

where the ωj,i are the Lagrange quadrature coefficients.
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The pseudo-arclength equation is

∫ 1

0
(u(t) − u0(t))

∗u̇0(t) dt + (µ − µ0)
∗µ̇0 + (λ − λ0) λ̇0 − ∆s = 0 ,

where

( u0 , µ0 , λ0 ) ,

is the previously computed point on the solution branch, and

( u̇0 , µ̇0 , λ̇0 ) ,

is the normalized direction of the branch at that point.

The discretized pseudo-arclength equation is

N∑

j=1

m∑

i=0

ωj,i [ uj− i
m

− (u0)j− i
m

]∗ (u̇0)j− i
m

+ (µ − µ0)
∗µ̇0 + (λ − λ0) λ̇0 − ∆s = 0 .
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Numerical Linear Algebra

The complete discretization consists of

m n N + nb + nq + 1 ,

nonlinear equations, in the unknowns

{uj− i
m
} ∈ RmnN+n , µ ∈ Rnµ , λ ∈ R .

• These equations can be solved by a Newton-Chord iteration.

• The structure of the linearized systems is illustrated in Figure 12.

• A solution method of the linear systems is illustrated in Figures 13-16.

• The indicated operations are also carried out on the right hand side.

• The right hand side is not shown in the Figures.
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u0 u 1
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u 2
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u1 u2 uN T λ
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • •
• • • • • •
• • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • •

Figure 12: 48



CAPTION FOR FIGURE 12 :

• Structure of the Jacobian for the case of n = 2 differential equations.

• Number of mesh intervals : N = 3 .

• Number of collocation points per mesh interval : m = 3 .

• Number of boundary conditions : nb = 2 .

• Number of integral constraints : nq = 1 .

• The last row corresponds to the pseudo-arclength equation, which is not
included in the nq = 1 count.

• In a typical problem N will be larger, say, N = 5 , for “very easy”
problems, and N = 200 , for “very difficult” problems.

• The “standard” choice of the number of collocation points per mesh in-
terval is m = 4 .
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u0 u 1
3

u 2
3

u1 u2 uN T λ
• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •

Figure 13: 50



CAPTION FOR FIGURE 13 :

• The system after “condensation of parameters”.

• The entries marked “ ◦ ” have been eliminated by Gauss elimination.

• These operations can be done in parallel.
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u0 u 1
3

u 2
3

u1 u2 uN T λ
• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
" " ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ " " " "

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
" " ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ " " " "

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
" " ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ " " " "

" " " " " "
" " " " " "
" " ◦ ◦ ◦ ◦ " " ◦ ◦ ◦ ◦ " " ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ " " ◦ ◦ ◦ ◦ " " ◦ ◦ ◦ ◦ " " " "

Figure 14: 52



CAPTION FOR FIGURE 14 :

• The matrix from the preceding Figure, except with some entries now
marked by a “ $ ”.

• The $ sub-system is fully decoupled from the remaining equations.

• The $ sub-system can therefore be solved separately.

• This is known as “condensation of parameters”.
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u0 u 1
3

u 2
3

u1 u2 uN T λ
• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
" " ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ ◦ " " "

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

" " ◦ ◦ ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ ◦ ◦ ◦ " " "

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

" " ◦ ◦ ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ ◦ ◦ " " " "
" " " " " "
" " " " " "
" " ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ " " " "
" " ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ " " " "
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CAPTION FOR FIGURE 15 :

• The decoupled $ system can be solved by “nested dissection”.

• Nested dissection eliminates some of the $ ’s .

• Nested dissection eliminates also introduces some new “fill-in”.
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u0 u 1
3

u 2
3

u1 u2 uN T λ
• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
" " ◦ ◦ ◦ ◦ " " · · " "
" " ◦ ◦ ◦ ◦ ◦ " · · " "

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

" " ◦ ◦ ◦ ◦ ◦ ◦ " " · · " "
" " ◦ ◦ ◦ ◦ ◦ ◦ ◦ " · · " "

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •

A0 • • ◦ ◦ ◦ • • • • •
+ + ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + A1 + + + +
+ + + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +
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CAPTION FOR FIGURE 16 :

• The same matrix as in the preceding Figure, except with some entries
now marked by a “ + ” .

• The + sub-system is decoupled from the other equations, and can there-
fore be solved separately.

• For periodic solutions, the Floquet Multipliers are the eigenvalues of the
matrix −A−1

1 A0 .
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Computing Periodic Solutions

Stable and unstable periodic solutions can be computed very effectively using
a boundary value approach, which also determines the period very accurately,
and allows the accurate detection of bifurcation points, including folds, branch
points, period-doubling bifurcations, and bifurcations to invariant tori.
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The BVP Approach.

Consider

u′(t) = f( u(t) , λ ) , u(·) , f(·) ∈ Rn , λ ∈ R .

Fix the interval of periodicity by the transformation

t → t

T
.

Then the equation becomes

u′(t) = T f( u(t) , λ ) , u(·) , f(·) ∈ Rn , T , λ ∈ R . (1)

and we seek solutions of period 1 , i.e.,

u(0) = u(1) . (2)

Note that the period T is one of the unknowns.
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Assume that we have computed

( uk−1(·) , Tk−1 , λk−1 ) ,

and we want to compute the next solution

( uk(·) , Tk , λk ) ≡ ( u(·) , T , λ ) .

The above equations do not uniquely specify u and T .

Specifically, u(t) can be translated freely in time:

If u(t) is a periodic solution, then so is

u(t + σ) ,

for any σ .

Thus, a “phase condition” is needed.
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An example is the Poincaré orthogonality condition

(u(0) − uk−1(0))∗ u
′

k−1(0) = 0 .

(Below we derive a numerically more suitable phase condition.)

u k-1 (0)
u k-1 (0)

u (0)
k

Figure 17: Graphical interpretation of the Poincaré phase condition.
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Integral Phase Condition

If ũ(t) is a solution then so is

ũ(t + σ) ,

for any σ .

We want the solution that minimizes

D(σ) ≡
∫ 1

0
‖ ũ(t + σ) − uk−1(t) ‖2

2 dt .

The optimal solution
ũ(t + σ̂) ,

must satisfy the necessary condition

D′(σ̂) = 0 .
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Differentiation gives the necessary condition

∫ 1

0
( ũ(t + σ̂) − uk−1(t) )∗ ũ′(t + σ̂) dt = 0 .

Writing
u(t) ≡ ũ(t + σ̂) ,

gives ∫ 1

0
( u(t) − uk−1(t) )∗ u′(t) dt = 0 .

Integration by parts, using periodicity, gives

∫ 1
0 u(t)∗ u

′
k−1(t) dt = 0 . (3)

This is the integral phase condition.
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Pseudo-Arclength Continuation

In practice we use pseudo-arclength continuation (see Section ) to follow a
family of periodic solutions.

This allows calculation past folds along a family of periodic solutions.

The pseudo-arclength equation is

∫ 1
0 (u(t) − uk−1(t))

∗u̇k−1(t) dt + (T − Tk−1)Ṫk−1 + (λ− λk−1)λ̇k−1 = ∆s .

(4)

Equations (1-4) are used in AUTO for continuing periodic solutions.
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EXAMPLE. Consider the equations






u′
1 = − λu1 − u2 ,

u′
2 = u1 (1 − u1) .

(5)

• Note that u = 0 is a stationary solution for all λ .

• There is a “vertical” Hopf bifurcation from u = 0 at λ = 0 .

• The family ends in an orbit that is homoclinic to (u1, u2) = (1, 0) .

• The terminating orbit has infinite period.

DEMO. Use AUTO demo phs to compute the periodic solutions, and plot
some orbits versus time.

Observe how the phase condition keeps the “peak” in the same place. (This
is very advantageous for discretization methods.)
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Lambda

MAX U1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

Figure 18: Bifurcation diagram for Equation (5).
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U1

U2

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Figure 19: A phase plot of some periodic solutions to Equation (5).
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Scaled Time

U1

0.00
0.10

0.20
0.30

0.40
0.50

0.60
0.70

0.80
0.90

1.00
-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 20: u1 as a function of the scaled time variable t for Equation (5).
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Periodic Solutions of a Conservative System

EXAMPLE:
u′

1 = − u2 ,

u′
2 = u1 (1 − u1) .

PROBLEM:

• This equation has a family of periodic solutions, but no parameter !

• This system has a constant of motion, namely the Hamiltonian

H(x1, x2) = − 1

2
u2

1 − 1

2
u2

2 +
1

3
u3

1 .
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REMEDY:

Introduce an “unfolding term” with “unfolding parameter” λ :

u′
1 = − λ u1 − u2 ,

u′
2 = u1 (1 − u1) .

Then there is a “vertical” Hopf bifurcation from the trivial solution at λ = 0 .

In fact, this is our previous example ( Equation (5) ) !
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REMARKS.

• The branch of periodic solutions is “vertical”.

• The parameter λ is solved for in each continuation step.

• Upon solving, λ is found to be zero, up to numerical precision.

• One can use “standard” BVP continuation and bifurcation software.
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EXAMPLE. A Singularly-Perturbed BVP. (AUTO demo spb.)

ε u′′(x) = u(x) u′(x) (u(x)2 − 1) + u(x) .

with boundary conditions

u(0) = 3/2 , u(1) = γ .

Computational formulation

u′
1 = u2 ,

u′
2 = λ

ε ( u1 u2 (u2
1 − 1) + u1 ) ,

(6)

with boundary conditions

u1(0) = 3/2 , u1(1) = γ .
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COMPUTATIONAL STEPS:

• λ is a homotopy parameter to locate a starting solution.

• In the first run λ varies from 0 to 1 .

• In the second run ε is decreased by continuation.

• In the third run ε = 10−3 , and the solution is continued in γ .

• This third run takes many continuation steps.
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2D Stable/Unstable Manifolds
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Example : The Lorenz Equations

x′ = p3 (y − x) ,

y′ = p1 x − y − xz ,

z′ = xy − p2 z .

(7)

Here

p2 = 8/3 , p3 = 10 .

while p1 (normally called ρ) is the bifurcation parameter.

DEMO. Use AUTO demo lrz to compute the basic bifurcation diagram.
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P1

MAX X

0. 5. 10. 15. 20. 25. 30.
-10.

-5.

0.

5.

10.

15.

Figure 21: Bifurcation diagram of the Lorenz equations.
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X

Y

-15. -10. -5. 0. 5. 10. 15.
-15.

-10.

-5.

0.

5.

10.

15.

Figure 22: Periodic orbits of the Lorenz equations.
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Now also let ρ = 28 .

For this parameter value the Lorenz Equations have a “strange attractor”.

Let

u =




x
y
z



 ,

and write the Lorenz equations as

u′(t) = f( u(t) ) .
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The origin

u0 =




0
0
0



 ,

is a saddle point, with eigenvalues

µ1 ≈ − 2.66 , µ2 ≈ − 22.8 , µ3 ≈ 11.82 ,

and normalized eigenvectors

v1 , v2 , v3 .

• We want to compute the stable manifold of the origin.
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The stable manifold of the origin

Compute an initial orbit u(t) , for t from 0 to T (where T < 0) , with

u(0) close to the origin u0 ,
and

u(0) in the eigenspace spanned by v1 and v2 ,

that is,

u(0) = u0 + ε

(
cos(θ)

|µ1|
v1 − sin(θ)

|µ2|
v2

)

,

for, say, θ = 0 .
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Scale time

t → t

T
,

Then the initial orbit satisfies

u′(t) = T f( u(t) ) , 0 ≤ t ≤ 1 ,

and
u(0) = u0 +

ε

|µ1|
v1 .

The initial orbit has length

L = T
∫ 1

0
|| f(u(s)) || ds .
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Thus the initial orbit is a solution of the equation

F (X) = 0 ,

where

X = ( u(·) , θ , T ) , (for given L and ε) ,

and where

F (X) ≡






u′(t) − T f(u(t))

u(0) − u0 − ε
(

cos(θ)
|µ1| v1 − sin(θ)

|µ2| v2

)

T
∫ 1
0 || f(u) || ds − L
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Pseudo-arclength continuation:

F (X1) = 0 ,

(X1 − X0)
∗ Ẋ0 − ∆s = 0 , (‖ Ẋ0 ‖ = 1 ) .

where, for example,

X = ( u(·) , θ , T ) , (keeping L and ε fixed) .

NOTE:

• We do not just change the initial point (i.e., the value of θ).

• The continuation stepsize ∆s measures the change in X .

• Every continuation step requires solving a “boundary value problem”.

DEMO. Use AUTO demo man to compute part of the stable manifold.
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Figure 23: The stable manifold of the origin in the Lorenz equations.
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Figure 24: The stable manifold of the origin in the Lorenz equations.
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Figure 25: A section of the Lorenz manifold.
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The unstable manifold of the nonzero equilibria

• One can also compute the 2D unstable manifold of the nonzero equilibria.

• The computational set-up is similar, but with complex eigenvalues.

• In this case it is useful to let

X = ( u(·) , ε , L ) ,

in the continuation procedure, keeping T and θ fixed .

• The stable and unstable manifolds intersect in heteroclinic connections.

• These connections correspond to minima of the arclength L .

• These connections also correspond to minima of ‖ u ‖ .
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Figure 26: Representation of the orbits that make up the manifold.
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Figure 27: A heteroclinic connection in the Lorenz equations.
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Figure 28: Another heteroclinic connection in the Lorenz equations.
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Figure 29: · · · and another · · ·
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Figure 30: · · · and another · · ·
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Figure 31: This continuation calculation located 512 connections!
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REMARKS:

• The heteroclinic connections have a combinatorial structure.

• We can also continue each heteroclinic connection as ρ varies.

• They spawns homoclinic orbits, having their own combinatorial structure.

• These results(∗) may shed some light on the Lorenz attractor as ρ changes.

(∗) E. J. Doedel, B. Krauskopf, H. M. Osinga, Global bifurcations of the Lorenz
model, in preparation.
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