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SPECTRA OF DIFFERENTIABLE HYPERBOLIC MAPS

VIVIANE BALADI AND MASATO TSUJII

Abstract. This note is about the spectral properties of transfer operators
associated to smooth hyperbolic dynamics. In the first two sections, we state
our new results [5] relating such spectra with dynamical determinants, first an-
nounced at the conference “Traces in Geometry, Number Theory and Quantum
Fields” at the Max Planck Institute, Bonn, October 2005. In the last two sec-
tions, we give a reader-friendly presentation of some key ideas in our work in
the simplest possible settings, including a new proof of a result of Ruelle on
expanding endomorphisms. (These last two sections are a revised version of
the lecture notes given during the workshop “Resonances and Periodic Orbits:
Spectrum and Zeta functions in Quantum and Classical Chaos” at Institut
Henri Poincaré, Paris, July 2005.)

1. A brief introduction

For smooth hyperbolic dynamical systems and smooth weights (smooth means
Cr for r > 1), we announce new results from [5] relating Ruelle transfer opera-
tors with dynamical Fredholm determinants and dynamical zeta functions: First
we establish bounds for the essential spectral radii of the transfer operator on new
spaces of anisotropic distributions (Theorem 2.1 and Lemma 2.4), improving pre-
vious results (Theorem 2.5 from [4]), and giving variational expressions for the
bounds. Then (Theorem 2.6), we give a new proof of Kitaev’s [13] lower bound for
the radius of the disc in which the dynamical Fredholm determinant admits a holo-
morphic extension, and, in addition, we show that the zeroes of the determinant in
the corresponding disc are in bijection with the eigenvalues of the transfer operator
on our spaces. The proofs are based on elementary Paley-Littlewood analysis in
Fourier space, using (and improving) a decomposition of the Fourier space into sta-
ble and unstable cones, inspired by [1] and introduced in [4]. To prove the results on
the dynamical determinants we introduce in [5] methods based on approximation
numbers [15].

In Section 2, we give precise definitions and statements of our new results (proofs
will appear elsewhere [5]), recalling also some previous results from [4]. Sections 3
and 4 contain a — hopefully — pedagogical presentation of several key ideas and
techniques in the proofs in two simple, but nontrivial, cases (a few steps of the
argument are left as exercises for the reader):

In Section 3 we discuss, as a warm-up, transfer operators associated to smooth
(Cr for r > 1) expanding endomorphisms on a manifold X . The case of expanding,
noninvertible, maps is easier than the case of hyperbolic, invertible, maps, because
composition by each local inverse branch improves regularity, and a relevant Banach
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2 VIVIANE BALADI AND MASATO TSUJII

space is Cr(X). The bounds on the essential spectral radius together with the
connection with the dynamical determinants are well-known (see [17], [18], [11]).
We give a new proof of of the bounds of the essential spectral radius (this proof
is the only original material in this text). This allows us to recall the basic Paley-
Littlewood (or dyadic) decomposition tools that are instrumental in [4] and [5].

In Section 4, we consider the simplest hyperbolic diffeomorphisms, Anosov maps,
giving the definition of a Banach space of distributions suitable for the hyperbolic
case, and explaining the key steps in the proof of the bounds in [4] and [5] on the
essential spectral radius of the transfer operators.

2. New results on transfer operators and dynamical determinants

Let X be a d-dimensional C∞ Riemann manifold, and let T : X → X be a
diffeomorphism which is of class Cr for some r > 1. (If r is not an integer, this
means that the derivatives of T of order [r] satisfy an r − [r] Hölder condition.)
Assume that there exists a hyperbolic basic set Λ ⊂ X for T . This means that
Λ is T -invariant, transitive and that there exist a compact neighborhood V of Λ
such that Λ = ∩m∈ZT

m(V ) and an invariant decomposition TΛX = Eu ⊕Es (with
Eu 6= 0 and Es 6= 0) of the tangent bundle over Λ, such that for some constants
C > 0 and 0 < λs < 1, νu > 1, we have for all m ≥ 0 and x ∈ Λ

(1) ‖DTm|Es‖ ≤ Cλm
s and ‖DT−m|Eu‖ ≤ Cν−m

u .

For s ≥ 0, let Cs(V ) be the set of complex-valued Cs functions on X with
support contained in the interior of V . The Ruelle transfer operator associated to
the dynamics T and the weight g ∈ Cr−1(V ) is defined by

L = LT,g : Cr−1(V ) → Cr−1(V ), Lϕ(x) = g(x) · ϕ ◦ T (x ).

Since T is hyperbolic, L is not smoothness improving, so that it is in fact not very
interesting to let L act on spaces of smooth functions. One of our goals is to find
a space of distributions on V which is not too small (it should contain all Cr−1

functions ) and not too large (L should be bounded, with some control on the 1

essential spectral radius, guaranteeing in particular that L is quasicompact, and
that L has a spectral gap when g is strictly positive on V ). In other words, we
are aiming at yet another avatar of the Ruelle-Perron-Frobenius theory in infinite
dimension. (See e.g. [2] for more classical examples.)

Our latest result in this direction improves the bounds of [4] and [10] on the
spectrum of L (We refer to the introduction of [4] for historical comments and
references to the previous works, [6], [3], and in particular the important paper
of Gouëzel and Liverani [10].) To state it, we need some notation (see [22] for
background on ergodic theory). For a T -invariant Borel probability measure µ on Λ,
we write hµ for the metric entropy of (µ, T ), and χµ(A) ∈ R∪{−∞} for the largest
Lyapunov exponent of a linear cocycle A over T |Λ, with (log ‖A‖)+ ∈ L1(dµ). Let
M(Λ, T ) denote the set of T -invariant ergodic Borel probability measures on Λ.

Theorem 2.1 (Bounds on the essential spectral radius [5]). Let r > 1, T , and
Λ ⊂ V be as above. For any real numbers q < 0 < p so that p − q < r − 1, there
exists a Banach space Cp,q(T, V ) of distributions on V , containing Cs(V ) for any
s > p, and contained in the dual space of Cs(V ) for any s > |q|, with the following
properties:

1See § 3 for a definition of the essential spectral radius.
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For any g ∈ Cr−1(V ), the Ruelle operator LT,g extends to a bounded operator
on Cp,q(T, V ). Its essential spectral radius on this space is not larger than

Qp,q(T, g) =

exp sup
µ∈M(Λ,T )

{
hµ + χµ

(
g

det(DT |Eu)

)
+ max

{
pχµ(DT |Es), |q|χµ(DT−1|Eu)

}}
.

See [7, §8]–[11] for a variational expression analogous to Qp,q(T, g) in the setting
of Cr expanding endomorphisms. Note that χµ(g/ det(DT |Eu)) =

∫
log |g| dµ −∫

log | det(DT |Eu)| dµ, but the expression as a Lyapunov exponent is useful when
g is replaced by a bundle automorphism (see [5]).

Remark 2.2 (Decay of correlations). Assume for a moment that Λ is attracting for
T , i.e., T (V ) ⊂ interior(V ). Once we have the estimates in Theorem 2.1, it is not
difficult to see that the spectral radius of the pull-back operator T ∗ϕ = ϕ ◦ T on
Cp,q
∗ (T, V ) is equal to one. (The constant function is a fixed function.) If (T,Λ) is

in addition topologically mixing, then 1 is the unique eigenvalue on the unit circle,
it is a simple eigenvalue, and the fixed vector of the dual operator to T ∗ gives rise
to the SRB measure µ: This corresponds to exponential decay of correlations for
Cp observables and µ. (See Blank–Keller–Liverani [6, §3.2] for example.)

Remark 2.3 (Spectral stability). It is not difficult to see that there is ǫ > 0 so that

if T̃ and g̃, respectively, are ǫ-close to T and g, respectively, in the Cr, resp. Cr−1,
topology, then the associated operator LT̃ ,g̃ has the same spectral properties than

LT,g on the same Banach spaces. Spectral stability can then be proved, as it has
been done in [6] or [10] for the norms defined there. We refer to [5] for details.

We next give an alternative expression for Qp,q(T, g). If g ∈ C0(V ), we write

g(m)(x) =
m−1∏

k=0

g(T k(x)) , ∀m ∈ Z+ .

Put λ = max{λs, ν
−1
u }. We define local hyperbolicity exponents for x ∈ Λ and

m ∈ Z+ by

(2)

λx(Tm) = sup
v∈Es(x)\{0}

‖DTm
x (v)‖

‖v‖
≤ Cλm and

νx(Tm) = inf
v∈Eu(x)\{0}

‖DTm
x (v)‖

‖v‖
≥ C−1λ−m.

For arbitrary real numbers q, p and integer m ≥ 1, set for x ∈ Λ

λ(p,q,m)(x) = max
{
(λx(Tm))p, (νx(Tm))q

}
.(3)

We may extend Es(x) and Eu(x) to continuous bundles on V (which are not
invariant in general), so that the inequalities (1) hold for x ∈ ∩m−1

k=0 T
−k(V ), and for

all m ≥ 0, with some constant C. We may thus extend the definition of λx(Tm),
νx(Tm) and λ(p,q,m)(x) to ∩m−1

k=0 T
−k(V ). Letting dx denote Lebesgue measure on

X , define for integers m ≥ 1, and p, q ∈ R

(4) ρp,q(T, g,m) =

∫

X

|g(m)(x)|λ(p,q,m)(x) dx .

In [5], we also show:
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Lemma 2.4. For r > 1, T , and V as above, and g ∈ Cδ(V ) for some δ > 0, the
limit ρp,q(T, g) = limm→∞(ρp,q(T, g,m))1/m exists for all p, q ∈ R. If q ≤ 0 ≤ p,
we have Qp,q(T, g) = ρp,q(T, g).

Kitaev [13] proved existence of the limit ρp,q(T, g), and showed that it gave a
lower bound for the domain of holomorphic extension of a dynamical determinant
(see also our Theorem 2.6 below).

Next, we compare Theorem 2.1 to our previous results, using the above lemma.
(It is convenient to put a1/∞ = 1 for a ∈ R∗

+.) In [4], we proved:

Theorem 2.5. Let r > 1, T , and Λ ⊂ V be as above. For any real numbers
q < 0 < p so that p−q < r−1, there exist a Banach space Cp,q

∗ (T, V ) of distributions
on V , and for each 1 < t <∞, a Banach space W p,q,t(T, V ) of distributions on V ,
with the following properties:

Cp,q
∗ (T, V ) and W p,q,t(T, V ) both contain Cs(V ) for any s > p, and they both are

contained in the dual space of Cs(V ) for any s > |q|.
For any g ∈ Cr−1(V ), the operator LT,g extends boundedly to Cp,q

∗ (T, V ), with
essential spectral radius not larger than Rp,q,∞(T, g), and LT,g extends boundedly
to W p,q,t(V ) with essential spectral radius not larger than Rp,q,t(T, g), with

Rp,q,t(T, g) = lim
m→∞

(
sup
Λ

| detDTm|1/t|g(m)(x)|λ(p,q,m)(x)

)1/m

.

Since ρp,q(T, g) ≤ inf1<t≤∞Rp,q,t(T, g), and the inequality can be strict, Theo-
rem 2.1 can be viewed as an improvement of Theorem 2.5. Note however that the
anisotropic Sobolev spaces W p,q,t(T, V ) have applications to situations with less
hyperbolicity, such as skew products [1] or time-one maps of expanding semi-flows
[21].

We next turn to dynamical Fredholm determinants. The dynamical Fredholm
determinant dL(z) corresponding to the Ruelle transfer operator L = LT,g is

(5) dL(z) = exp


−

∞∑

m=1

zm

m

∑

T m(x)=x

g(m)(x)

| det(1 −DTm(x))|


 .

The power series in z which is exponentiated converges only if |z| is sufficiently
small. The main new result in [5] is about the analytic continuation of dL(z):

Theorem 2.6. Let r > 1, T , V , and g ∈ Cr−1(V ) be as above.
The function dL(z) extends holomorphically to the disc of radius (ρr(T, g))

−1 with

ρr(T, g) = inf
q<0<p, p−q<r−1

ρp,q(T, g) .

For any real numbers q < 0 < p so that p − q < r − 1, and each z with |z| <
(ρp,q(T, g))−1, we have dL(z) = 0 if and only if 1/z is an eigenvalue of L on
Cp,q(T, V ), and the order of the zero coincides with the algebraic multiplicity of the
eigenvalue.

Remark 2.7. The proof in [5] implies that for any real numbers q < 0 < p so that
p− q < r − 1, each 1 < t < ∞, and each z with |z| < (Rp,q,t(T, g))−1, respectively
|z| < (Rp,q,∞(T, g))−1, we have dL(z) = 0 if and only if 1/z is an eigenvalue of L
on W p,q,t(T, V ), respectively Cp,q

∗ (T, V ), and the order of the zero coincides with
the algebraic multiplicity of the eigenvalue.
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Note that for analytic hyperbolic diffeomorphisms and weights, it has been
known for 30 years that dL(z) is an entire function when the dynamical folia-
tions are analytic [16]. More recently, Rugh and Fried [19, 9] studied dL(z) in this
analytic framework, without any assumption on the foliations, giving a spectral
interpretation of its zeroes.

In the case of finite differentiability r, the connection between transfer opera-
tors and dynamical determinants has been well understood in the easier setting of
expanding endomorphisms since 15 years ago (see [18]). The case of hyperbolic
diffeomorphisms has only been studied recently. In an important and pioneering
article [13], Kitaev obtained the first claim of our Theorem 2.6, without the spectral
interpretation of the zeroes of dL(z). Our proof is different and gives the spectral
interpretation of the zeroes of dL(z) contained in the second claim of Theorem 2.6.
Note that a spectral interpretation of the zeroes (in a smaller disc, depending on the
dimension d) has been obtained previously by Liverani [14], using Banach spaces
of [10].

We refer to [5] for the proof of Theorem 2.6.

3. A toy model: expanding endomorphisms

In order to give in the next section the key ideas in the proof of Theorem 2.5 in
[4] and Theorems 2.1 and 2.6 in [5], we revisit in this section the much easier (and
well understood) situation of expanding endomorphisms. We first recall a definition
and a few elementary facts, which will also be used in Section 4.

Definition (Essential spectral radius). The essential spectral radius ress(L|B) of a
bounded operator L on a Banach space B is the infimum of the real numbers ρ > 0
so that, outside of the disc of radius ρ, the spectrum of L on B consists of isolated
eigenvalues of finite multiplicity.

The following basic fact will be at the very center of our proof (it is behind most
techniques to estimate the essential spectral radius: Lasota-Yorke or Doeblin-Fortet
bounds, Hennion’s theorem, the Nussbaum formula, see e.g. [2]):

Compact perturbation. If L = L1 + L0 where L1 is compact on B and L0

is bounded on B, then the essential spectral radius of L acting on B is not larger
than the spectral radius of L0 acting on B. (See e.g. [8].)

Not surprisingly, our main tool is integration by parts:
Integration by parts. By “integration by parts on w,” we will mean ap-

plication, for f ∈ C2(Rd) with
∑d

j=1(∂jf(w))2 6= 0 and a compactly supported

g ∈ C1(Rd), of the formula

∫
eif(w)g(w)dw = −

d∑

k=1

∫
i(∂kf(w))eif(w) ·

i(∂kf(w)) · g(w)
∑d

j=1(∂jf(w))2
dw(6)

= i ·

∫
eif(w) ·

d∑

k=1

∂k

(
∂kf(w) · g(w)
∑d

j=1(∂jf(w))2

)
dw ,

where w = (wk)d
k=1 ∈ Rd, and ∂k denotes partial differentiation with respect to

wk. (Note that if f is Cr we can only integrate by parts [r] − 1 times in the above
sense, even if g is Cr and compactly supported.)
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Regularised integration by parts If f ∈ C1+δ(Rd) and g ∈ Cδ
0 (Rd), for δ ∈

(0, 1), and
∑d

j=1(∂jf)2 6= 0 on supp(g), we shall consider the following “regularised
integration by parts:” Set, for k = 1, . . . , d

hk :=
i(∂kf(w)) · g(w)
∑d

j=1(∂jf(w))2
.

Each hk belongs to Cδ
0 (Rd). Let hk,ǫ, for small ǫ > 0, be the convolution of hk with

ǫ−dυ(x/ǫ), where the C∞ function υ : Rd → R+ is supported in the unit ball and
satisfies

∫
υ(x)dx = 1. There is C, independent of f and g, so that for each small

ǫ > 0 and all k,

‖∂khk,ǫ‖L∞ ≤ C‖hk‖Cδǫδ−1, ‖hk − hk,ǫ‖L∞ ≤ C‖hk‖Cδǫδ.

Finally, for every real number Λ ≥ 1

∫
eiΛf(w)g(w)dw = −

d∑

k=1

∫
i∂kf(w)eiΛf(w) · hk(w)dw(7)

=

∫
eiΛf(w)

Λ
·

d∑

k=1

∂khk,ǫ(w)dw

−
d∑

k=1

∫
i∂kf(w)eiΛf(w) · (hk(w) − hk,ǫ(w))dw.

3.1. The result for locally expanding maps. Let T : X → X be Cr for r > 1,
where X is a d-dimensional compact manifold. In this section, we assume that T
is a locally expanding map, i.e., there are C > 0 and λs < 1 so that for each x,
all m ≥ 1 and all v ∈ TxX , we have ‖DxT

mv‖ ≥ Cλ−m
s ‖v‖. The function g is

assumed to be Cr. We study the operator

LT−1,gu(x) :=
∑

y:T (y)=x

g(y)u(y) .

(This is the transfer operator associated to the branches of T−1, which contract by
at least λs.) Note that

R(T−1, g) := lim
m→∞

(
sup

x

∑

y:T m(y)=x

|g(m)(x)|
)1/m

is the spectral radius of LT−1,g acting on continuous functions. 2

For p > 0, recall that the Cp norm of u ∈ C∞(Rd) is

‖u‖Cp = max

{
max
|α|≤[p]

sup
x∈Rd

|∂αu(x)|, max
|α|=[p]

sup
x∈Rd

sup
y∈Rd/{0}

|∂αu(x+ y) − ∂αu(x)|

‖y‖p−[p]

}

where ∂αu for a multi-index α = (α1, . . . , αd) ∈ Z+ denotes the partial derivative

∂α1
1 · · · ∂αd

d u, and |α| =
∑d

j=1 αj . For ϕ ∈ Cp(X), the above norm can be used in

charts to define a norm ‖ϕ‖Cp(X).
We shall prove the following result:

2If g = |det DT |−1 then it is well-known that R(T−1, g) = 1.
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Theorem 3.1 (Essential spectral radius for expanding maps). Let T be Cr and
expanding, and let g be Cr for r > 1. For any noninteger 0 < p ≤ r, let Cp

∗ (X) be
the closure of C∞(X) for the Cp norm. Then the operator LT−1,g is bounded on
Cp

∗ (X) and

ress(LT−1,g|Cp
∗(X)) ≤ R(T−1, g) · λp

s .

The main interest of the proof given here is that it can be generalised to the
hyperbolic case. Note also that if p is an integer, the proof below gives the same
bounds for a Zygmund space Cp

∗ (X).

Exercise 3.2. Prove that for any noninteger p > 0 we have Cp
∗ (X) ⊂ Cp(X), and

that the inclusion is strict.

Ruelle [17] proved the statement of Theorem 3.1 for Cp(X) instead of Cp
∗ (X).

(It is in fact possible to modify the definitions in Subsection 3.2, to get a new proof
of Ruelle’s result. This modification is cumbersome when dealing with distributions
in the later sections, and we do not present it here. Adapting the argument in [5] to
the case of expanding endomorphisms in the spirit of this section, it is even possible
to recover the optimal bounds in [11].)

3.2. Local definition of Hölder norms in Fourier coordinates. We present
here the “dyadic decomposition” approach to compactly supported Hölder functions
in Rd (for d ≥ 1). Fix a C∞ function χ : R+ → [0, 1] with

χ(s) = 1, for s ≤ 1, χ(s) = 0, for s ≥ 2.

Define ψn : Rd → [0, 1] for n ∈ Z+, by ψ0(ξ) = χ(‖ξ‖), and

ψn(ξ) = χ(2−n‖ξ‖) − χ(2−n+1‖ξ‖) , n ≥ 1 .

We have 1 =
∑∞

n=0 ψn(ξ), and supp(ψn) ⊂ {ξ | 2n−1 ≤ ‖ξ‖ ≤ 2n+1} for n ≥ 1.
Also ψn(ξ) = ψ1(2

−n+1ξ) for n ≥ 1. Thus, for every multi-index α, there exists a
constant Cα such that ‖∂αψn‖L∞ ≤ Cα2−n|α| for all n ≥ 0, and the inverse Fourier
transform of ψn,

ψ̂n(x) = (2π)−d

∫

Rd

eixξψn(ξ)dξ , x ∈ R
d ,

decays rapidly in the sense of Schwartz. Furthermore we have

ψ̂n(x) = 2d(n−1)ψ̂1(2
n−1x)

for n ≥ 1 and all x, and

(8) sup
n

∫

Rd

|ψ̂n(x)|dx <∞ .

Exercise 3.3. Prove the above claims on ψn and ψ̂n.

Fix a compact subset K ⊂ Rd with non-empty interior and let C∞(K) be the
space of complex-valued C∞ functions on Rd supported on K. Decompose each
u ∈ C∞(K) as u =

∑
n≥0 un, by defining for n ∈ Z+ and x ∈ Rd

(9) un(x) = ψn(D)u(x) := (2π)−d

∫

K

∫

Rd

ei(x−y)ξψn(ξ)u(y)dydξ .
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Note that un is not necessarily supported in K, although it satisfies good decay
properties when ‖x‖ → ∞: we say that the operator ψn(D) is not a “local” oper-
ator, but it is “pseudo-local.” (See [4]. The pseudo-local estimates there are useful
e.g. to show the compactness results in Propositions 3.6 and 4.4.)

Remark 3.4. The notation a(D) for the operator sending a compactly supported
u ∈ C∞(Rd) to

a(D)u(x) := (2π)−d

∫

K

∫

Rd

ei(x−y)ξa(ξ)u(y)dydξ = (â ∗ u)(x) ,

associated to a ∈ C∞(Rd) so that ∂αa(ξ) ≤ Cα(a)‖ξ‖−|α| for each multi-index α,
stands for the “pseudo-differential operator associated to the symbol” a. We shall
not need any knowledge about pseudodifferential operators, and shall not require
symbols depending on both x and ξ.

Definition (Little hölder space Cp
∗ (K)). For a real number p > 0, define on C∞(K)

the norm

‖u‖Cp
∗

= sup
n≥0

2pn‖un‖L∞(Rd) .

The space Cp
∗ (K) is the completion of C∞(K) with respect to ‖ · ‖Cp

∗
.

Remark 3.5. It is known that if p is not an integer then the norm ‖u‖Cp
∗

is equivalent
to the Cp norm. (See [20, Appendix A].)

We shall not give a proof of the following, very standard, result (the proof is based
on the Ascoli-Arzelà lemma; see Proposition 4.4 for an anisotropic analogue):

Proposition 3.6 (Compact embeddings). If 0 < p′ < p the inclusion Cp
∗ (K) ⊂

Cp′

∗ (K) is compact.

3.3. Compact approximation for local maps. Let r > 1. Let K,K ′ ⊂ Rd be
compact subsets with non-empty interiors, and take a compact neighbourhood W
of K. Let T : W → K ′ be a Cr diffeomorphism onto its image (the reader should
think of T as being a local inverse branch of an expanding map T , in charts). Let
γ : Rd → C be a Cr−1 function supported in the interior of K. In this section we
study a local transfer operator:

L : Cr−1(K ′) → Cr−1(K), Lu(x) = γ(x) · u ◦ T (x) .

We define a “weakest contraction3” exponent

‖T ‖+ = sup
x∈K

sup
ξ 6=0

‖DT tr
x (ξ)‖

‖ξ‖
.

The following result is the key to the proof of Theorem 3.1:

Theorem 3.7. For any real number p > 0 such that p ≤ r− 1, and every compact
K0 contained in the interior of K, there is a constant C, so that for each Cr map
T as above and every γ in Cr−1(K0) there is a compact operator L1 : Cp

∗ (K ′) →
Cp

∗ (K) such that for any u ∈ Cp
∗ (K ′)

‖Lu− L1u‖Cp
∗
≤ C‖γ‖L∞ · ‖T ‖p

+‖u‖Cp
∗
.

If γ ∈ Cr(K0) then the condition on p may be relaxed to 0 < p ≤ r.

3This is because we will consider contracting maps T in the application to Theorem 3.1.
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We sketch how to deduce Theorem 3.1 from Theorem 3.7: Take a system of local
charts κi : Vi → Ki ⊂ Rd, 1 ≤ i ≤ k, and a C∞ partition of unity φi : X → [0, 1]
subordinate to the covering by Vi, that is, the support of φi is contained in the
interior of Vi. (Then, Cp

∗ (X) is embedded in the direct sum of the local Cp
∗ (Ki)

spaces.) Consider an iterate Lm of L and define the operators Lij : Cr−1
∗ (X) →

Cr−1
∗ (X) by Lm

ijϕ(x) = φj · Lm(φiϕ) so that Lm =
∑

i,j L
m
ij . Since the operator

Lm
ij may be viewed as an operator in local charts, we may apply Theorem 3.7 to

Lm
ij , taking T to be a branch of the inverse of κi ◦ T

m ◦ κ−1
j , and taking γ to be

(φj · φi ◦ Tm · g(m)) ◦ κ−1
j ◦ T . Then we get that the essential spectral radius of the

operator Lm =
∑

i,j L
m
ij is bounded by

Rm := C · λmp
s ·

(
sup
x∈X

∑

y:T m(y)=x

|g(m)(y)|

)
,

for some constant C independent of m and g. (It is crucial that the constant C in
Theorem 3.7 is independent of T and thus of the iterate m.) Thus the essential
spectral radius of L is bounded by (Rm)1/m. Considering large m, we obtain
Theorem 3.1.

Proof of Theorem 3.7. We need a couple more notations. Recall the function χ
from Section 3.2. Define ψ̃ℓ : Rd → [0, 1] by

ψ̃ℓ(ξ) =

{
χ(2−ℓ−1‖ξ‖)− χ(2−ℓ+2‖ξ‖), if ℓ ≥ 1,

χ(2−1‖ξ‖), if ℓ = 0.

Note that ψ̃ℓ(ξ) = 1 if ξ ∈ supp(ψℓ).
We write4

• ℓ →֒ n if 2n ≤ ‖T ‖+2ℓ+4 ,

• ℓ 6 →֒ n otherwise.

By the definition of 6 →֒ there exists an integer N(T ) > 0 such that

(10) inf
x
d(supp(ψn), DT tr

x (supp(ψ̃ℓ))) ≥ 2max{n,ℓ}−N(T ) if ℓ 6 →֒ n.

Let h : Rd → [0, 1] be a C∞ function supported in K and ≡ 1 on supp(γ). Noting
that L(f) is well-defined if f ∈ C∞(Rd) because γ is supported in K, we may define
L1 and L0 by Lj(f) = (M ◦ L′

j)(f) with Mf = h · f , and L′
ju =

∑
n(L′

ju)(n) with

(L′
0u)(n) =

∑

ℓ:ℓ→֒n

ψn(D)(Luℓ) ,

and

(L′
1u)(n) =

∑

ℓ:ℓ 6 →֒n

ψn(D)(L ψ̃ℓ(D)uℓ) .

Since ψ̃ℓ(D)uℓ = uℓ and h ≡ 1 on supp(g), we have L0+L1 = L. By Proposition 3.6,
it is enough to show the following three bounds: First, there is C(h), which only
depends on max0≤|α|≤[r]+1 sup |∂αh|, so that

(11) ‖Mu‖Cp
∗
≤ C(h)‖u‖Cp

∗
,

4By definition, if ℓ 6 →֒ n then n > ℓ − n(T ) for some n(T ) depending only on T . This feature
will not be present in the hyperbolic case.
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second, there is C, which does not depend on T and γ, so that for each u ∈ Cp(K ′)

‖L′
0u‖Cp

∗
≤ C‖T ‖p

+‖γ‖L∞‖u‖Cp
∗
,

and finally, for each 0 < p′ < p there is C(T , γ) so that for each u ∈ Cp(K ′)

(12) ‖L′
1u‖Cp

∗
< C(T , γ)‖u‖

Cp′

∗

.

(Note that if a Banach space B′
1 is compactly included in a Banach space B′

0, then
any bounded linear operator from B′

0 to B1 is compact when restricted to B′
1, using

that the composition of a compact operator followed by a bounded operator is
compact.)

Notice that there is C (independent of T and γ) so that

(13)
∑

ℓ:ℓ→֒n

2pn−pℓ ≤ 24p‖T ‖p
+

∞∑

j=0

2−j ≤ C‖T ‖p
+, ∀n .

Also notice that

(14) ψm(D) ◦ ψn(D) = (ψm · ψn)(D) = 0 when |m− n| ≥ 5 .

The bound for L′
0 is then easy:

‖L′
0u‖Cp

∗
= sup

m
2pm‖ψm(D)

(∑

n

(L0u)(n))‖L∞(Rd)

≤ sup
m

2pm
∑

|n−m|<5

∑

ℓ:ℓ→֒n

‖ψn(D)(Luℓ)‖L∞

≤ C‖γ‖L∞ sup
m

2pm
∑

|n−m|<5

∑

ℓ:ℓ→֒n

‖uℓ‖L∞

≤ C‖γ‖L∞ sup
m

∑

|n−m|<5

( ∑

ℓ:ℓ→֒n

2pn−pℓ
)
‖u‖Cp

∗

≤ C‖γ‖L∞‖T ‖p
+‖u‖Cp

∗
.

We used ψn(D)f = ψ̂n ∗ f , which implies ‖ψn(D)f‖L∞ ≤ C‖f‖L∞ for all n, by
Young’s inequality for L∞.

We will have to work a little harder for L′
1. Assume first that p ≤ r − 1. Then

it is enough to prove that for each f ∈ C∞(Rd) with rapid decay, and all n

(15) ‖ψn(D)(L(ψ̃ℓ(D)f))‖L∞ ≤ C(T , γ)2−(r−1)max{n,ℓ}‖f‖L∞ if ℓ 6 →֒ n.

Indeed, using (14) as in the estimate for L′
0, the above bound implies that

‖L′
1u‖Cp

∗
≤ C(T , γ) · sup

n



∑

ℓ:ℓ 6 →֒n

2pn−p′ℓ−(r−1)max{n,ℓ}


 ‖u‖

Cp′

∗

,(16)

and the conditions p ≤ r − 1 and p′ > 0 ensure that the supremum over n of the
sum over ℓ such that ℓ 6 →֒ n above is finite (recall the footnote 4).

To show (15), we note that

(ψ̌n(D)L ψ̃ℓ(D)f)(x) = (2π)−2d

∫

Rd

V ℓ
n (x, y) · f ◦ T (y)| detDT (y)|dy ,

where we have extended T to a bilipschitz Cr diffeomorphism of Rd and

(17) V ℓ
n (x, y) =

∫

Rd×Rd×Rd

ei(x−w)ξ+i(T (w)−T (y))ηγ(w)ψn(ξ)ψ̃ℓ(η)dwdξdη .
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Since ‖f ◦ T · | detDT |‖L∞ ≤ C(T )‖f‖L∞, the inequality (15) follows if we show
that there exists C(T , γ) such that for all ℓ 6 →֒ n the operator norm of the integral
operator

Hℓ
n : f 7→

∫

Rd

V ℓ
n (x, y)f(y)dy

acting on L∞(Rd) is bounded by C(T , γ) · 2−(r−1)max{n,ℓ}.
Define the integrable function b : Rd → R+ by

(18) b(x) = 1 if ‖x‖ ≤ 1, b(x) = ‖x‖−d−1 if ‖x‖ > 1.

The required estimate on Hℓ
n follows if we show

(19) |V ℓ
n (x, y)| ≤ C(T , γ)2−(r−1)max{n,ℓ} · 2d min{n,ℓ}b(2min{n,ℓ}(x− y)) ,

for some C(T , γ) > 0 and all ℓ 6 →֒ n. Indeed, as the right hand side of (19) is
written as a function of x − y, say B(x − y), we have, by Young’s inequality in
L∞(Rd),

‖Hℓ
nf‖L∞ ≤ ‖B ∗ f‖L∞ ≤ ‖B‖L1‖f‖L∞

≤ C(T , γ)2−(r−1)max{n,ℓ} · ‖b‖L1 · ‖f‖L∞ .

(Note that, by Young’s inequality for Lt(Rd) with 1 < t < ∞, the operator Hℓ
n

acting on each Lt(Rd) is also bounded by C(T , γ) · 2−(r−1)max{n,ℓ}. This is useful
to control the essential spectral radius on anisotropic Sobolev spaces, see [4].)

We now prove (19). If r ≥ 2 (otherwise we do nothing at this stage), integrating
(17) by parts [r] − 1 times on w (recall (6)), we obtain

(20) V ℓ
n(x, y) =

∫
ei(x−w)ξ+i(T (w)−T (y))ηF (ξ, η, w)ψn(ξ)ψ̃ℓ(η)dwdξdη ,

where F (ξ, η, w) is a Cr−[r] function in w which is C∞ in the variables ξ and η.
The following exercise is an important (but straightforward) step in the proof:

Exercise 3.8. Using (10), check that if ψn(ξ) · ψ̃ℓ(η) 6= 0 then

(21) ‖F (ξ, η, ·)‖Cr−[r] ≤ C(T , γ)2−([r]−1)max{n,ℓ} .

The estimate (21) looks promising, but applying it naively is not enough: since

we are integrating over ξ in the support of ψn and over η in the support of ψ̃ℓ, we
would get an additional factor 2dn+dℓ. In order to get rid of this factor, we shall
use another exercise:

Exercise 3.9. Using (10), show that if ψn(ξ) · ψ̃ℓ(η) 6= 0, then for all multi-indices
α and β

(22) ‖∂α
ξ ∂

β
ηF (ξ, η, ·)‖Cr−[r] ≤ Cα,β(T , γ)2−n|α|−ℓ|β|−([r]−1)max{n,ℓ} .

Assume first that r is an integer (then, r = [r] ≥ 2). Put

Gn,ℓ(ξ, η, w) = F (ξ, η, w)ψn(ξ)ψ̃ℓ(η)

and consider the scaling G̃n,ℓ(ξ, η, w) = Gn,ℓ(2
nξ, 2ℓη, w).

The estimate (22) implies that for all α and β

(23) ‖∂α
ξ ∂

β
η G̃n,ℓ(ξ, η, ·)‖Cr−[r] ≤ Cα,β(T , γ)2−([r]−1)max{n,ℓ} , ∀ξ, η, n, ℓ .
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Then, denoting by F the inverse Fourier transform with respect to the variable
(ξ, η), and setting W ℓ

n(u, v, w) :=

(24) (FG̃n,ℓ)(u, v, w) = (2π)−2d

∫

Rd

∫

Rd

eiuξeivηG̃n,ℓ(ξ, η, w) dξdη ,

the bounds (23) imply that for any nonnegative integers k and k′′

(25)
∥∥‖u‖k‖v‖k′′

W ℓ
n(u, v, ·)

∥∥
L∞

≤ C̃k,k′ (T , γ)2−([r]−1)max{n,ℓ} , ∀u, v, n, ℓ .

(Just note that the integrand in (24) is supported in max{‖ξ‖, ‖η‖} ≤ 2, and
integrate by parts with respect to ξ and η as many times as desired.) Applying
(25) to k, k′ in {0, d+1}, we get C(T , γ) so that for each w ∈ K, and all n, ℓ, u, v

(26) |W ℓ
n(u, v, w)| ≤ C(T , γ)2−([r]−1)max{n,ℓ}b(u)b(v) .

(For w /∈ K we have W ℓ
n(u, v, w) = 0 for all u, v, n, ℓ.) Therefore, since

(FGn,ℓ)(u, v, w) = 2dn+dℓW ℓ
n(2nu, 2ℓv, w) ,

we get by definition,

|V ℓ
n (x, y)| ≤

∫

K

|(FGn,ℓ)(x − w, T (w) − T (y), w)| dw

≤ C

∫

K

2dn+dℓ|W ℓ
n(2n(x− w), 2ℓ(T (w) − T (y)), w)| dw

≤ C(T , γ)2−([r]−1)max{n,ℓ}+dn+dℓ

∫

K

b(2n(x − w))b(2ℓ(T (w) − T (y))dw .

Next, using u = 2n(x− w), note wu = x− 2−nu, and write
∫

K

2dn+dℓb(2n(x− w))b(2ℓ(T (w) − T (y))) dw(27)

=

∫

Rd

2dℓb(u)b(2ℓ(T (wu) − T (y))) du .

Since ℓ ≤ n+N(T ) (see footnote 4), we get by using

(28)

∫
b(u)b(2ℓ(T (wu) − T (y))) du ≤

∫
b(u) du <∞ ,

that |V ℓ
n (x, y)| ≤ C(T , γ)2d min{n,ℓ}−([r]−1)max{n,ℓ}.

If ‖x − y‖ > 2−min{n,ℓ}, we can improve the estimate: let q0 ≤ min{ℓ, n} be
the integer so that ‖x− y‖ ∈ [2−q0 , 2−q0+1). Taking large constants C(T ), we may
assume that for each u ∈ Rd either of the following conditions holds:

‖u‖ = 2n‖x− wu‖ ≥ 2C(T )+n−q0 ≥ 2C(T )+ℓ−q0

2ℓ‖T (wu) − T (y)‖ > 2C(T )+ℓ‖wu − y‖ > 2C(T )+ℓ−q0 .

Hence we obtain∫
b(u)b(2ℓ(T (wu) − T (y))) du

≤ 2C(T )+(n−q0)(d+1)

∫
b(2ℓ(T (wu) − T (y))) du

+ 2C(T )+(ℓ−q0)(d+1)

∫
b(u) du

≤ 2C(T )−(d+1)(q0−ℓ).
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With this, we conclude |V ℓ
n (x, y)| ≤ C(T , γ)2d min{n,ℓ}−([r]−1)max{n,ℓ}2(d+1)q0 , prov-

ing (19) for integer r .
If r > 1 is not an integer, we start from (20) and rewrite V ℓ

n (x, y) as

(29)

∫
eiΛ(x−w)(ξ/Λ)+iΛ(T (w)−T (y))(η/Λ)F (ξ, η, w)ψn(ξ)ψ̃ℓ(η)dwdξdη,

for Λ = 2max{ℓ,n}. Recalling (7), we apply to (29) one regularised integration by
parts for δ = r − [r] (noting that T is C1+δ). We get two terms F1,ǫ(ξ, η, w) and
F2,ǫ(ξ, η, w). Choosing ǫ = Λ−1, we may apply the above procedure to each of
them. The proof of (19) when γ is Cr and r − 1 < p ≤ r is done in Appendix A.

It only remains to check (11) for the multiplication operator Mu = hu. Since T
is replaced by the identity map which satisfies ‖id‖+ ≤ 1, and γ is replaced by h,
this can be done by a simplification of the above arguments for L′

0 and L′
1 (we can

take p′ = p), decomposing M = M0 +M1 according to the relation →֒ associated
to id. We leave details as an exercise for the reader. �

4. Bounding the essential spectral radius in the Anosov case

We now move to hyperbolic situations. We take r > 1 andX a compact Riemann
manifold, and assume that T : X → X is a Cr Anosov diffeomorphism. Recall that
this means that Λ = X is a hyperbolic set for T in the sense of Section 2. For
g ∈ C0(X), set

R(T, g) = lim
m→∞

(sup |g(m)(x)|)1/m

(the limit is well-defined and equal to the infimum, by a standard subbadditivity
argument). We shall give the key steps in the proof of the following result (which
is weaker than Theorem 2.5):

Theorem 4.1 (Essential spectral radius). Let T : X → X be a Cr Anosov diffeo-
morphism, and let g be a Cr−1 function, with r > 1. For all real numbers q < 0 < p
with p−q < r−1, there is a Banach space Cp,q

∗ (T ) of distributions on X, containing
all Cs functions with s > p, and contained in the dual of Cs(X) for all s < |q|, on
which LT,g extends boundedly and so that

ress(LT,g|Cp,q
∗ (T )) ≤ R(T, g)max{λp

s, ν
q
u} .

In particular the pull-back operator T ∗ϕ = ϕ ◦ T satisfies for all q < 0 < p with
p− q < r − 1

ress(T
∗|Cp,q

∗ (T )) ≤ max{λp
s, ν

q
u} < 1 .

In the rest of this paper, we explain how to adapt the tools in Section 3 to prove
the above theorem.

4.1. Local definition of the anisotropic norms. In this subsection we define the
anisotropic norms in a compact domain of Rd. (The Banach space in Theorem 4.1
will be constructed by patching together such local spaces in coordinate charts.) Let
C+ and C− be closed cones in Rd with nonempty interiors, such that C+ ∩ C− =
{0}. Let then ϕ+, ϕ− : Sd−1 → [0, 1] be C∞ functions on the unit sphere Sd−1 in
Rd satisfying

(30) ϕ+(ξ) =

{
1, if ξ ∈ Sd−1 ∩ C+,

0, if ξ ∈ Sd−1 ∩ C−,
ϕ−(ξ) = 1 − ϕ+(ξ) .
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(What the reader can have in mind is that C+ is a cone containing a stable bundle
and C− a cone containing an unstable bundle.

Except in Exercise 4.7, Theorem 4.8, and Exercise 4.9 below, we shall work
in this subsection with a fixed pair of cones C± and fixed functions ϕ±, they
will not appear in the notation for the sake of simplicity. Recall ψn and χ from
Subsection 3.2. For n ∈ Z+ and σ ∈ {+,−}, we define

ψn,σ(ξ) =

{
ψn(ξ)ϕσ(ξ/‖ξ‖), if n ≥ 1,

χ(‖ξ‖)/2, if n = 0.

Exercise 4.2. Prove that the ψn,σ enjoy similar properties as those of the ψn, in

particular the L1-norm of the rapidly decaying function ψ̂n,σ is bounded uniformly
in n.

Fix K ⊂ Rd compact and with nonempty interior. For u ∈ C∞(K), define for
each n ∈ Z+, σ ∈ {+,−}, and x ∈ Rd:

un,σ(x) = (ψn,σ(D)u)(x) = (ψ̂n,σ ∗ u)(x) .

Since 1 =
∑∞

n=0

∑
σ=± ψn,σ(ξ), we have u =

∑
n≥0

∑
σ=± un,σ.

Definition (Anisotropic hölder spaces Cp,q
∗ (K)). Let C± and ϕ± be fixed, as

above. Let p and q be arbitrary real numbers. Define the anisotropic hölder norm
‖u‖Cp,q

∗
for u ∈ C∞(K), by

(31) ‖u‖Cp,q
∗

= max

{
sup
n≥0

2pn‖un,+‖L∞ , sup
n≥0

2qn‖un,−‖L∞

}
.

Let Cp,q
∗ (K) be the completion of C∞(K) for the norm ‖ · ‖Cp,q

∗
.

Remark 4.3. In our application, p > 0, and q < 0. Recalling Section 3 for con-
tracting branches and p > 0, it is then natural that C+ and ϕ+ be associated to a
contracting (i.e., stable) cone for the dynamics and C− and ϕ− be associated to an
expanding (i.e., unstable) cone. Elements of Cp,q

∗ (K) are distributions which are
at least p-smooth in the directions in C+ and at most q-“rough” in the directions
of C−.

We shall not give a proof of the following result, referring instead to [4]. (The
proof is based on the Ascoli-Arzelà theorem.)

Proposition 4.4 (Compact embeddings). If p′ < p and q′ < q, the inclusion

Cp,q
∗ (K) ⊂ Cp′,q′

∗ (K) is compact.

4.2. Compact approximation for local hyperbolic maps. Let r > 1. Let
K,K ′ ⊂ Rd be compact subsets with non-empty interiors, and take a compact
neighborhood W of K. Let T : W → K ′ be a Cr diffeomorphism onto its image.
Let γ : Rd → C be a Cr−1 function such that supp(γ) is contained in the interior
of K. In this section we study the transfer operator

L : Cr−1(K ′) → Cr−1(K), Lu(x) = γ(x) · u ◦ T (x) .

For a pair of cones C± as in Subsection 4.1, we make the following cone-
hyperbolicity assumption on T :

(32) DT tr
x (Rd \ interior (C+)) ⊂ interior (C−) ∪ {0} for all x ∈W ,
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whereDT tr
x denotes the transpose of the derivative of T at x. (The above condition

is sufficient in the neighbourhood of a hyperbolic fixed point. More generally, it
will be useful to allow more flexibility and to work with two pairs of cones. See
Exercise 4.7 below.)

Put

‖T ‖+ = sup
x

sup
06=DT tr

x (ξ)/∈C−

‖DT tr
x (ξ)‖

‖ξ‖
(the “weakest contraction”) ,

‖T ‖− = inf
x

inf
06=ξ/∈C+

‖DT tr
x (ξ)‖

‖ξ‖
(the “weakest expansion ”) .

The following result is the key to the proof of Theorem 4.1 (see also Exercise 4.7
and Theorem 4.8 below):

Theorem 4.5 (Estimates for local cone-hyperbolic maps). For any q′ < q <
0 < p′ < p such that p − q′ < r − 1, there exists a constant C so that for each
Cr diffeomorphism T and each Cr−1 function γ as above (assuming in particular
(32)), there is a linear operator L′

1 such that for any u ∈ Cp,q
∗ (K ′)

(33) ‖Lu− L′
1u‖Cp,q

∗
≤ C‖γ‖L∞ · max{‖T ‖p

+, ‖T ‖q
−}‖u‖Cp,q

∗
,

and, in addition, there is C(T , γ) such that for any u ∈ Cp′,q′

∗ (K ′)

‖L′
1u‖Cp,q

∗
≤ C(T , γ)‖u‖

Cp′,q′

∗

.

It is essential that the constant C in (33) does not depend on T and γ.

Proof of Theorem 4.5. We need more notation. By (32) there exist a closed cone

C̃+ contained in the interior of C+ such that for all x ∈W

(34) DT tr
x (Rd \ interior(C̃+)) ⊂ interior(C−) ∪ {0} .

Fix also a closed cone C̃− contained in the interior of C− and let ϕ̃± : Sd−1 →
[0, 1] be C∞ functions satisfying

ϕ̃−(ξ) =

{
0, if ξ ∈ Sd−1 ∩ C̃+,

1, if ξ /∈ Sd−1 ∩ C+,
ϕ̃+(ξ) =

{
1, if ξ /∈ Sd−1 ∩ C−,

0, if ξ ∈ Sd−1 ∩ C̃−.

Recalling ψ̃ℓ from the beginning of the proof of Theorem 3.7, define for σ ∈ {+,−}

ψ̃ℓ,σ(ξ) =

{
ψ̃ℓ(ξ)ϕ̃σ(ξ/‖ξ‖), if ℓ ≥ 1,

χ(2−1‖ξ‖), if ℓ = 0.

Note that ψ̃ℓ,τ (ξ) = 1 if ξ ∈ supp(ψℓ,τ ).

Up to slightly changing the cones C̃±, we can guarantee that

inf
x∈K

inf
06=ξ/∈C̃+

‖DT tr
x (ξ)‖

‖ξ‖
≥ ‖T ‖−/2 ,(35)

sup
x∈K

sup
06=DT tr

x (ξ)/∈C̃−

‖DT tr
x (ξ)‖

‖ξ‖
≤ 2‖T ‖+ .(36)

We write (ℓ, τ) →֒ (n, σ) if either

• (τ, σ) = (+,+) and 2n ≤ 2ℓ+5‖T ‖+, or
• (τ, σ) = (−,−) and 2ℓ−5‖T ‖− ≤ 2n, or
• (τ, σ) = (+,−) and 2n ≥ 25‖T ‖− or 2ℓ ≥ 25‖T ‖+.
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We write (ℓ, τ) 6 →֒ (n, σ) otherwise.

Exercise 4.6. Let Č± be two closed cones with disjoint interiors, so that Č+∩Č− =
{0}, and with

closure (Rd \ C+) ⊂ interior (Č−) ∪ {0} .

Let ϕ̌± : Sd−1 → [0, 1], and ψ̌ℓ,σ : Rd → [0, 1], for σ ∈ {+,−} and ℓ ∈ Z+,

be functions defined just like ϕ± and ψℓ,σ, but replacing the cones C± by Č±.
Using (34) and (35), check that there exists an integer N(T ) > 0 such that for all
x ∈ supp(γ)

(37) d(supp(ψ̌n,σ), DT tr
x (supp(ψ̃ℓ,τ ))) ≥ 2max{n,ℓ}−N(T ) if (ℓ, τ) 6 →֒ (n, σ).

Hint: For (τ, σ) = (−,+), use (34). See [4] for further details.
Note that (37) is exactly the same lower bound as (10).

Define L′
1 and L′

0 by L′
ju =

∑
n,σ(Lju)(n,σ) with

(L′
0u)(n,σ) =

∑

(ℓ,τ):(ℓ,τ)→֒(n,σ)

ψ̌n,σ(D)(Luℓ,τ) ,

and
(L′

1u)(n,σ) =
∑

(ℓ,τ):(ℓ,τ) 6 →֒(n,σ)

ψ̌n,σ(D)(L ψ̃ℓ,τ (D)uℓ,τ ) .

Since ψ̃ℓ,τ (D)uℓ,τ = uℓ,τ , we have L′
0 + L′

1 = L. Note also that by definition of the

cones Č±, if |n−m| > 5 or υ = + and σ = − then for i = 0 and i = 1:

(38) ψm,υ(D)(Liu)(n,σ) = 0 .

By Proposition 4.4, it is enough to show that there is C, which does not depend on
T and γ, so that for each u ∈ Cp,q

∗ (K)

‖L′
0u‖Cp,q

∗
< Cmax{‖T ‖p

+, ‖T ‖q
−}‖γ‖L∞‖u‖Cp,q

∗
,

and that for each 0 < p′ < p and q′ < q so that p− q′ < r − 1, there is C(T , γ) so
that for each u ∈ Cp,q

∗ (K)

‖L′
1u‖Cp,q

∗
< C(T , γ)‖u‖

Cp′,q′

∗

.

The bound for L′
0 is easy, like in the proof of Theorem 3.7: Notice that there is

C so that, setting c(+) = p, c(−) = q,

(39)
∑

(ℓ,τ):(ℓ,τ)→֒(n,σ)

2c(σ)n−c(τ)ℓ ≤ Cmax{‖T ‖p
+, ‖T ‖q

−}, ∀(n, σ) ,

and recall that sup(n,σ)

∫
|ψ̂n,σ(x)|dx <∞.

Consider next L′
1. It is enough to prove that if (ℓ, τ) 6 →֒ (n, σ) then

(40) ‖ψ̌n,σ(D)(L ψ̃ℓ,τ (D)f)‖L∞ ≤ C(T , γ)2−(r−1)max{n,ℓ}‖f‖L∞ .

Indeed, setting c′(+) = p′, and c′(−) = q′, (40) and (38) imply that

‖L′
1u‖Cp,q

∗

≤ sup
(m,υ)

∑

(n,σ)

∑

(ℓ,τ):(ℓ,τ) 6 →֒(n,σ)

2c(υ)m‖ψm,υ(D)ψ̌n,σ(D)(L ψ̃ℓ,τ (D)uℓ,τ )‖L∞

≤ C(T , γ) · sup
(n,σ)




∑

(ℓ,τ):(ℓ,τ) 6 →֒(n,σ)

2c(σ)n−c′(τ)ℓ−(r−1)max{n,ℓ}


 ‖u‖

Cp′,q′

∗

.
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Then, since p ≤ r−1, p−q′ < r−1, and thus −q < r−1, we see from the definition
of 6 →֒ that

(41) sup
(n,σ)




∑

(ℓ,τ):(ℓ,τ) 6 →֒(n,σ)

2c(σ)n−c′(τ)ℓ−(r−1)max{n,ℓ}


 <∞ .

(Note that p − q ≤ r − 1 is not enough to guarantee the above bound because of
the case (τ, σ) = (−,+).)

To show (40), extend T to Rd as in the proof of Theorem 3.7, and rewrite

(ψ̌n,σ(D)(L ψ̃ℓ,τ (D)f)(x) = (2π)−2d

∫
V ℓ,τ

n,σ(x, y) · f ◦ T (y)| detDT (y)|dy ,

where

V ℓ,τ
n,σ(x, y) =

∫
ei(x−w)ξ+i(T (w)−T (y))ηγ(w)ψ̌n,σ(ξ)ψ̃ℓ,τ (η)dwdξdη .(42)

Recall b from (18). If we show

(43) |V ℓ,τ
n,σ(x, y)| ≤ C(T , γ)2−(r−1)max{n,ℓ} · 2d min{n,ℓ}b(2min{n,ℓ}(x − y)) ,

for some C(T , γ) > 0 and all (ℓ, τ) 6 →֒ (n, σ) then (40) follows from Young’s in-
equality, as in the expanding case from Section 3.3.

Finally, the proof of (43) is exactly the same as the proof of (19), up to using
the change of variable v = 2ℓ(T (w) − T (y)) instead of u = 2n(x − w) in (27) if
ℓ > n. �

Exercise 4.7. Consider now two pairs of cones C± and C′
±, and construct, for each

p and q, two norms ‖ · ‖Cp,q
∗

and ‖ · ‖(C′

∗
)p,q (by choosing ϕ± and ϕ′

± as above).
Introduce a more general condition for T :

(44) DT tr
x (Rd \ interior (C′

+)) ⊂ interior (C−) ∪ {0} for all x ∈W .

Put

‖T ‖+ = sup
x∈K

sup
06=DT tr

x (ξ)/∈C−

‖DT tr
x (ξ)‖

‖ξ‖
(the “weakest contraction”) ,

‖T ‖− = inf
x∈K

inf
06=ξ/∈C′

+

‖DT tr
x (ξ)‖

‖ξ‖
(the “weakest expansion”) .

Check that a small modification of the proof of Theorem 4.5 gives:

Theorem 4.8. For any q′ < q < 0 < p′ < p such that p− q′ < r − 1 there exist a
constant C so that for each Cr diffeomorphism T and Cr−1 function γ, assuming
(44), there exists a linear operator L′

1 such that for any u ∈ (C′
∗)

p,q(K ′)

‖Lu− L′
1u‖Cp,q

∗
≤ C‖γ‖L∞ · max{‖T ‖p

+, ‖T ‖q
−}‖u‖(C′

∗
)p,q ,

and, in addition, there is C(T , γ) so that for any u ∈ (C′
∗)

p′,q′

(K ′)

‖L′
1u‖Cp,q

∗
≤ C(T , γ)‖u‖(C′

∗
)p′,q′ .

(See [4].)

Remark 4.9. Theorem 4.8 may be applied to T the identity map, i.e., the operator
Mu = h · u of multiplication by a smooth function h, up to taking suitable pairs of
cones in order to guarantee cone-hyperbolicity.
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4.3. Transfer operators for Anosov diffeomorphisms. We prove Theorem 4.1
by reducing to the model of Subsections 4.1 and 4.2.

Proof of Theorem 4.1. We first define the space Cp,q
∗ (T ) by using local charts to

patch the anisotropic spaces from Subsection 4.1. Fix a finite system of C∞ local
charts {(Vj , κj)}J

j=1 that cover X , and a finite system of pairs of closed cones 5

{(Cj,+,Cj,−)}J
j=1 in Rd with the properties that for all 1 ≤ j, k ≤ J :

(a) The closure of κj(Vj) is a compact subset Kj of Rd.
(b) Cj,+ ∩ Cj,− = {0}.
(c) If x ∈ Vj , the cones (Dκj)

∗(Cj,+) and (Dκj)
∗(Cj,−) in the cotangent space

contain the normal subspaces of Es(x) and Eu(x), respectively.
(d) If T−1(Vk) ∩ Vj 6= ∅, setting Ujk = κj(T

−1(Vk) ∩ Vj), the map in charts

Tjk := κk ◦ T ◦ κ−1
j : Ujk → R

d enjoys the cone-hyperbolicity condition:

(45) DT tr
jk,x(Rd \ interior (Ck,+)) ⊂ interior(Cj,−) ∪ {0}, ∀x ∈ Ujk.

The fact that such systems of cones exist is standard for Anosov maps, see e.g. [12].
Choose C∞ functions ϕ+

j , ϕ
−
j : Sd−1 → [0, 1] for 1 ≤ j ≤ J which satisfy (30)

with C± = Cj,±, as in Section 4.1. This defines for each j a local space denoted

Cp,q,j
∗ . Choose finally a C∞ partition of the unity {φj} subordinate to the covering

{Vj}J
j=1, that is, the support of each φj : X → [0, 1] is contained in the interior of

Vj , and we have
∑J

j=1 φj ≡ 1 on X .

Definition. We define the Banach spaces Cp,q
∗ (T ) to be the completion of C∞(X)

for the norm

‖u‖Cp,q
∗ (T ) := max

1≤j≤J
‖(φj · u) ◦ κ

−1
j ‖Cp,q,j

∗

.

By definition, Cp,q
∗ (T ) contains Cs(X) for s > p. If 0 ≤ p′ < p and q′ < q,

Lemma 4.4 and a finite diagonal argument over {1, . . . , J}, imply that the inclusion

Cp,q
∗ (T ) ⊂ Cp′,q′

∗ (T ) is compact.
For m ≥ 1 and j, k so that

Vm,jk := T−m(Vk) ∩ Vj 6= ∅ ,

we may consider the map in charts

T m
jk = κk ◦ Tm ◦ κ−1

j : κj(Vm,jk) → R
d .

Note that (45) implies that

(DT m
jk,x)tr(Rd \ interior (Ck,+)) ⊂ interior(Cj,−) ∪ {0} , ∀x ∈ κj(Vm,jk) .

Set

Rm = max
j,k

sup
x∈κj(Vm,jk)

|g(m) ◦ κ−1
j (x)| · max{‖T m

jk ‖
p
+, ‖T

m
jk ‖

q
−} ,

where

‖T m
jk ‖+ = sup

x∈κj(Vm,jk)

sup

{
‖(DT m

jk )tr
x (ξ)‖

‖ξ‖
; 0 6= (DT m

jk )tr
x (ξ) /∈ Cj,−

}
,

5We regard Cj,± as constant cone fields in the cotangent bundle T ∗
R

d.
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and

‖T m
jk ‖− = inf

x∈κj(Vm,jk)
inf

{
‖(DT m

jk )tr
x (ξ)‖

‖ξ‖
; 0 6= ξ /∈ Ck,+

}
.

A standard argument in uniformly hyperbolic dynamics gives

lim
m→∞

(‖T m
jk ‖+)1/m ≤ λs ,

and

lim
m→∞

(‖T m
jk ‖−)1/m ≥ νu .

Therefore

(46) lim sup
m→∞

(Rm)1/m ≤ R(T, g)max{λp
s, ν

q
u} .

Since p− q < r − 1, we can apply Theorem 4.8 to T m
jk and γj = (φjg

(m)) ◦ κ−1
j

to obtain C so that, setting L
(m)
jk u = γj · (u(φk ◦ κ−1

k )) ◦ T m
jk for u ∈ Cp,q,k

∗ (Kk),

‖L
(m)
jk u− (L

(m)
jk )′1u‖Cp,q,j

∗

≤ CRm · ‖u‖Cp,q,k
∗

, ∀m.

with ‖(L
(m)
jk )′1(u)‖Cp,q,j

∗

≤ C(T m
jk , γj)‖u‖Cp′,q′,k

∗

. Using Remark 4.9 and postcom-

position by the multiplication operator Mju = hj · u where hj : Rd → ∞ is C∞,

supported in Kj and hj ≡ 1 on the support of φj ◦ κ−1
j , similarly as in the last

paragraph of the proof of Theorem 3.7 (details are left to the reader), this implies
the claimed upper bound for the essential spectral radius of LT,g. �

Remark 4.10. Though it is not explicit in our notation, choosing a different system
of local charts, a different partition of unity, or a different set of cones or functions
ϕ±, does not a priori give rise to equivalent norms. This is a little unpleasant, but
does not cause problems.

Appendix A. Theorem 3.1 when both T and g are Cr

Proof. We only need to adapt the estimate (12) on L1 to the case when γ is Cr

and r − 1 < p ≤ r, for r > 1, for some 0 < p′ < p. Recall V ℓ
n from (17) and b from

(18). We shall show

(47) |V ℓ
n (x, y)| ≤ C(T , γ)2−r max{n,ℓ} · 2(d+1)min{n,ℓ}b(2min{n,ℓ}(x− y)),

for some C(T , γ) > 0 and all ℓ 6 →֒ n.

Exercise A.1. Show that (47) combined with

sup
n




∑

ℓ:ℓ 6 →֒n

2pn−p′ℓ+min{n,ℓ}−r max{n,ℓ}



 <∞ ,

gives the claim. (Recall footnote 4 and take p′ > p very close to p.)

Define for each y a Cr function:

Ay(w) = T (w) − T (y) −DT (y)(w − y) .

We may rewrite (17) as

V ℓ
n (x, y) =

∫
ei(x−w)ξ+iDT (y)(w−y)η

(
eiAy(w)ηγ(w)

)
ψn(ξ)ψ̃ℓ(η)dwdξdη .
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Integrating (17) by parts once on w, we obtain

(48) V ℓ
n(x, y) =

∫
ei(x−w)ξ+i(T (w)−T (y))ηF̌ (ξ, η, w)ψn(ξ)ψ̃ℓ(η)dwdξdη ,

where F̌ (ξ, η, w) is a Cr−1 function in w which is C∞ in the variables ξ and η. (We
used properties of the derivative of an exponential to “reconstruct” ei(T (w)−T (y))η.)
Then, integrate (48) [r] − 1 times by parts on w, giving

(49) V ℓ
n(x, y) =

∫
ei(x−w)ξ+i(T (w)−T (y))ηF̃ (ξ, η, w)ψn(ξ)ψ̃ℓ(η)dwdξdη ,

with F̃ (ξ, η, w) a Cr−[r] function in w which is C∞ in the variables ξ and η. By

(10), if ψn(ξ) · ψ̃ℓ(η) 6= 0, then we have for all α and β

(50) ‖∂α
ξ ∂

β
η F̃‖Cr−[r] ≤ Cα,β(T , γ)2ℓ2−n|α|−ℓ|β|−[r]max{n,ℓ} .

(The price we have to pay for the first integration by parts is the factor 2ℓ. What
we gained is 2−[r]max{n,ℓ}, with [r] instead of [r] − 1.) Then (50) implies (47), just
like in Section 3.3 (recall that ℓ ≤ n). �

References
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Birkhäuser, Boston, 1991.
21. M. Tsujii, Decay of correlations in suspension semi-flows of angle-multiplying maps, preprint

arxiv.org (2005).
22. P. Walters, An Introduction to Ergodic Theory, Springer (1982).

CNRS-UMR 7586, Institut de Mathématiques Jussieu, Paris, France

E-mail address: baladi@math.jussieu.fr

Mathematics, Hokkaido University, Sapporo, Hokkaido, Japan

E-mail address: tsujii@math.sci.hokudai.ac.jp


	1. A brief introduction
	2. New results on transfer operators and dynamical determinants
	3. A toy model: expanding endomorphisms
	3.1. The result for locally expanding maps
	3.2. Local definition of Hölder norms in Fourier coordinates
	3.3. Compact approximation for local maps

	4. Bounding the essential spectral radius in the Anosov case
	4.1. Local definition of the anisotropic norms.
	4.2. Compact approximation for local hyperbolic maps
	4.3. Transfer operators for Anosov diffeomorphisms

	Appendix A. Theorem ?? when both T and g are Cr
	References

