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CONTINUATION

IMPLICIT
FUNCTION
THEOREM







Given: a smooth mapping

f:R™ — R"

and a point zg € R™.




Given: a smooth mapping

f:R™ — R"

and a point zg € R™.

We want to solve

f(z) = f(xo)

locally near xg.




If £ is a submersion at xq,
l.e. if

Im D f(zo) = R",

(this requires m > n), then
the solution set of

f(z) = f(z0)

IS locally near xg a smooth
(m—n)-dimensional manifold.




SOME EXAMPLES
WHERE THE
SUBMERSIVITY
CONDITION IS

NOT

SATISFIED,
BUT THE SOLUTION
SET IS STILL A
SMOOTH MANIFOLD




Suppose that

pi(f(z)) =0, Ve e R™, (1 <<k <n),

where the ¢; : R" — R are smooth functions.

Assume that the vectors

Vei(f(zg)) (1 <i<k)

are linearly independent.




This means that f maps R" into the codimension
k submanifold

N ={yeR"|¢;i(y) =0,1 <i<k}.




This means that f maps R" into the codimension
k submanifold

N ={yeR"|¢;i(y) =0,1 <i<k}.

We set

W = spang {Vi;(f(z0)) | 1 <i < k}.




T his means that f maps R" into the codimension
k submanifolc

N ={yeR"|¢;i(y) =0,1 <i<k}.

We set

W = spang {Vi;(f(z0)) | 1 <i < k}.




Assume that f : R™ — N is a submersion at zq, i.e.

Ime(ZE()) — Tf(xO)N’

or equivalently:

R" =ImDf(xg) ® W.




T hen the solution set of

f(z) = f(z0)

is locally near g a smooth (m —n -+ k)-
dimensional submanifold.




For a sufficiently small neighborhood O
of xg we have

fFO)N(f(xo) + W) ={f(z0)}




Here we assume that f has the form

f(z) = (x)g(x)

for some smooth mappings

o :R™—=R and g¢g:R"™ — R,
and such that

p(rg) =0, Ve(zg) #0 and g(zg) # O.




Here we assume that f has the form

f(z) = (x)g(x)

for some smooth mappings

p:R™ R and g¢:R™ R

and such that

p(rg) =0, Ve(zg) #0 and g(zg) # O.




Clearly the equation f(x) = f(xg) reduces in this
case (and for x near xp) to the equation

p(z) = 0,

and the solution set is a smooth (m—1)-dimensional
manifold.




Clearly the equation f(x) = f(xg) reduces in this
case (and for x near xp) to the equation

p(z) = 0,

and the solution set is a smooth (m—1)-dimensional
manifold.

AlSO:

ImMD f(xg) = Rg(xg) = 1-dimensional.




Let W be a complement of Rg(xzg) in R™ (for ex-
ample: W := g(zp)1) and O a sufficiently small

neighborhood of zg in R™.




Let W be a complement of Rg(xzg) in R™ (for ex-
ample: W := g(zp)1) and O a sufficiently small

neighborhood of zg in R™.

T hen again:

N
FCOIN(f(zo)+W) = fF(O)NW = {0} ’

—




In this example f: R2 — R? is explicitly given by

f(z1,22) 1= (22 — 22, €% — €%1), V(z1,122) € R2.




In this example f: R2 — R? is explicitly given by

f(z1,22) 1= (22 — 22, €% — €%1), V(z1,122) € R2.

The zero’s of f lie on the 1-dimensional curve

o = 7;

f Is not a submersion at such zero:

dim(Ime(xl, 2132)) = 1.




For example, at (x1,22) = (0,0) we have

ImMDf(0,0) =R(1,1).




For example, at (x1,22) = (0,0) we have
ImMDf(0,0) =R(1,1).
Taking for example W := R(1,0) as a complement

of ImMDf(0,0) in R? and setting O equal to the unit
disk around the origin one can explicitly show that

f(0) "W = {0}.







These examples bring us to the

following definition




The mapping f: R"™ — R" is a

quasi-submersion

at some point xg € R if there
exist a neighborhood O of =xg
in R™ and a subspace W of R"
such that

R" =ImDf(xg) ®W

and

fQO)N(f(zo) + W) ={f(z0)}.




The mapping f:R"™ — R" is a

quasi-submersion

at some point xg € R if there
exist a neighborhood O of zg
in R™ and a subspace W of R"
such that

R" =ImDf(xzg) @ W

and

FQO) N (f(zo) + W) = {f(z0)}.




The main result about
quasi-submersions is the
following




Theorem

If f:R"™ — R"is a quasi-submer-
sion at xg € R™, with

dimW = codimImDf(xzg) = k,

then the solution set of the equa-
tion

f(z) = f(zo)

IS locally near g a smooth sub-
manifold of dimension

m—n + k.




THE PROOF IS EXTREMELY SIMPLE:




THE PROOF IS EXTREMELY SIMPLE:

e Locally near xzg the equation f(xz) = f(xp)
IS equivalent to

f(z) = f(zo) + w.




THE PROOF IS EXTREMELY SIMPLE:

e Locally near xzg the equation f(xz) = f(xp)
IS equivalent to

f(z) = f(zo) + w.

e [ he mapping F': R x W — R"™ given by

F(z,w):= f(x) —w

is at (xg,0) a submersion.







Constrained
Mappings




CONSTRAINED MAPPINGS
Assume the following:

o f(x) = g(x) — h(x) for some smooth
g,h : R — R";




CONSTRAINED MAPPINGS
Assume the following:

e f(x) = g(x) — h(x) for some smooth
g,h : R — R";
e the space

F:={F :R" >R| Fog= Foh}

contains some non-constant functions;




CONSTRAINED MAPPINGS
Assume the following:

e f(x) = g(x) — h(x) for some smooth
g,h : R — R";
e the space

F:={F :R" >R| Fog= Foh}

contains some non-constant functions;
e f(xg) =0, i.e. xg is a solution of

g(x) = h(x).




CONSTRAINED MAPPINGS

We call such f a
constrained mapping,

and we are interested in the zero's of f, more
In particular in the continuation of the solu-
tion g of the equation

g(x) = h(x). (1)




CONSTRAINED MAPPINGS

It follows from the identity F'(g(x)) = F(h(x))
(valid for all F € F) that

DF(yo) - Dg(xzg) = DF(yo) - Dh(xq),
with yg := g(xzg) = h(xzg), and hence

ImDf(xg) C WJ‘,

W . ={VF(yp) | F € F}.




CONSTRAINED MAPPINGS

We say that zg is a normal zero of the con-
strained mapping f if

Im Df(xg) = W,

or equivalently, if

dim(ImDf(xg)) =n —dimW.




Constrained
Mappings




A constrained
mapping Is
quasi-submersive
at each of it’s
normal zero’s




Let zg be a normal zero
of the constrained map-
ping f =g—h. Then, lo-
cally near xg, the solution
set of the equation

g(x) =h(z) (1)

IS a smooth submanifold
of dimension

m—n—+dimW.




PROOF
By the normality

R"=ImDf(xzqg) & W,

sO we only have to show that

g(z) = h(z) +w
implies w = 0 and g(x) = h(x).




PROOF
By the normality

R"=ImDf(xzqg) & W,

sO we only have to show that

g(z) = h(z) +w (*)

implies w = 0 and g(x) = h(x).

Let P be the orthogonal projection in R"™ onto
WL and let F, e F (1 <i<k=dmW) be
such that {VF;(yp) | 1 <i < k} forms a basis
of W.




PROOF
Then g(xz) = h(x) + w implies

Pg(x) = Ph(z),

while also

Fi(g(x)) = Fi(h(z)),




PROOF

Then g(xz) = h(x) + w implies

Pg(x) = Ph(z),

while also

Fi(g(x)) = Fi(h(z)),

But

y € R" — (Py, F1(y),..

forms a local diffeomorp
fore g(x) = h(x) and he

L FL(y) e W x RF

nism at yg, and there-

nce w = 0.




OBSERVATION:
Instead of solving

g(z) = h(x)

one can solve the ‘“reqgular’ equation

g(x) =h(@)+ »  a;VFi(yo)

1<i<k

for (z,a) = (z,a1,...,a1).




OBSERVATION:
Instead of solving

g(z) = h(x)

one can solve the ‘“reqgular’ equation

g(x) =h(@)+ »  a;VFi(yo)

1<i<k

for (z,a) = (z,a1,...,a1).
For all solutions (xz,a) near (xg,0) we have

a = 0.







Consider
r = X(x), (2)

with X : R" — R" a smooth vectorfield such that
the space

F:={F:R" - R|DF(z)-X(z) = 0}

contains some non-constant functions.




Consider
r = X(x), (2)

with X : R" — R" a smooth vectorfield such that
the space

F:={F:R" - R|DF(z)-X(z) = 0}

contains some non-constant functions.
Denote the flow of (2) by Z(¢, x).




Periodic solutions of (2) are given by solutions (T, x)
of the equation

x(T,x) = x.




Periodic solutions of (2) are given by solutions (T, x)
of the equation

x(T,x) = x.
The mapping f: R x R" — R" given by
f(T7 CU) .= f(t,ﬂ?) — &

IS @ constrained mapping since

F(z(T,z)) = F(x), VFe&F.




Periodic solutions of (2) are given by solutions (T, x)
of the equation

x(T,x) = x.
The mapping f: R x R" — R" given by
f(Iz) =2 x) —

IS @ constrained mapping since

F(z(T,z)) = F(x), VFe&F.




A simple calculation shows that at a zero (1p, xg)
of f (with Ty > 0 the minimal period of Z(t,zg))

we have

Im D f(Tp, zg) = R X (xzg) +Im (M — 1),

with M the monodromy matrix of the Tp-periodic
solution (¢, xq).




A simple calculation shows that at a zero (1p, xg)
of f (with Ty > 0 the minimal period of Z(t,zg))
we have

Im D f(Tp, zg) = R X (xzg) +Im (M — 1),

with M the monodromy matrix of the Tp-periodic
solution (¢, xq).

Also: W ={VF(xq) | F € F}.




Therefore (1p, xzg) is a normal zero of f if

R X(zg) +Im(M —1)= W=

this coincides with the condition for a normal peri-
odic solution of the conservative system z = X (x)
as given in Lecture 1.




Such normal zero’'s belong to a (k + 1)-parameter
family of (normal) zero's of f, meaning that a nor-

mal periodic orbit belongs to a k-parameter family
of normal orbits (with k£ :=dimW).




)OUBLY SYMMETRI

SOLUTIONS
IN
VERSIBLE SYSTE




REVERSIBLE SYSTEMS




REVERSIBLE SYSTEMS

The n-dimensional system

r = X(x)

IS reversible if there exist

e a compact group I' C O(n), and

e a nontrivial character x : I — {1,—1}

such that

X(vx) = x(yX(z), Vyerl.




REVERSIBLE SYSTEMS

The flow Z(t,z) of (2) then satisfies

r(x(Vt,vz) = ~x(t,z), VyeT.




REVERSIBLE SYSTEMS

The flow Z(t,z) of (2) then satisfies

(x(Vt,vz) = vz (t,x), VyeTl.

A reversor iIs an element R € [ such that
x(R) = —1; for such reversor we have

7(—t, Rz) = Ri(t, ).




REVERSIBLE SYSTEMS

Let R €Tl be a reversor of £ = X (xz); a solu-

tion x(t) = x(t,x(0)) is callec

if its orbit intersects Fix(R)
point:

R-symmetric

IN at least one




REVERSIBLE SYSTEMS

Let R €Tl be a reversor of £ = X (xz); a solu-
tion z(¢t) = 2(t,2(0)) is called R-symmetric
if its orbit intersects Fix(R) in at least one
point:

(1)

Fix(R)




REVERSIBLE SYSTEMS

Let R €Tl be a reversor of £ = X (xz); a solu-
tion z(¢t) = 2(t,2(0)) is called R-symmetric
if its orbit intersects Fix(R) in at least one
point:

z(t)
2(0)

r(—t) = Rx(t)

Taking ¢t = 0 at the intersection point we
have then z(—t) = Rxz(t).

Fix(R)




REVERSIBLE SYSTEMS

Such R-symmetric solution satisfies R2z(t) =
x(t), i.e. when considering R-symmetric so-
lutions we may w.l.0.g. work in Fix(R?2), or
assume that R2 =1T.

z(t)
2(0)

Fix(R)

r(—t) = Rx(t)




DOUBLY SYMMETRIC

SOLUTIONS

Loosely speaking, doubly symmetric solu-

tions are solutions of the reversi

r = X(x) which are symmetric wi

Dle system

th respect

to two reversors Rpg and Rq of the system.




DOUBLY SYMMET
SOLUTIONS

RIG

Loosely speaking, doubly symmetric solu-
tions are solutions of the reversi
r = X(x) which are symmetric wi

Dle system

th respect

to two reversors Rpg and Rq of the system.

The case Ry = Rp Is allowed.




DOUBLY SYMMET
SOLUTIONS

RIG

Loosely speaking, doubly symmetric solu-

tions are solutions of the reversi

r = X(x) which are symmetric wi

Dle system

th respect

to two reversors Rpg and Rq of the system.

The case Ry = Rp Is allowed.

As explained before we will assume that

R = R% = 1.




Definition:

A solution x(t) is (Rp, R1)-symmetric if there
exist tpg,t1 € R, with t1 > tg and such that

r(tg) € Fix(Rg) and x(t1) € Fix(R1).




Definition:

A solution x(t) is (Rp, R1)-symmetric if there
exist tpg,t1 € R, with t1 > tg and such that

r(tg) € Fix(Rg) and x(t1) € Fix(R1).

We call [tg,t1] the basic domain of the dou-

bly symmetric so
we will assume t

ution x(t). Most of the time

nat toc =0 and t{ =1 > 0.




Definition:

A solution x(t) is (Rp, R1)-symmetric if there
exist tpg,t1 € R, with t1 > tg and such that

r(tg) € Fix(Rg) and x(t1) € Fix(R1).

We call [tg,t1] the basic domain of the dou-

bly symmetric so
we will assume t

T hen:

x(—t) = Rox(t)

ution x(t). Most of the time

nat toc =0 and t{ =1 > 0.

and z(T +t) = Riz(T —t).




The picture looks as follows:




The picture looks as follows:




The picture looks as follows:




ne main properties of such doubly symme-
ic solutions z(t) are:




ne main properties of such doubly symme-
ic solutions z(t) are:

e they exist for all t € R;




The main properties of such doubly symme-
tric solutions z(t) are:

e they exist for all t € R;
o x(—t) = Rox(t) and (T —t) = Rizx(T +1t);




The main properties of such doubly symme-
tric solutions z(t) are:

e they exist for all t € R;
e x(—t) = Rox(t) and x(T —t) = Rix(T +1);
o x(2mT +t) = (R1Rp)"x(t);




ne main properties of such doubly symme-
ic solutions z(t) are:

e they exist for all t € R;
o x(—t) = Rpox(t) and x(T —t) = Rix(T +1);
o x(2mT +t) = (R1Rp)"x(t);

o x(2mT) = (RlRo)Qm_lRlaj(QmT);




ne main properties of such doubly symme-
ic solutions z(t) are:

e they exist for all t € R;
e x(—t) = Rpox(t) and x(T —t) = Rix(T +1);
o x(2mT +t) = (R1Rp)"x(t);

o x(2mT) = (RlRO)Qm_lngj(QmT);
o 2((2m~+1)T) = (R1Ro)™Riz((2m—+1)T).




The main properties of such doubly symme-
tric solutions xz(t) are:

e they exist for all t € R;

o x(—t) = Rox(t) and x(T —t) = Rix(T +1t);
o x(2mT +t) = (R1Ro)"z(1);

o :(2mT) = (R1Rp)?™ 1 Rix(2mT);

e z((2m+1)T) = (R1{Rp)"R1z((2m+1)T).

In particular, if (R1Ro)™ =1 then z(¢t) is

e 2M'T-periodic;




The main properties of such doubly symme-
tric solutions xz(¢) are:

e they exist for all t € R;

o x(—t) = Rox(t) and z(T'—t) = Rix(T +1);
e x(2mT +t) = (R1Ro)"z(t);

o :(2mT) = (R1Rp)?™ 1Rz (2mT);

e x((2m—+1)T) = (R1Ry)™R1z((2m+1)T).

In particular, if (R1Ro)™ =1 then z(¢t) is

e 2M'IT-periodic;
e (Rp, Rp)-symm. with basic domain [0, MT]].




Special case R1 = Rg

A (Rp, Rp)-symmetric solution with basic do-
main [0,7] is automatically 2T-periodic:




Special case R1 = Rg

A (Rp, Rp)-symmetric solution with basic do-
main [0,7] is automatically 2T-periodic:

%xm)

Fix(Rp)




Special case R1 = Rg

A (Rp, Rp)-symmetric solution with basic do-
main [0,7] is automatically 2T-periodic:




THE CONTINUATION PROBLEM




THE CONTINUATION PROBLEM




THE CONTINUATION PROBLEM

How to find nearby doubly symmetric solutions?




THE CONTINUATION PROBLEM

Geometrically we need to find the intersection
points near yg of the subspace Fix(Rq1) with
the submanifold

Mo :={{z(t,x) |t € R,x € Fix(Rg)}.




THE CONTINUATIO

Geometrically we need to fi
points near yg of the subs
the submanifold

Mg = {@(t,z) | t € R,

If at yog the manifold Mg

N PROBLEM

Nd the intersection

nace Fix(R71) with

r € Fix(Rp)}.

IS transversal to

Fix(R1) then the intersection will locally be a

submanifold of dimension

1 + dim Fix(Rg) + dim Fix(R1) — n.




THE CONTINUATION PROBLEM

Typically in applications we have
dinm

n = 2dimFix(Rg) = %iX(Rﬂ; (1)

then doubly symmetric orbits appear alongd
one-dimensional branches.




THE CONTINUATION PROBLEM

Typically in applications we have
dinm

n = 2dimFix(Rg) = %iX(Rﬂ; (1)

then doubly symmetric orbits appear alongd
one-dimensional branches.

For simplicity we assume from now on that
(1) holds.




THE G

ONTINUATION PROBLEM

To express the transversality condition ana-
lytically we denote by

m Ro) and 7Ti: : m Rl)

the projections in R™ on respectively Fix(xRp)

and Fix(z

-Rq1). Remember that

R™ Fix(Rg) @ Fix(—Rp)

Fix(R1) ® Fix(—Rq).




THE CONTINUATION PROBLEM

Also, we denote by V (¢,tp) the transition ma-
trix for the variational equation

i = DX (Z(t,z0)) - .




THE CONTINUATION PROBLEM

Also, we denote by V (¢,tp) the transition ma-
trix for the variational equation

i = DX (Z(t,z0)) - .

By lack of a better name we call

M = V(To, O)

the momodromy matrix of the doubly sym-
metric solution x(t) = z(¢, zg).




THE CONTINUATION PROBLEM

The transversality condition then takes the
form

Im(ny Mnd ) + RX (yg) = Fix(—Ry)




THE CONTINUATION PROBLEM

The transversality condition then takes the
form

Im(ny Mnd ) + RX (yg) = Fix(—Ry)

Observe:

X(ypg) € Fix(—R1) (since yg € Fix(Rq)).




THE CONTINUATION PROBLEM

The tra’rpﬁality condition can not
Isfied when the original picture is ful

tained in a level set of a first integral of (2).




THE CONTINUATION PROBLEM

Indeed, Valso My is contained in that
level set/and we can at most achieve transver-
sality within the (codimension one) level set.




More in general, (Rg, R1)-symmetric solutions
are generated by the solutions (T,z) € R x
Fix(Rg) of the equation

f(T,z) =n;z(T,x) = 0.




More in general, (Rg, R1)-symmetric solutions
are generated by the solutions (T,z) € R x
Fix(Rg) of the equation

f(T,z) =n;z(T,x) = 0.

The mapping f : R x Fix(Rg) — R™ is a con-
strained mapping, as follows.




More in general, (Rg, R1)-symmetric solutions
are generated by the solutions (T,z) € R x
Fix(Rg) of the equation

f(T,z) =n;z(T,x) = 0.

The mapping f : R x Fix(Rg) — R™ is a con-
strained mapping, as follows.

f(T,z) = &(T,z) — =y Z(T, x)




More in general, (Rg, R1)-symmetric solutions
are generated by the solutions (T,z) € R x
Fix(Rg) of the equation

f(T,z) =n;z(T,x) = 0.

The mapping f : R x Fix(Rg) — R™ is a con-
strained mapping, as follows.

£(T. z) — 7T E(T, z)

g(T', x)




More in general, (Rg, R1)-symmetric solutions
are generated by the solutions (T,z) € R x
Fix(Rg) of the equation

f(T,z) =n;z(T,x) = 0.

The mapping f : R x Fix(Rg) — R™ is a con-
strained mapping, as follows.

g(T,x)  h(T,x)




More in general, (Rg, R1)-symmetric solutions
are generated by the solutions (T,z) € R x
Fix(Rg) of the equation

f(T,z) =n;z(T,x) = 0.

The mapping f : R x Fix(Rg) — R™ is a con-
strained mapping, as follows.

g(T,x)  h(T,x)

Clearly = g(T,z) = nj h(T,z).




Moreover, let

VF(x) - X(z)=0
F:=<F:R"—=R| and F is constant on
Fix(Rp) U Fix(Rq)




Moreover, let

VF(x) - X(z)=0
F:=<F:R"—=R| and F is constant on
Fix(Rp) U Fix(Rq)

We have then for each F € F that

F(g(T,z)) F(Z(T,x))
F(z) = F(x] Z(T, z))
F(h(T,x)).




Moreover, let

VF(x) - X(z)=0
F:=<F:R"—=R| and F is constant on
Fix(Rp) U Fix(Rq)

We have then for each F € F that

F(g(T,z)) F(Z(T,x))
F(z) = F(x] Z(T, z))
F(h(T,x)).

W = {VF(yo) | F € F}.




Our general results on constrained mappings
show that

ImM(Df(Ty,xg)) C W+ N Fix(—Rq).




Our general results on constrained mappings
show that

ImM(Df(Ty,xg)) C W+ N Fix(—Rq).

We say that the (Rgp, R1)-symmetric solution
z(t,xp) is normal if we have equality, i.e. if

Im(ny Mzd ) + RX (yg) = W N Fix(—Ry).




Our general results on constrained mappings
show that

ImM(Df(Ty,xg)) C W+ N Fix(—Rq).

We say that the (Rgp, R1)-symmetric solution
z(t,xp) is normal if we have equality, i.e. if

Im(ny Mzd ) + RX (yg) = W N Fix(—Ry).

Such normal doubly symmetric solutions ap-
pear In

(1 + k)-dimensional families,

where k£ :=dim W.




How can we calculate this manifold of doubly
symmetric solutions?

General theory learns us that we can apply
the implicit function theorem to the equation

k

1 Z(T,z) = ) o;VF;(yo),
=

where the F; € F are chosen such that

{VF;(yo) | 1 <i <k}

forms a basis of W.




How can we calculate this manifold of doubly
symmetric solutions?

However, there is a different approach which
leads to the same result but which is better
suited for numerical calculations; it is based
on the following




Lemma
Let FF e F, and let z(¢) be a solution of

r= X(x)+ VF(x)
such that

Z(tg) € Fix(Rg) and z(t1) € Fix(Rq)

for some tg < t;. Then

VF(z(t)) =0, VtEe€ [tg,t1],

i.e. z(t) is a solution of

r = X(x).




Proof

[ (PG, VEG®)) d
O

= [T (VFGW), X@EW0) + VEGEW)) d
@)
F(3(t1)) — F(3(to))

0.
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Calculation of doubly symmetric solutions

Denote by z,,,4(t, x,a) the flow of the modi-
fied equation

k
t=X(x)+ ) o;VFi(x).
1=1




Calculation of doubly symmetric solutions

Denote by z,,,4(t, x,a) the flow of the modi-
fied equation

k
t=X(x)+ ) o;VFi(x).
1=1

Then we can apply the IFT to find solutions
(T,:L‘,Oz) c R X FiX(RO) x RF near (To,ajo,()) of
the equation

T, Tyod(T, x, ) = 0.




Calculation of doubly symmetric solutions

One obtains (under the normality condition)
a (14 k)-dimensional solution manifold along

which

l.e. a
ate (

a1 =ap = --=qa = 0,

| points on this solution manifold gener-

normal) (Rp, R1)-symmetric solutions of

r = X(x).




Calculation of doubly symmetric solutions

Numerical people prefer to have 1-dimensional
solution curves — then they can use e.g. the
pseudo-arclength method to calculate these
branches.




Calculation of doubly symmetric solutions

Numerical people prefer to have 1-dimensional
solution curves — then they can use e.g. the
pseudo-arclength method to calculate these

branches.

Question: is it possible to add k further con-
ditions without losing information on the full

solution manifold??




Calculation of doubly symmetric solutions

Numerical people prefer to have 1-dimensional
solution curves — then they can use e.g. the
pseudo-arclength method to calculate these

branches.

Question: is it possible to add k£ further con-
ditions without losing information on the full

solution manifold??

Answer: yes, in the Hamiltonian case.
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We set:
oen — 2N

o x = (p,q), with p,q € RY;

e J € L(R?N) the standard symplectic matrix de-

fined by J(p,q) = (—q,p);
o [ :R2N R a smooth function:

e X(x) = Xyg(x) := JVH(x) the Hamiltonian vec-
torfield corresponding to H;

e 2 (t,xz) the corresponding Hamiltonian flow.




An operator S € O(2N) is a symmetry for Xy and
Ty if

JS=SJ and H(Sz) = H(x).




An operator S € O(2N) is a symmetry for Xy and
Ty if

JS=SJ and H(Sz) = H(x).

An operator R € O(2N) is a reversor for Xy and
T if

JR=—-RJ and H(Rxz)= H(x).




Noether's T heorem:

In Hamiltonian systems there is a relation between
first integrals and (continuous) symmetries.




F:R2N L R is a first integral for Xy

)
{H,F}(x) :=(VH(xz),JVF(x)) =0
Y

the flows xy and xp commute




Suppose:
e Rgp and R4 are reversors of Xy;

e xi7(t,zg) is a (Rp, R1)-symmetric solution of
r = Xg(x), with basic domain [0, Tp];
o ' . R2N L R is a first integral.




Suppose:
e Rgp and R4 are reversors of Xy;

e xi7(t,zg) is a (Rp, R1)-symmetric solution of
r = Xg(x), with basic domain [0, Tp];
o ' . R2N L R is a first integral.

T hen

EH(taiF(vaO)) — CEF(8755[—[(@'%0))7 S & Ra

forms a one-parameter family of solutions of




These solutions will also be (Rg, R1)-symmetric (with
the same basic domain [0,Tp]) if the flow Zx leaves
the subspaces Fix(Rp) and Fix(Rq1) invariant.




These solutions will also be (Rg, R1)-symmetric (with
the same basic domain [0,Tp]) if the flow Zx leaves
the subspaces Fix(Rp) and Fix(Rq1) invariant.

Easy result:
If Re O(2N) is such that JR = —RJ, then the flow
Tr leaves Fix(R) invariant if and only if F'is constant

on Fix(R).




These solutions will also be (Rg, R1)-symmetric (with
the same basic domain [0,Tp]) if the flow Zx leaves
the subspaces Fix(Rp) and Fix(Rq1) invariant.

Easy result:

If Re O(2N) is such that JR = —RJ, then the flow
Tr leaves Fix(R) invariant if and only if F'is constant
on Fix(R).

So, for each F € F,

&VZ‘F(S,C’Z‘H(t,ZEO)), S & R)

forms a one-parameter family of (Rg, R1)-symmetric
solutions.




Denote by z,,,4(t, z,a) the flow of

k
= Xy(x)+ ) o VEFi(z);
1=1

then find solutions (7T,x) € R x Fix(Rg) of

T Tmod(T, z, ) = 0,

subject to k£ additional phase conditions of the form

(XF(x0),x —20) =0, (1<i<k)




One can show that this is a regular problem, suit-
able for pseudo-arclength continuation, and leading
to one-dimensional solution branches along which

a = 0.

The phase conditions prevent the recalculation of
those doubly symmetric solutions which can be ob-
tained from xg(t,zg) or its continuation by applica-
tion of the symmetries Zp.(s,-) (s € R, 1 <7 < k).




In practice the phase conditions

(XF(z0),z —xg9) = 0O,

are replaced by some “averaged’” version, such as

1
| X5, @u (T, 20)), Emoa(Tr,2,0) = &1 (T, 20))) dr

such integral conditions seem to give much better
numerical results.
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APPLICATION

T0
BODY PROBLE




GERVER’S SUPEREIGHT




THE N-BODY PROBLEM

e \\Ve work In the plane;

e wWe consider N > 3 bodies with masses
mi, Mo, .. .,mN;

e phase space is R4V:

e x = (p1,P2,---,PN,91,92, - --,qN), With

p; € R = momentum of body j

q; € R2 = position of body j.




THE N-BODY PROBLEM




THE N-BODY PROBLEM

1<i<j<N |q; — QjH

The Hamiltonian H iIs invariant under the symplectic
action of rotations in the plane given by

Vo(p1,---sPN>q1s -+ GN)
:: <6A9p17 ° e '7€A9pN7 6A0q17 ° e '7€AGQN) (9 6 Sl)?

with A € £(R?) given by

a=(9 1)




THE N-BODY PROBLEM

2 ;T ;
~—lpjll* = > o
m 1<i<j<N |q; — qu

T he corresponding first integral is the total angular
momentum

N
Lo(z) := > q;- (Ap;).
=1




THE N-BODY PROBLEM

1<i<j<N |q; — QjH

The Hamiltonian H is also invariant under the sym-
plectic action of translations in the plane given by

Tb(p17°°°7pN7Q].7"'7qn)
= (p1,...,pN-q1 + b, ...,qn +b) (b eR?).




THE N-BODY PROBLEM

1<i<j<N H(Iz — QjH

The corresponding first integrals are the two com-
ponents

Pl(a:) = €1 P(x) and Pz(x) L= eg-P(x)

of the total linear momentum

Y
P(a:) L= Z pPj-
j=1




THE N-BODY PROBLEM

1<i<j<N H(Iz — QjH

Since the total linear momentum P(x) is constant
one can use a uniformly moving frame in R? such
that P(x) = 0, which then implies that the center

of mass
Q(z) 1=

IS constant.




THE N-BODY PROBLEM

1<i<j<N |q; — QjH

T he Hamiltonian system Xy Is also equivariant with
respect to reflections in the plane, given by ®.Wy
(6 € S1), where

CD(pl,...,pN,QL---aQN)
. — (Sp]_,...,SpN,SQ1,..-,SQN)7
with S € L(R?) given by

Seqy :=e7 and Sep, = —ens.




THE N-BODY PROBLEM

1<i<j<N |q; — qu

If m; = m; (1 <i<j <N then we also have the
exchange symmetry

Zz,](7p7,77p]77Q7,77QQ7)
L= ("°7pj7°°°7pi7°°°7Qj7°°°7Qi7°°°)°




THE N-BODY PROBLEM

1<i<j<N qu — qu

The Hamiltonian system Xz has a natural time
reversor given by

R(p17°°°7pN7Q17“°7QN> .= (_p17°°°7_pN7Q17°'°7qN)°




THE N-BODY PROBLEM

1<i<j<N qu — qu

Moreover, each of the compositions

\UQOR, o R and Zi,joR

forms a reversor. Also

R? = (WroR)? = (PoR)* = (Z;j0R)* = I.




THE N-BODY PROBLEM

N 1

H(z) =3 ——lpil* = >

J 1<i<j<N g — g5l

=1
Finally, the system Xz has a scaling symmetry.

H(A\p,A\"2%q) = M\°H(p,q), VYXeR\{0}.




THE N-BODY PROBLEM

N 1

H(z) =3 ——lpil* = >

J 1<i<j<N g — g5l

=1
Finally, the system Xz has a scaling symmetry.

H(A\p,A\"2%q) = M\°H(p,q), VYXeR\{0}.

T his implies that for each solution z(t) = (p(t), g(t))
of = Xy (x) and for each XA #= 0 also

(1) 1= (Ap(A1), A" 2q(A3t))

IS a solution.




LGERVER’S SUPEREIGHT

1

1<i<j<4 lq; — QjH

Next we turn to the special case of Gerver’s
supereight choreography, where N = 4 and

mi1 = mo = m3 = mqg = 1.




LGERVER’S SUPEREIGHT

1

1<i<j<4 qua — QjH

Next we turn to the special case of Gerver’s
supereight choreography, where N = 4 and

mi1 = mo = m3 = mqg = 1.

We want to find out how this choreography can
be considered as a doubly symmetric solution
and how It can be continued, not only within
the system itself, but also when we change some
external parameters which we will introduce.




GERVER’S SUPEREIGHT







x(0) € Fix(Rp)

RO — ROZ]_,3OCD




CIZ‘(O) - FiX(RO) :E(To) - FiX(Rl)

Rop=Ro2j130P Ri =Ro21202340P




CIZ‘(O) - FiX(RO) :E(To) - FiX(Rl)

Rop=Ro2j130P Ri =Ro21202340P

1
T = S x full period




CIZ‘(O) - FiX(RO) :E(To) - FiX(Rl)
Rop=Ro2j130P Ri =Ro21202340P

(RiR)* =1 =




CIZ‘(O) - FiX(RO) x(To) - FiX(Rl)

Rop=Ro2j130P Ri =Ro21202340P

(Rg, R1)-symmetric solu-
(RiR)* =1 = tions with basic domain
[0, T'] are 8T-periodic.




Of the 4 nontrivial first integrals (H, Lg, P; and
P>) only P; is constant on Fix(Rp) UFix(Rq1), SO
k=1.




Of the 4 nontrivial first integrals (H, Lg, P; and

P>) only P; is constant on Fix(Rp) UFix(Rq1), SO
k=1.

T herefore, the supereight belongs to a two-para-
meter family of (Rg, R1)-symmetric solutions (nor-
mality was checked numerically). Each member
of this family can be obtained from any other
member by using the scaling symmetry and trans-
lation in the eq-direction.




So, Iin order to obtain some non-trivial continu-
ation of the supereight as a (Rg, R1)-symmetric
solution we need to introduce some external pa-
rameters in the Hamiltonian; this must be done in
such a way that both Rg and R; remain reversors.

T his last condition prevents us from changing any
of the masses, leaving us with the alternative to
change the potential; we take







We consider the system

r = Xp (x)

and use our continuation techniques to continue
the supereight (which appears for v+ = 1) as a
(Rgp, R1)-symmetric solution; we fix the basic do-

main (to prevent scaling), add a p
corresponding to FPq, and do conti
parameter -.

nase condition

nuation In the










T he supereight can also be considered as a Rg-
symmetric solution, that is as a (Rg, Rg)-symme-
tric solution with basic domain [041p]. Again
P71 is the only first integral which is constant
on Fix(Rp), and so we get by continuation a
2-dimensional family of Rg-symmetric solutions,
which coincides with the 2-dimensional family
of (Rp, R1)-symmetric solutions which we found
before.




T he supereight can also be considered as a Rg-

symmetric solution,

thatis as a (Rp, Rg)-symme-

tric solution with basic domain [041p]. Again
P71 is the only first integral which is constant
on Fix(Rg), and so we get by continuation a

2-dimensional fami

which coincides wi

y of Rp-symmetric solutions,
th the 2-dimensional family

of (Rp, R1)-symmetric solutions which we found

before.

However, this time we can use the masses as
external parameters: since only Rg has to remain
a reversor, the only condition is that m1 = mgy.




We take the simplest possible case:

mi1=m3=m and mo=myg =1,

and use m as the continuation parameter. Again,
we fix the basic domain to prevent scaling, and
add a phase condition corresponding P to pre-
vent translations in the eq-direction.







THESE ARE ONLY PARTIAL CHOREOGRAPHIES




Along the foregoing branch
cally non-normal behaviour

one finds numeri-
and Dbifurcation at

m = 0.712412. After switching branching (some-

thing AUT O can do very wel

a hew branch of Rg-symmetri

) one can calculate
C solutions, still us-

INg m as the continuation parameter.
















The supereight can also be considered as a Rp-
symmetric solution with basic domain [0,471;] and
with the reversor Rp given by

RO = Ro ZQ’40¢OW7T.




The supereight can also be considered as a Rp-
symmetric solution with basic domain [0,471;] and
with the reversor Rp given by

RO = Ro ZQ’40¢OW7T.

Rp remains a reversor as long as mo = my.
SO, In particular the case

mi=m3=m and mo=myg =1

which we considered before, is allowed.




This time P5 is the only first integral which is con-
stant on Fix(Rp); a continuation, keeping the basic
domain fixed, including a phase condition corre-
sponding to P>, and using m as the continuation
parameter, gives a one-dimensional branch.




This time P, is the only first integral which is con-
stant on Fix(Rp); a continuation, keeping the basic
domain fixed, including a phase condition corre-
sponding to P>, and using m as the continuation
parameter, gives a one-dimensional branch.

t

Using this Rp-symmetric continuation we obtain

ne same branch as the one we found before us-

iIng a Rp-symmetric continuation. This means that
the start and end configurations along this branch
belong to

Fix(Rg) N Fix(Rp).



AS a consequence the solutions along this branch
are RgRp-symmetric, with

RoRg = —X130%24.




AS a consequence the solutions along this branch
are RgRp-symmetric, with

RoRg = —X130%24.







However, the Rg-symmetric continuation gives dif-
ferent bifurcation points:




However, the Rg-symmetric continuation gives dif-
ferent bifurcation points:

m = 0.2534
m = 0.63853
m = 1.4037
m = 1.4592
m = 3.9458




However, the Rg-symmetric continuation gives dif-
ferent bifurcation points:

m = 0.2534
connected
m = 0.6853 >

m = 1.4037

m = 1.4592
connected
m = 3.9458 >




However, the Rg-symmetric continuation gives dif-
ferent bifurcation points:

m = 0.2534
connected
m = 0.6853 >

m = 1.4037

m = 1.4592
connected
m = 3.9458 >

The bifurcating branches contain Rgp-symmetric so-
lutions which are no longer Rp-symmetric.




ALONG THE BRANCH FROM M=1.45 TO M=3.95




ALONG THE BRANCH FROM M=1.45 TO M=3.95







The supereight can also be continued as a periodic
orbit, using the schemes of Lecture 1. When we
use again the mass m of the 1st and 3rd body as
continuation parameter we find the same branch as
before, and no new bifurcations are detected.




Next we see how we can continue the supereig
when we change just one of the masses. We ta
the following mass distribution:

mo =u and mq1=m3=myg = 1.




Next we see how we can continue the supereig
when we change just one of the masses. We ta
the following mass distribution:

mo =u and mq1=m3=myg = 1.

T his mass configuration is compatible with the re-
versor Rp.




So we can start from the supereight to get a
branch of Rg-symmetric solutions with basic do-

main [0,4Tp], and using p as the continuation
parameter.




So we can start from the supereight to get a
branch of Rg-symmetric solutions with basic do-

main [0,4Tp], and using p as the continuation
parameter.

The resulting branch looks as follows:

supereight

























Observe that next to t

ne supereight we have

found two other (perioc
equal masses (u=1).

ic) solutions with four



















Finally we consider still a different mass distribu-
tion, namely

mi1=mqg =M and mo=m3z=1.




Finally we consider still a different mass distribu-
tion, namely

mi1=mqg =M and mo=m3z=1.

This is compatible with the reversor

RO —
RoY 53051 400 W,




Finally we consider still a different mass distribu-
tion, namely

mi1 =mqg =M and mo=m3z=1.

This is compatible with the reversor

RO —
RoY 53051 400 W,




Continuing the supereight as a Rp-symmetric so-

lution (with basic domain [0,47p]) and using M
as the continuation parameter we obtain a branch
along which the solutions look as follows.













One can also continue the supereight as a peri-

odic orbit (forgetting the reversi
ues of lecture 1) under t

technic
tion

m1 = mqg = M

Oility and using the

ne mass configura-

and mo = m3 =1,

and with M as the continuation parameter.




One can also continue the supereight

as a peri-

odic orbit (forgetting the reversibility and using the

techniques of lecture 1) under the mass
tion

configura-

mi=mgq =M and mo =m3z=1,

and with M as the continuation parameter.

One obtains the same branch as when us
symmetry, only this time one detects a
at M = 1.24871. The bifurcating so
periodic but have no symmetry at all.

ing the Rp-
pifurcation

utions are
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