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The Problem



Given: a smooth mapping

f : Rm −→ Rn

and a point x0 ∈ Rm.

The Problem



Given: a smooth mapping

f : Rm −→ Rn

and a point x0 ∈ Rm.

We want to solve

f(x) = f(x0)

locally near x0.

The Problem



If f is a submersion at x0,
i.e. if

ImDf(x0) = Rn,

(this requires m ≥ n), then
the solution set of

f(x) = f(x0)

is locally near x0 a smooth
(m−n)-dimensional manifold.

The Implicit Function Theorem



Some Examples 
where the 

submersivity 
condition is

NOT
satisfied,

but the solution 
set is still a 

smooth manifold



Example 1

Suppose that

ϕi(f(x)) = 0, ∀x ∈ Rm, (1 ≤ i ≤ k ≤ n),

where the ϕi : Rn → R are smooth functions.

Assume that the vectors

∇ϕi(f(x0)) (1 ≤ i ≤ k)

are linearly independent.



Example 1

This means that f maps Rn into the codimension
k submanifold

N := {y ∈ Rn | ϕi(y) = 0,1 ≤ i ≤ k}.



Example 1

This means that f maps Rn into the codimension
k submanifold

N := {y ∈ Rn | ϕi(y) = 0,1 ≤ i ≤ k}.

We set

W := spanR {∇ϕi(f(x0)) | 1 ≤ i ≤ k}.



Example 1

This means that f maps Rn into the codimension
k submanifold

N := {y ∈ Rn | ϕi(y) = 0,1 ≤ i ≤ k}.

We set

W := spanR {∇ϕi(f(x0)) | 1 ≤ i ≤ k}.



Example 1

Assume that f : Rm → N is a submersion at x0, i.e.

ImDf(x0) = Tf(x0)N ,

or equivalently:

Rn = ImDf(x0)⊕W.



Example 1

Then the solution set of

f(x) = f(x0)

is locally near x0 a smooth (m−n+ k)-
dimensional submanifold.



Example 1

For a sufficiently small neighborhood O

of x0 we have

f(O) ∩ (f(x0) + W ) = {f(x0)}.



Example 2

Here we assume that f has the form

f(x) = ϕ(x)g(x)

for some smooth mappings

ϕ : Rm → R and g : Rm → R,

and such that

ϕ(x0) = 0, ∇ϕ(x0) #= 0 and g(x0) #= 0.



Example 2

Here we assume that f has the form

f(x) = ϕ(x)g(x)

for some smooth mappings

ϕ : Rm → R and g : Rm → R,

and such that

ϕ(x0) = 0, ∇ϕ(x0) #= 0 and g(x0) #= 0.

n



Example 2

Clearly the equation f(x) = f(x0) reduces in this
case (and for x near x0) to the equation

ϕ(x) = 0,

and the solution set is a smooth (m−1)-dimensional
manifold.



Example 2

Clearly the equation f(x) = f(x0) reduces in this
case (and for x near x0) to the equation

ϕ(x) = 0,

and the solution set is a smooth (m−1)-dimensional
manifold.

Also:

ImDf(x0) = R g(x0) = 1-dimensional.



Example 2

Let W be a complement of Rg(x0) in Rn (for ex-
ample: W := g(x0)⊥) and O a sufficiently small
neighborhood of x0 in Rm.



Example 2

Let W be a complement of Rg(x0) in Rn (for ex-
ample: W := g(x0)⊥) and O a sufficiently small
neighborhood of x0 in Rm.

Then again:

f(O)∩(f(x0)+W ) = f(O)∩W = {0}.



Example 3

In this example f : R2 → R2 is explicitly given by

f(x1, x2) := (x2 − x2
1, ex2 − ex2

1), ∀(x1, x2) ∈ R2.



Example 3

The zero’s of f lie on the 1-dimensional curve

x2 = x2
1;

f is not a submersion at such zero:

dim(ImDf(x1, x2)) = 1.

In this example f : R2 → R2 is explicitly given by

f(x1, x2) := (x2 − x2
1, ex2 − ex2

1), ∀(x1, x2) ∈ R2.



Example 3

For example, at (x1, x2) = (0,0) we have

ImDf(0,0) = R(1,1).



Example 3

For example, at (x1, x2) = (0,0) we have

ImDf(0,0) = R(1,1).

Taking for example W := R(1,0) as a complement
of ImDf(0,0) in R2 and setting O equal to the unit
disk around the origin one can explicitly show that

f(0) ∩W = {0}.



Example 3



These examples bring us to the 
following definition



The mapping f : Rm → Rn is a

quasi-submersion

at some point x0 ∈ Rm if there
exist a neighborhood O of x0

in Rm and a subspace W of Rn

such that

Rn = ImDf(x0)⊕W

and

f(O) ∩ (f(x0) + W ) = {f(x0)}.



The mapping f : Rm → Rn is a

quasi-submersion

at some point x0 ∈ Rm if there
exist a neighborhood O of x0

in Rm and a subspace W of Rn

such that

Rn = ImDf(x0)⊕W

and

f(O) ∩ (f(x0) + W ) = {f(x0)}.



The main result about 
quasi-submersions is the 

following



Theorem

If f : Rm → Rn is a quasi-submer-
sion at x0 ∈ Rm, with

dimW = codim ImDf(x0) = k,

then the solution set of the equa-
tion

f(x) = f(x0)

is locally near x0 a smooth sub-
manifold of dimension

m− n + k.



The proof is extremely simple:



The proof is extremely simple:

• Locally near x0 the equation f(x) = f(x0)
is equivalent to

f(x) = f(x0) + w.



The proof is extremely simple:

• Locally near x0 the equation f(x) = f(x0)
is equivalent to

f(x) = f(x0) + w.

• The mapping F : Rm ×W → Rn given by

F (x, w) := f(x)− w

is at (x0,0) a submersion.



A Special Case



A Special Case

Constrained
Mappings



Constrained Mappings
Assume the following:

• f(x) = g(x)− h(x) for some smooth
g, h : Rm → Rn;



Constrained Mappings
Assume the following:

• f(x) = g(x)− h(x) for some smooth
g, h : Rm → Rn;

• the space

F := {F : Rn → R | F ◦ g = F ◦h}

contains some non-constant functions;



Constrained Mappings
Assume the following:

• f(x) = g(x)− h(x) for some smooth
g, h : Rm → Rn;

• the space

F := {F : Rn → R | F ◦ g = F ◦h}

contains some non-constant functions;

• f(x0) = 0, i.e. x0 is a solution of

g(x) = h(x).



Constrained Mappings
We call such f a

constrained mapping,

and we are interested in the zero’s of f , more
in particular in the continuation of the solu-
tion x0 of the equation

g(x) = h(x). (1)



Constrained Mappings
It follows from the identity F (g(x)) = F (h(x))
(valid for all F ∈ F) that

DF (y0) · Dg(x0) = DF (y0) · Dh(x0),

with y0 := g(x0) = h(x0), and hence

ImDf(x0) ⊂ W⊥,

where

W := {∇F (y0) | F ∈ F}.



Constrained Mappings
We say that x0 is a normal zero of the con-
strained mapping f if

ImDf(x0) = W⊥,

or equivalently, if

dim(ImDf(x0)) = n− dimW.



The Main Result

Constrained
Mappings



A constrained 
mapping is

quasi-submersive
at each of it’s 
normal zero’s



A constrained 
mapping is

quasi-submersive
at each of it’s 
normal zero’s

Let x0 be a normal zero
of the constrained map-
ping f = g − h. Then, lo-
cally near x0, the solution
set of the equation

g(x) = h(x) (1)

is a smooth submanifold
of dimension

m− n + dimW.



Proof
By the normality

Rn = ImDf(x0)⊕W,

so we only have to show that

g(x) = h(x) + w (*)

implies w = 0 and g(x) = h(x).



Proof
By the normality

Rn = ImDf(x0)⊕W,

so we only have to show that

g(x) = h(x) + w (*)

implies w = 0 and g(x) = h(x).

Let P be the orthogonal projection in Rn onto
W⊥, and let Fi ∈ F (1 ≤ i ≤ k = dimW ) be
such that {∇Fi(y0) | 1 ≤ i ≤ k} forms a basis
of W .



Proof
Then g(x) = h(x) + w implies

Pg(x) = Ph(x),

while also

Fi(g(x)) = Fi(h(x)), (1 ≤ i ≤ k).



Proof
Then g(x) = h(x) + w implies

Pg(x) = Ph(x),

while also

Fi(g(x)) = Fi(h(x)), (1 ≤ i ≤ k).

But

y ∈ Rn "→ (Py, F1(y), . . . , Fk(y)) ∈W⊥ × Rk

forms a local diffeomorphism at y0, and there-
fore g(x) = h(x) and hence w = 0.



Observation:
Instead of solving

g(x) = h(x)

one can solve the “regular” equation

g(x) = h(x) +
∑

1≤i≤k

αi∇Fi(y0)

for (x, α) = (x, α1, . . . , αk).



Observation:
Instead of solving

g(x) = h(x)

one can solve the “regular” equation

g(x) = h(x) +
∑

1≤i≤k

αi∇Fi(y0)

for (x, α) = (x, α1, . . . , αk).

For all solutions (x, α) near (x0,0) we have

α = 0.
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Periodic Orbits in 
Conservative Systems



an example

Periodic Orbits in 
Conservative Systems

Consider

ẋ = X(x), (2)

with X : Rn → Rn a smooth vectorfield such that
the space

F := {F : Rn → R | DF (x) · X(x) ≡ 0}

contains some non-constant functions.



an example

Periodic Orbits in 
Conservative Systems

Consider

ẋ = X(x), (2)

with X : Rn → Rn a smooth vectorfield such that
the space

F := {F : Rn → R | DF (x) · X(x) ≡ 0}

contains some non-constant functions.

Denote the flow of (2) by x̃(t, x).



an example

Periodic Orbits in 
Conservative Systems

Periodic solutions of (2) are given by solutions (T, x)
of the equation

x̃(T, x) = x.
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of the equation

x̃(T, x) = x.

The mapping f : R× Rn → Rn given by

f(T, x) := x̃(t, x)− x

is a constrained mapping since

F (x̃(T, x)) = F (x), ∀F ∈ F .



an example

Periodic Orbits in 
Conservative Systems

Periodic solutions of (2) are given by solutions (T, x)
of the equation

x̃(T, x) = x.

The mapping f : R× Rn → Rn given by

f(T, x) := x̃(t, x)− x

is a constrained mapping since

F (x̃(T, x)) = F (x), ∀F ∈ F .

T



an example

Periodic Orbits in 
Conservative Systems

A simple calculation shows that at a zero (T0, x0)
of f (with T0 > 0 the minimal period of x̃(t, x0))
we have

ImDf(T0, x0) = R X(x0) + Im(M − I),

with M the monodromy matrix of the T0-periodic
solution x̃(t, x0).



an example

Periodic Orbits in 
Conservative Systems

A simple calculation shows that at a zero (T0, x0)
of f (with T0 > 0 the minimal period of x̃(t, x0))
we have

ImDf(T0, x0) = R X(x0) + Im(M − I),

with M the monodromy matrix of the T0-periodic
solution x̃(t, x0).

Also: W = {∇F (x0) | F ∈ F}.



an example

Periodic Orbits in 
Conservative Systems

Therefore (T0, x0) is a normal zero of f if

R X(x0) + Im(M − I) = W⊥;

this coincides with the condition for a normal peri-

odic solution of the conservative system ẋ = X(x)
as given in Lecture 1.



an example

Periodic Orbits in 
Conservative Systems

Such normal zero’s belong to a (k + 1)-parameter
family of (normal) zero’s of f , meaning that a nor-
mal periodic orbit belongs to a k-parameter family
of normal orbits (with k := dimW ).



Doubly Symmetric 
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Reversible Systems



Reversible Systems
The n-dimensional system

ẋ = X(x) (2)

is reversible if there exist

• a compact group Γ ⊂ O(n), and

• a nontrivial character χ : Γ→ {1,−1}

such that

X(γx) = χ(γ)γX(x), ∀γ ∈ Γ.



Reversible Systems
The flow x̃(t, x) of (2) then satisfies

x̃(χ(γ)t, γx) = γx̃(t, x), ∀γ ∈ Γ.



Reversible Systems
The flow x̃(t, x) of (2) then satisfies

x̃(χ(γ)t, γx) = γx̃(t, x), ∀γ ∈ Γ.

A reversor is an element R ∈ Γ such that
χ(R) = −1; for such reversor we have

x̃(−t, Rx) = Rx̃(t, x).



Reversible Systems
Let R ∈ Γ be a reversor of ẋ = X(x); a solu-
tion x(t) = x̃(t, x(0)) is called R-symmetric

if its orbit intersects Fix(R) in at least one
point:
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Reversible Systems
Let R ∈ Γ be a reversor of ẋ = X(x); a solu-
tion x(t) = x̃(t, x(0)) is called R-symmetric

if its orbit intersects Fix(R) in at least one
point:

Taking t = 0 at the intersection point we
have then x(−t) = Rx(t).

x(t)
Fix(R)

x(0)

x(−t) = Rx(t)



Reversible Systems

x(t)
Fix(R)

x(0)

x(−t) = Rx(t)

Such R-symmetric solution satisfies R2x(t) =
x(t), i.e. when considering R-symmetric so-
lutions we may w.l.o.g. work in Fix(R2), or
assume that R2 = I.



Doubly Symmetric 
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Loosely speaking, doubly symmetric solu-

tions are solutions of the reversible system
ẋ = X(x) which are symmetric with respect
to two reversors R0 and R1 of the system.
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ẋ = X(x) which are symmetric with respect
to two reversors R0 and R1 of the system.

The case R1 = R0 is allowed.



Doubly Symmetric 
Solutions

Loosely speaking, doubly symmetric solu-

tions are solutions of the reversible system
ẋ = X(x) which are symmetric with respect
to two reversors R0 and R1 of the system.

The case R1 = R0 is allowed.

As explained before we will assume that

R2
0 = R2

1 = I.



Doubly Symmetric Solutions

Definition:

A solution x(t) is (R0, R1)-symmetric if there
exist t0, t1 ∈ R, with t1 > t0 and such that

x(t0) ∈ Fix(R0) and x(t1) ∈ Fix(R1).



Doubly Symmetric Solutions

Definition:

A solution x(t) is (R0, R1)-symmetric if there
exist t0, t1 ∈ R, with t1 > t0 and such that

x(t0) ∈ Fix(R0) and x(t1) ∈ Fix(R1).

We call [t0, t1] the basic domain of the dou-
bly symmetric solution x(t). Most of the time
we will assume that t0 = 0 and t1 = T > 0.



Doubly Symmetric Solutions

Definition:

A solution x(t) is (R0, R1)-symmetric if there
exist t0, t1 ∈ R, with t1 > t0 and such that

x(t0) ∈ Fix(R0) and x(t1) ∈ Fix(R1).

We call [t0, t1] the basic domain of the dou-
bly symmetric solution x(t). Most of the time
we will assume that t0 = 0 and t1 = T > 0.

Then:

x(−t) = R0x(t) and x(T + t) = R1x(T − t).



Doubly Symmetric Solutions

The picture looks as follows:

x(0)
Fix(R0)

x(t)

x(−t) = R0x(t)
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The picture looks as follows:

x(0)
Fix(R0)

Fix(R1)

x(t)
x(T )

x(−t) = R0x(t)



Doubly Symmetric Solutions

The picture looks as follows:

x(0)
Fix(R0)

Fix(R1)

x(t)
x(T )

x(−t) = R0x(t)

Fix(R1R0R1)

x(2T )
x(T + τ) = R1x(T − τ)
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The main properties of such doubly symme-
tric solutions x(t) are:
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Doubly Symmetric Solutions

The main properties of such doubly symme-
tric solutions x(t) are:

• they exist for all t ∈ R;

• x(−t) = R0x(t) and x(T − t) = R1x(T + t);

• x(2mT + t) = (R1R0)mx(t);

• x(2mT ) = (R1R0)2m−1R1x(2mT );

• x((2m+1)T ) = (R1R0)mR1x((2m+1)T ).

In particular, if (R1R0)M = I then x(t) is

• 2MT -periodic;

• (R0, R0)-symm. with basic domain [0, MT ].



Doubly Symmetric Solutions

Special case R1 = R0

A (R0, R0)-symmetric solution with basic do-
main [0, T ] is automatically 2T -periodic:



Doubly Symmetric Solutions

Special case R1 = R0

A (R0, R0)-symmetric solution with basic do-
main [0, T ] is automatically 2T -periodic:

Fix(R0)
x(0)x(T )



Doubly Symmetric Solutions

Special case R1 = R0

A (R0, R0)-symmetric solution with basic do-
main [0, T ] is automatically 2T -periodic:

Fix(R0)
x(0)x(T )
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Doubly Symmetric Solutions
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Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

How to find nearby doubly symmetric solutions?



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Geometrically we need to find the intersection
points near y0 of the subspace Fix(R1) with
the submanifold

M0 := {x̃(t, x) | t ∈ R, x ∈ Fix(R0)}.



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Geometrically we need to find the intersection
points near y0 of the subspace Fix(R1) with
the submanifold

M0 := {x̃(t, x) | t ∈ R, x ∈ Fix(R0)}.

If at y0 the manifold M0 is transversal to
Fix(R1) then the intersection will locally be a
submanifold of dimension

1 + dimFix(R0) + dimFix(R1)− n.



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Typically in applications we have

n = 2dimFix(R0) = 2Fix(R1); (†)

then doubly symmetric orbits appear along
one-dimensional branches.

dim



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Typically in applications we have

n = 2dimFix(R0) = 2Fix(R1); (†)

then doubly symmetric orbits appear along
one-dimensional branches.

For simplicity we assume from now on that
(†) holds.

dim



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

To express the transversality condition ana-
lytically we denote by

π±0 :=
1

2
(I ±R0) and π±1 :=

1

2
(I ±R1)

the projections in Rn on respectively Fix(±R0)
and Fix(±R1). Remember that

Rn = Fix(R0)⊕ Fix(−R0)

= Fix(R1)⊕ Fix(−R1).



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Also, we denote by V (t, t0) the transition ma-
trix for the variational equation

ẋ = DX(x̃(t, x0)) · x.



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Also, we denote by V (t, t0) the transition ma-
trix for the variational equation

ẋ = DX(x̃(t, x0)) · x.

By lack of a better name we call

M := V (T0,0)

the momodromy matrix of the doubly sym-
metric solution x(t) = x̃(t, x0).



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

The transversality condition then takes the
form

Im(π−1 Mπ+
0 ) + RX(y0) = Fix(−R1)



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

The transversality condition then takes the
form

Im(π−1 Mπ+
0 ) + RX(y0) = Fix(−R1)

Observe:

X(y0) ∈ Fix(−R1) (since y0 ∈ Fix(R1)).



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

The transversality condition can not be sat-
isfied when the original picture is fully con-
tained in a level set of a first integral of (2).



The Continuation Problem

Doubly Symmetric Solutions

Fix(R0)

Fix(R1)

x(0) = x0

x(T0) = y0

Indeed, then also M0 is contained in that
level set, and we can at most achieve transver-
sality within the (codimension one) level set.
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More in general, (R0, R1)-symmetric solutions
are generated by the solutions (T, x) ∈ R ×
Fix(R0) of the equation

f(T, x) := π−1 x̃(T, x) = 0.
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Continuation of DS Solutions

More in general, (R0, R1)-symmetric solutions
are generated by the solutions (T, x) ∈ R ×
Fix(R0) of the equation

f(T, x) := π−1 x̃(T, x) = 0.

The mapping f : R × Fix(R0) → Rn is a con-
strained mapping, as follows.

f(T, x) = x̃(T, x)− π+
1 x̃(T, x)

g(T, x) h(T, x)

Clearly π+
1 g(T, x) = π+

1 h(T, x).



Continuation of DS Solutions

Moreover, let

F :=





F : Rn → R |

∇F (x) · X(x) = 0
and F is constant on
Fix(R0) ∪ Fix(R1)





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We have then for each F ∈ F that

F (g(T, x)) = F (x̃(T, x))

= F (x) = F (π+
1 x̃(T, x))

= F (h(T, x)).



Continuation of DS Solutions

Moreover, let

F :=





F : Rn → R |

∇F (x) · X(x) = 0
and F is constant on
Fix(R0) ∪ Fix(R1)






We have then for each F ∈ F that

F (g(T, x)) = F (x̃(T, x))

= F (x) = F (π+
1 x̃(T, x))

= F (h(T, x)).

We set

W := {∇F (y0) | F ∈ F}.



Continuation of DS Solutions

Our general results on constrained mappings
show that

Im(Df(T0, x0)) ⊂ W⊥ ∩ Fix(−R1).
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Our general results on constrained mappings
show that
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We say that the (R0, R1)-symmetric solution
x̃(t, x0) is normal if we have equality, i.e. if

Im(π−1 Mπ+
0 ) + RX(y0) = W⊥ ∩ Fix(−R1).



Continuation of DS Solutions

Our general results on constrained mappings
show that

Im(Df(T0, x0)) ⊂ W⊥ ∩ Fix(−R1).

We say that the (R0, R1)-symmetric solution
x̃(t, x0) is normal if we have equality, i.e. if

Im(π−1 Mπ+
0 ) + RX(y0) = W⊥ ∩ Fix(−R1).

Such normal doubly symmetric solutions ap-
pear in

(1 + k)-dimensional families,

where k := dimW .



Continuation of DS Solutions

How can we calculate this manifold of doubly 
symmetric solutions?

General theory learns us that we can apply
the implicit function theorem to the equation

π−1 x̃(T, x) =
k∑

i=1
αi∇Fi(y0),

where the Fi ∈ F are chosen such that

{∇Fi(y0) | 1 ≤ i ≤ k}

forms a basis of W .



Continuation of DS Solutions

How can we calculate this manifold of doubly 
symmetric solutions?

However, there is a different approach which
leads to the same result but which is better
suited for numerical calculations; it is based
on the following



Continuation of DS Solutions

Lemma
Let F ∈ F, and let x̂(t) be a solution of

ẋ = X(x) +∇F (x)

such that

x̂(t0) ∈ Fix(R0) and x̂(t1) ∈ Fix(R1)

for some t0 < t1. Then

∇F (x̂(t)) = 0, ∀t ∈ [t0, t1],

i.e. x̂(t) is a solution of

ẋ = X(x).



Continuation of DS Solutions

Proof

∫ t1

t0
〈∇F (x̂(t)),∇F (x̂(t))〉 dt

=
∫ t1

t0
〈∇F (x̂(t)), X(x̂(t)) +∇F (x̂(t))〉 dt

= F (x̂(t1))− F (x̂(t0))

= 0.
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Calculation of doubly symmetric solutions

Denote by x̃mod(t, x, α) the flow of the modi-
fied equation

ẋ = X(x) +
k∑

i=1
αi∇Fi(x).



Continuation of DS Solutions

Calculation of doubly symmetric solutions

Denote by x̃mod(t, x, α) the flow of the modi-
fied equation

ẋ = X(x) +
k∑

i=1
αi∇Fi(x).

Then we can apply the IFT to find solutions
(T, x, α) ∈ R×Fix(R0)×Rk near (T0, x0,0) of
the equation

π−1 x̃mod(T, x, α) = 0.



Continuation of DS Solutions

Calculation of doubly symmetric solutions

One obtains (under the normality condition)
a (1+k)-dimensional solution manifold along
which

α1 = α2 = · · · = αk = 0,

i.e. all points on this solution manifold gener-
ate (normal) (R0, R1)-symmetric solutions of
ẋ = X(x).



Continuation of DS Solutions

Calculation of doubly symmetric solutions

Numerical people prefer to have 1-dimensional
solution curves — then they can use e.g. the
pseudo-arclength method to calculate these
branches.
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Numerical people prefer to have 1-dimensional
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pseudo-arclength method to calculate these
branches.

Question: is it possible to add k further con-
ditions without losing information on the full
solution manifold?



Continuation of DS Solutions

Calculation of doubly symmetric solutions

Numerical people prefer to have 1-dimensional
solution curves — then they can use e.g. the
pseudo-arclength method to calculate these
branches.

Question: is it possible to add k further con-
ditions without losing information on the full
solution manifold?

Answer: yes, in the Hamiltonian case.
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• X(x) = XH(x) := J∇H(x) the Hamiltonian vec-
torfield corresponding to H;



The Hamiltonian case

We set:
• n = 2N ;

• x = (p, q), with p, q ∈ RN ;

• J ∈ L(R2N) the standard symplectic matrix de-
fined by J(p, q) = (−q, p);

• H : R2N → R a smooth function;

• X(x) = XH(x) := J∇H(x) the Hamiltonian vec-
torfield corresponding to H;

• x̃H(t, x) the corresponding Hamiltonian flow.



The Hamiltonian case

An operator S ∈ O(2N) is a symmetry for XH and
x̃H if

JS = SJ and H(Sx) = H(x).



The Hamiltonian case

An operator S ∈ O(2N) is a symmetry for XH and
x̃H if

JS = SJ and H(Sx) = H(x).

An operator R ∈ O(2N) is a reversor for XH and
x̃H if

JR = −RJ and H(Rx) = H(x).



The Hamiltonian case

Noether’s Theorem:

In Hamiltonian systems there is a relation between
first integrals and (continuous) symmetries.



The Hamiltonian case

F : R2N → R is a first integral for XH

"
{H, F}(x) := 〈∇H(x), J∇F (x)〉 = 0

⇓
the flows x̃H and x̃F commute



The Hamiltonian case

Suppose:

• R0 and R1 are reversors of XH;

• x̃H(t, x0) is a (R0, R1)-symmetric solution of
ẋ = XH(x), with basic domain [0, T0];

• F : R2N → R is a first integral.



The Hamiltonian case

Suppose:

• R0 and R1 are reversors of XH;

• x̃H(t, x0) is a (R0, R1)-symmetric solution of
ẋ = XH(x), with basic domain [0, T0];

• F : R2N → R is a first integral.

Then

x̃H(t, x̃F (s, x0)) = x̃F (s, x̃H(t, x0)), s ∈ R,

forms a one-parameter family of solutions of
ẋ = XH(x).



The Hamiltonian case

These solutions will also be (R0, R1)-symmetric (with
the same basic domain [0, T0]) if the flow x̃F leaves
the subspaces Fix(R0) and Fix(R1) invariant.
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the same basic domain [0, T0]) if the flow x̃F leaves
the subspaces Fix(R0) and Fix(R1) invariant.

Easy result:
If R ∈ O(2N) is such that JR = −RJ, then the flow
x̃F leaves Fix(R) invariant if and only if F is constant
on Fix(R).



The Hamiltonian case

These solutions will also be (R0, R1)-symmetric (with
the same basic domain [0, T0]) if the flow x̃F leaves
the subspaces Fix(R0) and Fix(R1) invariant.

Easy result:
If R ∈ O(2N) is such that JR = −RJ, then the flow
x̃F leaves Fix(R) invariant if and only if F is constant
on Fix(R).

So, for each F ∈ F,

x̃F (s, x̃H(t, x0)), s ∈ R,

forms a one-parameter family of (R0, R1)-symmetric
solutions.



Set-up for numerical continuation

Denote by x̃mod(t, x, α) the flow of

ẋ = XH(x) +
k∑

i=1
αi∇Fi(x);

then find solutions (T, x) ∈ R× Fix(R0) of

π−1 x̃mod(T, x, α) = 0,

subject to k additional phase conditions of the form

〈XFi
(x0), x− x0〉 = 0, (1 ≤ i ≤ k).



Set-up for numerical continuation

One can show that this is a regular problem, suit-
able for pseudo-arclength continuation, and leading
to one-dimensional solution branches along which
α = 0.

The phase conditions prevent the recalculation of
those doubly symmetric solutions which can be ob-
tained from x̃H(t, x0) or its continuation by applica-
tion of the symmetries x̃Fi

(s, ·) (s ∈ R, 1 ≤ i ≤ k).



Set-up for numerical continuation

In practice the phase conditions

〈XFi
(x0), x− x0〉 = 0, (1 ≤ i ≤ k),

are replaced by some “averaged” version, such as
∫ 1

0
〈XFi

(x̃H(T τ, x0)), x̃mod(T τ, x, α)− x̃H(T τ, x0))〉 dτ

= 0;

such integral conditions seem to give much better
numerical results.
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F.J. Muñoz-Almaraz!, E. Freire†, J. Galán† and A. Vanderbauwhede‡
!Departamento de Ciencias F́ısicas, Matemáticas y de la Computación.
Universidad Cardenal Herrera-CEU. 46115 Alfara del Patriarca, Spain.
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Abstract. In this paper we introduce the concept of a quasi-submersive mapping
between two finite-dimensional spaces, we obtain the main properties of such map-
pings, and we introduce “normality conditions” under which a particular class of
so-called “constrained mappings” are quasi-submersive at their zeros. Our main ap-
plication is concerned with the continuation properties of normal doubly symmetric
orbits in time-reversible systems with one or more first integrals. As examples we
study the continuation of the figure-eight and the supereight choreographies in the
N-body problem.
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1. Introduction

It is well known that dynamical systems which are subjected to certain
constraints (such as first integrals or symmetries) may show a behavior
which is quite different from the generic behavior of a general system
without such constraints. A simple example is what happens at an
equilibrium where the linearisation of the vector field has a pair of
purely imaginary eigenvalues: in the general case one will see a Hopf
bifurcation under perturbation of the vector field, while in the case that
there is a first integral the system itself (without perturbation) shows
a one-parameter family of periodic orbits surrounding the equilibrium
(this follows from the Lyapunov Center Theorem and is sometimes
referred to as a “vertical Hopf bifurcation”). On a more general level:
in general systems periodic orbits are typically isolated, in conservative
systems they appear in one- or multi-parameter families.

In this paper we study the existence and continuation of so-called
doubly symmetric solutions of reversible systems by studying the solu-
tion set of the equations which determine such solutions. It will appear
that when the system has one or more first integrals this solution set
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Application
to

n-body problems



Gerver’s supereight



The n-body problem

• We work in the plane;

• we consider N ≥ 3 bodies with masses

m1, m2, . . . , mN ;

• phase space is R4N ;

• x = (p1, p2, . . . , pN, q1, q2, . . . , qN), with

pj ∈ R2 = momentum of body j

and

qj ∈ R2 = position of body j.



The n-body problem

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

The Hamiltonian H is invariant under the symplectic
action of rotations in the plane given by

Ψθ(p1, . . . , pN, q1, . . . , qN)

:= (eAθp1, . . . , eAθpN, eAθq1, . . . , eAθqN) (θ ∈ S1),

with A ∈ L(R2) given by

A :=

(
0 1
−1 0

)

.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

The corresponding first integral is the total angular

momentum

L0(x) :=
N∑

j=1
qj · (Apj).

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

The Hamiltonian H is also invariant under the sym-
plectic action of translations in the plane given by

Tb(p1, . . . , pN, q1, . . . , qn)

:= (p1, . . . , pN, q1 + b, . . . , qN + b) (b ∈ R2).

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

The corresponding first integrals are the two com-
ponents

P1(x) := e1 · P (x) and P2(x) := e2 · P (x)

of the total linear momentum

P (x) :=
N∑

j=1
pj.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

Since the total linear momentum P (x) is constant
one can use a uniformly moving frame in R2 such
that P (x) = 0, which then implies that the center

of mass

Q(x) :=
N∑

j=1
mjqj

is constant.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

The Hamiltonian system XH is also equivariant with
respect to reflections in the plane, given by Φ ◦Ψθ

(θ ∈ S1), where

Φ(p1, . . . , pN, q1, . . . , qN)

:= (Sp1, . . . , SpN, Sq1, . . . , SqN),

with S ∈ L(R2) given by

Se1 := e1 and Se2 = −e2.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

If mi = mj (1 ≤ i < j ≤ N then we also have the
exchange symmetry

Σi,j(. . . , pi, . . . , pj, . . . , qi, . . . , qj, . . .)

:= (. . . , pj, . . . , pi, . . . , qj, . . . , qi, . . .).

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

The Hamiltonian system XH has a natural time

reversor given by

R(p1, . . . , pN, q1, . . . , qN) := (−p1, . . . ,−pN, q1, . . . , qN).

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

Moreover, each of the compositions

Ψθ ◦ R, Φ ◦ R and Σi,j ◦ R

forms a reversor. Also

R2 = (Ψπ ◦ R)2 = (Φ ◦ R)2 = (Σi,j ◦ R)2 = I.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

Finally, the system XH has a scaling symmetry:

H(λp, λ−2q) = λ2H(p, q), ∀λ ∈ R \ {0}.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



The n-body problem

Finally, the system XH has a scaling symmetry:

H(λp, λ−2q) = λ2H(p, q), ∀λ ∈ R \ {0}.

This implies that for each solution x(t) = (p(t), q(t))
of ẋ = XH(x) and for each λ != 0 also

xλ(t) := (λp(λ3t), λ−2q(λ3t))

is a solution.

H(x) =
N∑

j=1

1

2mj
‖pj‖2 −

∑

1≤i<j≤N

mimj

‖qi − qj‖
.



Gerver’s supereight

Next we turn to the special case of Gerver’s

supereight choreography, where N = 4 and
m1 = m2 = m3 = m4 = 1.

H(x) =
1

2

4∑

j=1
‖pj‖2 −

∑

1≤i<j≤4

1

‖qi − qj‖
.



Gerver’s supereight

Next we turn to the special case of Gerver’s

supereight choreography, where N = 4 and
m1 = m2 = m3 = m4 = 1.

We want to find out how this choreography can
be considered as a doubly symmetric solution
and how it can be continued, not only within
the system itself, but also when we change some
external parameters which we will introduce.

H(x) =
1

2

4∑

j=1
‖pj‖2 −

∑

1≤i<j≤4

1

‖qi − qj‖
.



Gerver’s supereight
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x(0) ∈ Fix(R0)

R0 = R ◦Σ1,3 ◦Φ
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x(T0) ∈ Fix(R1)
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x(T0) ∈ Fix(R1)

T0 =
1

8
× full period
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x(T0) ∈ Fix(R1)

(R1R0)
4 = I ⇒
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x(0) ∈ Fix(R0)

R0 = R ◦Σ1,3 ◦Φ R1 = R ◦Σ1,2 ◦Σ3,4 ◦Φ

x(T0) ∈ Fix(R1)

(R1R0)
4 = I ⇒

(R0, R1)-symmetric solu-
tions with basic domain
[0, T ] are 8T -periodic.
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Of the 4 nontrivial first integrals (H, L0, P1 and
P2) only P1 is constant on Fix(R0) ∪ Fix(R1), so
k = 1.

Continuation of the supereight



Of the 4 nontrivial first integrals (H, L0, P1 and
P2) only P1 is constant on Fix(R0) ∪ Fix(R1), so
k = 1.

Therefore, the supereight belongs to a two-para-
meter family of (R0, R1)-symmetric solutions (nor-
mality was checked numerically). Each member
of this family can be obtained from any other
member by using the scaling symmetry and trans-
lation in the e1-direction.

Continuation of the supereight



So, in order to obtain some non-trivial continu-
ation of the supereight as a (R0, R1)-symmetric
solution we need to introduce some external pa-
rameters in the Hamiltonian; this must be done in
such a way that both R0 and R1 remain reversors.

This last condition prevents us from changing any
of the masses, leaving us with the alternative to
change the potential; we take

Hγ(x) :=
1

2

4∑

j=1
‖pj‖2 −

∑

1≤i<j≤4

1

‖qi − qj‖γ
.

Continuation of the supereight



Hγ(x) :=
1

2

4∑

j=1
‖pj‖2 −

∑

1≤i<j≤4

1

‖qi − qj‖γ

Continuation of the supereight



Hγ(x) :=
1

2

4∑

j=1
‖pj‖2 −

∑

1≤i<j≤4

1

‖qi − qj‖γ

We consider the system

ẋ = XHγ(x)

and use our continuation techniques to continue
the supereight (which appears for γ = 1) as a
(R0, R1)-symmetric solution; we fix the basic do-
main (to prevent scaling), add a phase condition
corresponding to P1, and do continuation in the
parameter γ.

Continuation of the supereight
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The supereight can also be considered as a R0-
symmetric solution, that is as a (R0, R0)-symme-
tric solution with basic domain [0, T0]. Again
P1 is the only first integral which is constant
on Fix(R0), and so we get by continuation a
2-dimensional family of R0-symmetric solutions,
which coincides with the 2-dimensional family
of (R0, R1)-symmetric solutions which we found
before.

Continuation of the supereight

4



The supereight can also be considered as a R0-
symmetric solution, that is as a (R0, R0)-symme-
tric solution with basic domain [0, T0]. Again
P1 is the only first integral which is constant
on Fix(R0), and so we get by continuation a
2-dimensional family of R0-symmetric solutions,
which coincides with the 2-dimensional family
of (R0, R1)-symmetric solutions which we found
before.

However, this time we can use the masses as
external parameters: since only R0 has to remain
a reversor, the only condition is that m1 = m3.

Continuation of the supereight

4



We take the simplest possible case:

m1 = m3 = m and m2 = m4 = 1,

and use m as the continuation parameter. Again,
we fix the basic domain to prevent scaling, and
add a phase condition corresponding P1 to pre-
vent translations in the e1-direction.

Continuation of the supereight
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These are only partial choreographies



Along the foregoing branch one finds numeri-
cally non-normal behaviour and bifurcation at
m = 0.712412. After switching branching (some-
thing AUTO can do very well) one can calculate
a new branch of R0-symmetric solutions, still us-
ing m as the continuation parameter.

Continuation of the supereight
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These are not choreographies at all!
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Continuation of the supereight

The supereight can also be considered as a R̃0-
symmetric solution with basic domain [0,4T0] and
with the reversor R̃0 given by

R̃0 := R ◦Σ2,4 ◦Φ ◦Ψπ.



Continuation of the supereight

The supereight can also be considered as a R̃0-
symmetric solution with basic domain [0,4T0] and
with the reversor R̃0 given by

R̃0 := R ◦Σ2,4 ◦Φ ◦Ψπ.

R̃0 remains a reversor as long as m2 = m4.
So, in particular the case

m1 = m3 = m and m2 = m4 = 1

which we considered before, is allowed.



Continuation of the supereight

This time P2 is the only first integral which is con-
stant on Fix(R̃0); a continuation, keeping the basic
domain fixed, including a phase condition corre-
sponding to P2, and using m as the continuation
parameter, gives a one-dimensional branch.



Continuation of the supereight

This time P2 is the only first integral which is con-
stant on Fix(R̃0); a continuation, keeping the basic
domain fixed, including a phase condition corre-
sponding to P2, and using m as the continuation
parameter, gives a one-dimensional branch.

Using this R̃0-symmetric continuation we obtain
the same branch as the one we found before us-
ing a R0-symmetric continuation. This means that
the start and end configurations along this branch
belong to

Fix(R0) ∩ Fix(R̃0).



Continuation of the supereight

As a consequence the solutions along this branch
are R̃0R0-symmetric, with

R̃0R0 = −Σ1,3 ◦Σ2,4.



Continuation of the supereight

As a consequence the solutions along this branch
are R̃0R0-symmetric, with

R̃0R0 = −Σ1,3 ◦Σ2,4.
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Continuation of the supereight

However, the R̃0-symmetric continuation gives dif-
ferent bifurcation points:



Continuation of the supereight
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Continuation of the supereight

However, the R̃0-symmetric continuation gives dif-
ferent bifurcation points:

m = 0.2534

m = 0.6853

m = 1.4037

m = 1.4592

m = 3.9458

connected

connected

The bifurcating branches contain R̃0-symmetric so-
lutions which are no longer R0-symmetric.
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These are again partial choreographies
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Continuation of the supereight

The supereight can also be continued as a periodic

orbit, using the schemes of Lecture 1. When we
use again the mass m of the 1st and 3rd body as
continuation parameter we find the same branch as
before, and no new bifurcations are detected.
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Next we see how we can continue the supereight
when we change just one of the masses. We take
the following mass distribution:

m2 = µ and m1 = m3 = m4 = 1.

This mass configuration is compatible with the re-
versor R0.
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branch of R0-symmetric solutions with basic do-
main [0,4T0], and using µ as the continuation
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Continuation of the supereight

So we can start from the supereight to get a
branch of R0-symmetric solutions with basic do-
main [0,4T0], and using µ as the continuation
parameter.

µµ = 1

The resulting branch looks as follows:

supereight
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Continuation of the supereight

µµ = 1

Observe that next to the supereight we have
found two other (periodic) solutions with four
equal masses (µ = 1).
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symmetry.
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Finally we consider still a different mass distribu-
tion, namely
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Continuation of the supereight

Continuing the supereight as a R̂0-symmetric so-
lution (with basic domain [0,4T0]) and using M

as the continuation parameter we obtain a branch
along which the solutions look as follows.
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Continuation of the supereight

One can also continue the supereight as a peri-
odic orbit (forgetting the reversibility and using the
techniques of lecture 1) under the mass configura-
tion

m1 = m4 = M and m2 = m3 = 1,

and with M as the continuation parameter.



Continuation of the supereight

One can also continue the supereight as a peri-
odic orbit (forgetting the reversibility and using the
techniques of lecture 1) under the mass configura-
tion

m1 = m4 = M and m2 = m3 = 1,

and with M as the continuation parameter.

One obtains the same branch as when using the R̂0-
symmetry, only this time one detects a bifurcation
at M = 1.24871. The bifurcating solutions are
periodic but have no symmetry at all.
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One more solution with 4
equal masses...
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One more solution with 4
equal masses...

Up to an exchange of the
bodies it is the same as
the ones we found before.
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Thank You




