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Abstract

We introduce and justify a computational scheme for the continuation of periodic orbits
in systems with one or more first integrals, and in particular in Hamiltonian systems
having several independent symmetries. Our method is based on a generalization of
the concept of a normal periodic orbit as introduced by Sepulchre and MacKay [21].
We illustrate the continuation method on some integrable Hamiltonian systems with
two degrees of freedom and briefly discuss some further applications.

1 Introduction

The topic of this paper is the continuation, both theoretically and computationally, of peri-
odic orbits in conservative systems (i.e. systems having a number of first integrals), and in
particular in Hamiltonian systems having some independent constants of motion. It is well
known that with respect to periodic orbits and their continuation conservative and Hamilto-
nian systems behave quite differently from general dissipative systems — we briefly explain
how.

In dissipative systems periodic orbits are generically isolated, and therefore an external
parameter is required in order to be able to continue such periodic orbits. Computationally
the problem of finding a periodic orbit is formulated as a boundary value problem with the
period as an additional parameter. In order to avoid phase shifts along the same orbit and
ensure uniqueness one has to introduce an appropriate phase condition. So in the dissipative
case the continuation problem presents itself as a boundary value problem for the initial
point, subject to a phase condition, and depending on two parameters, the period and the
external parameter. We refer to section 2 for more details.

This scheme no longer works for Hamiltonian systems or, more generally, for systems having
a first integral. (Also time-reversible systems form an exceptional class, but we will discuss
those systems in a later paper). In conservative systems periodic orbits typically belong
to one-parameter families, parametrized by the value of the first integral (the energy in
the Hamiltonian case). This “internal parameter” is not explicitly available, at least not
directly, and this causes the general continuation scheme to fail. Additional complications
arise for Hamiltonian systems having several independent constants of motion (symmetries):
here periodic orbits belong to families having the dimension of the number of independent
integrals, including the energy, and further “phase conditions” are required in order to
uniquely identify members of such family.

In the literature one can find some basic continuation results for periodic orbits of Hamil-
tonian systems, such as for example the “cylinder theorem”of [17]. The aim of this paper
is to present an approach which not only allows to prove a number of theoretical results
but which can also be implemented directly for the numerical calculation of branches of
periodic orbits. We will concentrate on Hamiltonian systems having several symmetries (i.e.
first integrals). Our starting point will be a generalization of some continuation results of
Sepulchre and MacKay; in their paper [21] these authors discuss the continuation of periodic
orbits in systems having a first integral. They introduce the concept of a normal periodic
orbit and show that such normal periodic orbits belong to one-parameter families of normal
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periodic orbits. The key idea of their approach is to embed the conservative equation in a
one-parameter family of dissipative systems by adding a small gradient perturbation term
to the vector field in such a way that a periodic orbit can only exist when the perturbation
is zero. Under appropriate conditions one can then invoke the implicit function theorem to
obtain a continuation result for periodic orbits of the extended system, which by the basic
property of the perturbation means that in fact one obtains a branch of periodic orbits for
the unperturbed conservative system. This idea of adding a dissipative term which is later
forced to be zero is not new; it is for example classically used to prove the Lyapunov Center
Theorem as a special case of a vertical Hopf bifurcation (see e.g. [23]). Numerically the idea
has been used in, for example, the thesis of Zufiŕıa [28], the paper [1] by Aronson et al, and
in several other papers.

In this paper we extend this idea (in a rather obvious way) to the case when there are
k independent first integrals, with k ≥ 1; a continuation result similar to the one in [21]
then leads to a k-parameter family of periodic orbits of the given conservative system. We
also give conditions under which this family can be parametrized by the values of the first
integrals. For numerical computations one prefers to have one-parameter families, so for
k ≥ 2 one has to impose additional conditions (here called “phase conditions”) in order to
make the continuation result suitable for numerical implementation; we show how this can
be done when the system under consideration is Hamiltonian. We also discuss in detail the
application of our results to some simple (integrable) Hamiltonian system with two degrees
of freedom and two constants of motion; we explore in particular the geometrical meaning
of the phase conditions. Other applications will be reported elsewhere.

In section 2 we start with some mathematical preliminaries on continuation and on how these
can be used for the continuation of periodic orbits of autonomous systems. In section 3 we
generalize the results of Sepulchre and MacKay to conservative systems with several first
integrals, in section 5 we specialize to Hamiltonian systems and show how appropriate phase
conditions make the continuation scheme directly suitable for numerical implementation. In
section 6 we consider two particular cases, namely the continuation of relative equilibria and
the case of integrable Hamiltonian systems with two degrees of freedom, where we explain
our continuation results in terms of action-angle variables. In sections 7 and 8 we give two
detailed applications, and we conclude in section 9 with a survey of other applications and
a discussion of possible extensions of our approach.

2 Some preliminaries

The basic tool to obtain (local) continuation results is of course the implicit function theorem.
Stated very briefly, if G0 : Rm → Rn (with m > n) is a smooth mapping, and if x0 ∈ Rm is
a solution of

G0(x) = 0 (2.1)

such that DG0(x0) ∈ L(Rm; Rn) is surjective (i.e. G0 is a submersion at x0), then near x0 the
solution set of (2.1) is a smooth (m−n)-dimensional submanifold of Rm. More precisely, if U
and V are complementary subspaces of Rm such that dim(V ) = n and V ∩Ker (DG0(x0)) =
{0}, then the solution set of (2.1) has near x0 the form

{x∗(u) = x0 + u + v∗(u) | u ∈ U},
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where v∗ : U → V is a smooth mapping with v∗(0) = 0. Moreover this result is persistent
under small perturbations: if G : Rm × R → Rn, (x, ε) 7→ G(x, ε) = Gε(x) is a smooth
mapping, and if x0 ∈ Rm is such that G0(x0) = 0 and G0 is a submersion at x0, then for each
sufficiently small ε the zero set G−1

ε ({0}) is locally near x0 a smooth (m − n)-dimensional
submanifold.

Continuation packages such as AUTO [7] have been developed in order to implement this
result numerically in the case m = n + 1, i.e. when the solution set of (2.1) consists of
a single one-dimensional curve. In such case the so-called pseudo-arclength method [12]
allows the continuation of the solution curve irrespective of the direction of this curve; for
example, one can continue the curve around folds and the method also has no problems
with “vertical” solution branches—something which will be important in our further story.
The same packages can also be used when m > n + 1 on condition that we restrict x to
appropriate subsets of Rm, which means that we have to add further equations to (2.1).
Such additional equations can be chosen globally or, more appropriately for many problems
involving dynamical systems, they may be adapted from step to step in the calculation. For
example, still assuming that G0(x0) = 0 and that DG0(x0) is surjective, let A = Ax0 ∈
L(Rm; Rm−n−1) be such that

A (Ker (DG0(x0))) = Rm−n−1. (2.2)

Define G : Rm → Rm−1 = Rn × Rm−n−1 by

G(x) := (G0(x), A(x − x0)); (2.3)

then G(x0) = 0 and DG(x0) ∈ L(Rm; Rm−1) is surjective. Applying the foregoing continua-
tion result to the equation

G(x) = 0 (2.4)

gives us locally a single one-dimensional branch of solutions of (2.1) satisfying the additional
condition A(x − x0) = 0. Moreover, this branch can be computed numerically by using the
continuation packages mentioned before. In such general formulation the way to choose A
seems to be rather vague and arbitrary; however, in many applications (such as those in
this paper) one can make a motivated choice for A, based on the particular aspects of the
problem under consideration.

In order to illustrate how this continuation works for periodic orbits of autonomous ordinary
differential equations let us consider a multi-parameter system

u̇ = g(u, α), (2.5)

with u ∈ Rn, α ∈ Rk and g : Rn × Rk → Rn smooth. In fact, we consider (2.5) as an
unfolding (a perturbation) of the unperturbed equation

u̇ = g0(u), with g0(u) := g(u, 0). (2.6)

Our aim is to calculate branches of periodic solutions of (2.5), for values of α close to 0, and
starting from a given periodic solution of (2.6). The fact that (2.5) is autonomous leads to
two additional problems:

(i) finding a periodic solution also involves finding its (minimal) period T > 0;
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(ii) if u(t) is a periodic solution then so is uθ(t) := u(t + θ) for each θ ∈ R; since such
phase-shifted solutions have the same geometrical orbit we should avoid them in our
continuation results or in our numerical calculations.

We will further explain how to deal with (ii); as for (i) we just rescale time and replace (2.5)
by

u̇ = Tg(u, α). (2.7)

T -periodic solutions of (2.5) correspond to 1-periodic solutions of (2.7), and vice-versa. We
denote by ũ(t; p, T, α) the solution of (2.7) such that ũ(0; p, T, α) = p. Finding the 1-periodic
solutions of (2.7) is then equivalent to solving the equation

G0(p, T, α) := ũ(1; p, T, α) − p = 0. (2.8)

This is an equation of the form (2.1), with m = n + 1 + k and x = (p, T, α).

Next let p0 ∈ Rn and T0 > 0 be such that x0 := (p0, T0, 0) is a solution of (2.8), i.e.
u0(t) := ũ(t; p0, T0, 0) is a 1-periodic solution of

u̇ = T0g0(u). (2.9)

We tacitly assume that 1 is the minimal period of u0(t); this implies that u̇0(t) 6= 0 for all
t ∈ R, and in particular g0(p0) = T−1

0 u̇0(0) 6= 0. As a first step in trying to continue this
solution of (2.8) we calculate in detail the derivative DG0(p0, T0, 0), by considering separately
the partial derivatives of G0 in the variables p, T and α; we start with DpG0(p0, T0, 0) =
Dpũ(1; p0, T0, 0) − I.

The matrix function V (t) := Dpũ(t; p0, T0, 0) ∈ L(Rn) is a solution of the initial value
problem

V̇ (t) = T0Dg0(u0(t))V (t), V (0) = I, (2.10)

i.e. V (t) is the fundamental matrix of the variational equation

v̇ = T0Dg0(u0(t))v. (2.11)

It follows that M := V (1) is the monodromy matrix of the periodic solution u0(t), and the
eigenvalues of M are the Floquet multipliers; also

DpG0(p0, T0, 0) = M − I. (2.12)

Differentiating the identity u̇0(t) = T0g0(u0(t)) shows that u̇0(t) and hence also g0(u0(t)) are
1-periodic solutions of the variational equation (2.11); it follows that g0(u0(t)) = V (t)g0(p0)
and g0(p0) = g0(u0(0)) = g0(u0(1)) = V (1)g0(p0) = Mg0(p0), or equivalently

g0(p0) ∈ Ker (M − I). (2.13)

This shows that 1 is always a multiplier, i.e. an eigenvalue of M . As we will see further on
the geometric multiplicity mg and (to a lesser extend also) the algebraic multiplicity ma of
this eigenvalue will play an important role; the foregoing shows that ma ≥ mg ≥ 1.

The function w(t) :=
∂ũ

∂T
(t; p0, T0, 0) satisfies the initial value problem

ẇ(t) = T0Dg0(u0(t))w(t) + g0(u0(t)), w(0) = 0;
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the variation-of-constants formula and (2.13) then shows that

∂G0

∂T
(p0, T0, 0) =

∂ũ

∂T
(1; p0, T0, 0) = V (1)

∫ 1

0

V (s)−1g0(u0(s)) ds = M

∫ 1

0

g0(p0) ds = g0(p0).

In a similar way one finds

DαG0(p0, T0, 0) = Dαũ(1; p0, T0, 0) = T0M

∫ 1

0

V (s)−1Dαg(u0(s), 0) ds. (2.14)

Combining these results we finally conclude that

DG0(p0, T0, 0) · (p, T, α) = (M − I)p + Tg0(p0) + DαG0(p0, T0, 0) · α, (2.15)

with DαG0(p0, T0, 0) given by (2.14). With this explicit expression for DG0(p0, T0, 0) ∈
L(Rn+1+k, Rn) at hand we can now try to find conditions which ensure that G0 is a submer-
sion at (p0, T0, 0); however, before doing so we first solve the phase shift problem mentioned
earlier in this section.

Theorem 1 Using the notation introduced before, let p0 ∈ Rn and T0 > 0 be such that
G0(p0, T0, 0) = 0 and G0 is a submersion at (p0, T0, 0). Define G : Rn ×R×Rk → Rn ×R by

G(p, T, α) := (G0(p, T, α), 〈g0(p0), p − p0〉), (2.16)

where 〈·, ·〉 is any scalar product on Rn. Then G(p0, T0, 0) = 0, G is a submersion at the
point (p0, T0, 0), and locally near (p0, T0, 0) the solution set of the equation

G(p, T, α) = 0 (2.17)

forms a smooth k-dimensional submanifold of Rn × R × Rk.

Proof The first statement is obvious, the second follows from the fact that (g0(p0), 0, 0) ∈
Ker (DG0(p0, T0, 0)) (see (2.13) and (2.15)), and the third from our earlier statements on
submersions and zero sets of mappings. �

The solutions of equation (2.17) give us the initial points p ∈ Rn of T -periodic solutions of
(2.5), subject to the phase condition

〈g0(p0), p − p0〉 = 0. (2.18)

Geometrically this means that we are looking for fixed points of the (parametrized) Poincaré
map for (2.5) on the transversal section Σ := {p ∈ Rn | 〈g0(p0), p − p0)〉 = 0} to the orbit
{u0(t) | t ∈ R}. This way each periodic orbit corresponds to a unique solution of (2.17).
We have chosen the particular phase condition (2.18) because it is relatively simple and has
a direct geometrical meaning, but of course (2.18) can be replaced by other more involved
conditions such as for example the integral condition used in [21]. An integral condition is
also used as the default phase constraint in AUTO.

Next we turn to conditions on p0 and T0 which ensure that G0 is a submersion at (p0, T0, 0).
It follows from (2.13) that +1 is an eigenvalue of the monodromy matrix M , and g0(p0)
is an eigenvector. In general systems +1 will typically be a simple eigenvalue of M , i.e.
mg = ma = 1; this means that Ker (M − I) = Rg0(p0) and Rn = Im (M − I) ⊕ Rg0(p0).
(We say that u0(t) is a non-degenerate periodic solution). It follows then immediately from
(2.15) that DG0(p0, T0, 0) is surjective; in fact already D(p,T )G0(p0, T0, 0) is surjective. This
implies that the k-dimensional solution manifold given by theorem 1 can be parametrized
by α ∈ Rk, giving us the following result.
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Theorem 2 Let u0(t) be a 1-periodic solution of (2.9), with T0 > 0 and g0(p0) 6= 0 for
p0 := u0(0). Let V (t) be the fundamental matrix solution of the variational equation (2.11),
and suppose +1 is a simple eigenvalue of M = V (1). Then there exist smooth functions
p∗ : Rk → Rn and T ∗ : Rk → R, with p∗(0) = p0 and T ∗(0) = T0, such that for all
sufficiently small α ∈ Rk the solution ũ(t; p∗(α), T ∗(α), α) of (2.7) is 1-periodic. Moreover,
up to phase shifts these are the only 1-periodic solutions of (2.7) with T near T0 and with
orbit near Γ0 := {u0(t) | t ∈ R}.

Remark 3 Geometrically the foregoing result can be explained as follows. For each suffi-
ciently small α the vector field g(·, α) induces a Poincaré map Pα on Σ; p0 is a fixed point
of P0. If u0(t) is a non-degenerate periodic solution, then +1 is not an eigenvalue of the
linearization DP0(p0), and Pα has for each sufficiently small α a unique fixed point p∗(α)
close to p0. It follows in particular that for each sufficiently small α the periodic orbit
Γα := {ũ(t; p∗(α), T ∗(α), α) | t ∈ R} of (2.5) is isolated . These periodic orbits can be
obtained by numerical continuation if one restricts to the case k = 1.

In case the multiplier +1 is not simple one can in general expect a bifurcation of periodic
orbits at the orbit Γ0 (such as for example a saddle-node of periodic orbits); here we will
not discuss such bifurcations. There are also several particular classes of dynamical systems
whose periodic orbits will in general not have +1 as a simple multiplier, such as equivariant
systems (with a sufficiently large symmetry group), or time-reversible systems. In this paper
we concentrate on the case of conservative systems, i.e. systems having one or more first
integrals. In the next section we consider such conservative systems in general, in section 5
we then further specialize to hamiltonian systems.

3 Continuation in conservative systems

In this section we generalize the continuation results of Sepulchre and MacKay ([21]) to
conservative systems having several (independent) first integrals. There are two aspects in
which our approach differs from the one in [21], namely

(i) we restrict to finite-dimensional systems and do not work with equations on infinite-
dimensional Banach spaces or Banach manifolds, and

(ii) we do not use the loop space approach of [21]; instead we identify periodic orbits with
the zeros of the mappings G0 or G introduced in section 2.

As we will see this simplified set-up allows us in particular to give a more transparent and
less technical definition of normal periodic orbits. The reader who wishes to do so should
have no difficulty translating our results to the framework of [21].

Using the notation of section 2 we fix a smooth vector field g0 on Rn and a non-trivial periodic
orbit Γ0 = {u0(t) | t ∈ R} of g0, with minimal period T0 > 0 and monodromy matrix M ; we
denote by mg := dim Ker (M −I) and ma := dim Ker ((M−I)n) the geometric, respectively
algebraic multiplicity of the multiplier 1. A smooth function F : Rn → R is a first integral
of g0 if

DF (u) · g0(u) = 0, ∀u ∈ Rn. (3.1)
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(Since our analysis is local near Γ0 it is in fact sufficient to assume that (3.1) holds in a
neighborhood of Γ0). We denote by F the vector space of all first integrals of g0.

Next we fix some F ∈ F ; using (3.1) we have then for all (t, p, T ) that

d

dt
F (ũ(t; p, T, 0)) = DF (ũ(t; p, T, 0)) · ˙̃u(t; p, T, 0)

= TDF (ũ(t; p, T, 0)) · g0(ũ(t; p, T, 0)) = 0,

and therefore
F (ũ(t; p, T, 0)) = F (p), ∀(t, p, T ). (3.2)

So orbits of g0 stay on fixed level sets of F . To see what this implies for our periodic orbit
Γ0 we set

W := {∇F (p0) | F ∈ F} and k := dim W. (3.3)

(The gradient ∇F : Rn → Rn of a smooth function F : Rn → R is defined in the usual way
by the condition that DF (u) · ũ = 〈∇F (u), ũ〉 for all u, ũ ∈ Rn). We also choose Fj ∈ F
(1 ≤ j ≤ k) such that {∇Fj(p0) | 1 ≤ j ≤ k} forms a basis of W , and we set

f0 = (f0,1, f0,2, . . . , f0,k) := (F1(p0), F2(p0), . . . , Fk(p0)) ∈ Rk. (3.4)

The following heuristic argument then shows why we should expect our periodic orbit Γ0 to
belong to a k-parameter family of periodic orbits.

Consider the section Σ = {p ∈ Rn | 〈g0(p0), p−p0〉 = 0} which we introduced before, and the
corresponding Poincaré map P : Σ → Σ. We can foliate Σ by the level sets of the functions
Fj ; more precisely, for each f = (f1, f2, . . . , fk) ∈ Rk we set

Σf := {p ∈ Σ | Fj(p) = fj, 1 ≤ j ≤ k}.

It follows from (3.1) that g0(p0) is orthogonal to W , and therefore locally near p0 and for f
near f0 the set Σf is a smooth submanifold of codimension k + 1. It follows from (3.2) that
the Poincaré map P leaves this foliation invariant, i.e. P decomposes as a k-parameter family
of mappings Pf : Σf → Σf . For f = f0 the mapping Pf0 has the fixed point p0 ∈ Σf0 , and one
expects that under “generic conditions” for g0 the linearization DPf0(p0) will not have +1
as an eigenvalue. When this is indeed the case then Pf has for each f near f0 a unique fixed
point p∗(f) ∈ Σf near p0 = p∗(f0). This gives us a k-parameter family of periodic orbits Γf ,
parametrized by the values f = (f1, f2, . . . , fk) of the first integrals Fj (1 ≤ j ≤ k). Denoting
the period of Γf by T ∗(f) we have the identity G0(p

∗(f), T ∗(f), 0) = 0; differentiating at
f = f0 gives then (see (2.15) and (2.13)):

(M − I)Dp∗(f0) + g0(p0)DT ∗(f0) = 0 and (M − I)2Dp∗(f0) = 0.

Using the definition of Σ and the fact that p∗(f) ∈ Σf one can easily show that the image of
Dp∗(f0) ∈ L(Rk; Rn) is a k-dimensional subspace of Rn orthogonal to g0(p0); the foregoing
relations then prove that Ker ((M−I)2 ) is at least (k+1)-dimensional (since it contains g0(p0)
and Im (Dp∗(f0))). The conclusion is that the algebraic multiplicity ma of the multiplier +1
is greater than or equal to k + 1, and therefore Γ0 will be degenerate (at least if k ≥ 1). In
proposition 8 we will show that the foregoing argument holds true precisely when ma = k+1.
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3.1 Normal periodic orbits

To make the foregoing argument rigorous we fix some F ∈ F and differentiate (3.2) with
respect to the p-variable at the point (t, p, T ) = (t, p0, T0); this gives

DF (u0(t)) · V (t)p = DF (p0) · p, ∀t ∈ R, ∀p ∈ Rn; (3.5)

taking t = 1 then shows that

Im (M − I) ⊂ Ker (DF (p0)), ∀F ∈ F , (3.6)

and hence mg ≥ k. The definition of a first integral also implies that

g0(p0) ∈ Ker (DF (p0)), ∀F ∈ F . (3.7)

Combining (3.6) and (3.7) with the definition (3.3) of W we conclude that

Im (M − I) + Rg0(p0) ⊂ W⊥. (3.8)

From this it is easy to see that ma ≥ k + 1; indeed, if mg ≥ k + 1 then ma ≥ mg ≥ k + 1,
and if mg = k then (3.8) implies that Im (M − I) = W⊥ and g0(p0) ∈ Im (M − I), such that
g0(p0) ∈ Im (M − I)∩Ker (M − I) and therefore ma ≥ codim (Im((M − I)2)) ≥ k + 1. Now
remember that it follows from (2.15) that Im (D(p,T )G0(p0, T0, 0)) = Im (M − I) + Rg0(p0);
also, the periodic orbit Γ0 is non-degenerate if and only if Im (M − I)+Rg0(p0) = Rn, which
is only possible if W = {0}, i.e. when there are no first integrals. This motivates then the
following definition of a “normal” periodic orbit, a definition which was first introduced in
[21] (for the case k ≤ 1) and which generalizes the concept of non-degeneracy to conservative
systems.

Definition 4 We say that the periodic solution u0(t) or the corresponding periodic orbit Γ0

is normal if
Im (M − I) + Rg0(p0) = W⊥. (3.9)

As we have already noticed this definition includes the case of a non-degenerate periodic
orbit (when k = 0). It is not difficult to prove that the verification of (3.9) is independent
of the choice of the point p0 ∈ Γ0, i.e. normality is a property of the periodic orbit Γ0.

The next proposition characterizes normal periodic orbits in terms of the geometric and
algebraic multiplicities mg and ma of the multiplier +1; it also shows that our definition of
normality coincides with the one in [21] when k ≤ 1.

Proposition 5 The periodic orbit Γ0 is normal if and only if either

(i) mg = k,

or

(ii) mg = k + 1 and g0(p0) 6∈ Im (M − I).

In particular, Γ0 is normal if ma = k + 1.
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Proof The condition (3.9) will be satisfied if and only if either Im (M − I) = W⊥ or
Im (M − I) has codimension 1 in W⊥ and g0(p0) 6∈ Im (M − I). Because of (3.8) and
dim W = k the condition Im (M − I) = W⊥ is equivalent to mg = dim Ker (M − I) = k;
similarly, Im (M − I) has codimension 1 in W⊥ if and only if mg = dim Ker (M − I) = k +1.
This proves the first part of the proposition.

Next suppose that ma = k + 1; since mg ≥ k it follows that ma ≤ mg + 1 and

Rn = Im ((M − I)2 ) ⊕ Ker ((M − I)2 ), with dim Ker ((M − I)2 ) = ma = k + 1.

Moreover,
Im ((M − I)2 ) ⊂ Im (M − I) ⊂ W⊥ (3.10)

and
g0(p0) ∈ Ker (M − I) ∩ W⊥ ⊂ Ker ((M − I)2 ) ∩ W⊥.

A simple dimension argument then shows that

Ker ((M − I)2 ) ∩ W⊥ = Rg0(p0) and W⊥ = Im ((M − I)2 ) ⊕ Rg0(p0); (3.11)

in combination with (3.10) this last equality gives W⊥ = Im (M − I) + Rg0(p0), i.e. Γ0 is
normal. �

We have already observed that mg ≥ k and ma ≥ k + 1; for a typical (“generic”) periodic
orbit in a conservative system one expects these multiplicities to take their lowest possible
values, so mg = k and ma = k + 1. According to proposition 5 such typical periodic orbit is
normal.

3.2 Continuation of normal periodic orbits

Next we will show that normal periodic orbits indeed belong to k-parameter families of
(normal) periodic orbits, as was expected from the heuristic argument given before. To
prove this we will introduce a specific k-parameter unfolding gα of the conservative vector
field g0, constructed in such a way that

(i) the mapping G0(p, T, α) (defined as in (2.8)) is a submersion at (p0, T0, 0); and

(ii) the vector field gα can only have periodic orbits near Γ0 if α = 0.

Using the property (i) we can then apply theorem 1 to obtain a k-parameter family of periodic
orbits, which by property (ii) must be periodic orbits of the original conservative vector field
g0. The unfolding we have in mind is motivated by earlier treatments of conservative systems
(see e.g. [23]) and by [21]; it takes the form

gα(u) = g(u, α) := g0(u) +

k∑
j=1

αj∇Fj(u), ∀u ∈ Rn, ∀α = (α1, α2, . . . , αk) ∈ Rk. (3.12)

Observe that this unfolding is no longer conservative for α 6= 0; in fact, this is precisely what
allows us to prove that gα has the property (ii) mentioned above.

Lemma 6 With gα(u) given by (3.12), let u(t) be a T -periodic solution of u̇ = gα(u), with
p := u(0) sufficiently close to p0. Then α = 0, and u(t) is a periodic solution of u̇ = g0(u).
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Proof Let u(t) be a T -periodic solution of u̇ = gα(u), for some T > 0 and some α =
(α1, α2, . . . , αk) ∈ Rk. Let F (u) :=

∑k
j=1 αjFj(u); then F ∈ F and

u̇(t) = g0(u(t)) + ∇F (u(t)), ∀t ∈ R.

It follows that

0 = F (u(T )) − F (u(0)) =

∫ T

0

d

dt
F (u(t)) dt =

∫ T

0

DF (u(t)) · (g0(u(t)) + ∇F (u(t))) dt

=

∫ T

0

‖∇F (u(t))‖2 dt,

which implies that ∇F (u(t)) = 0 for all t ∈ R. In particular

k∑
j=1

αj∇Fj(p) = ∇F (p) = ∇F (u(0)) = 0.

Since the vectors ∇Fj(p0) (1 ≤ j ≤ k) are linearly independent the same will be true for
the vectors ∇Fj(p) (1 ≤ j ≤ k) if p is sufficiently close to p0. We conclude that αj = 0 for
1 ≤ j ≤ k, and the proof is complete. �

Now we come to our main result which generalizes theorem 4 of [21].

Theorem 7 Let Γ0 be a normal periodic orbit of the conservative vector field g0. Then this
vector field possesses locally near Γ0 a k-parameter family of normal periodic orbits, where
k is given by (3.3). Moreover, this family persists under smooth conservative perturbations.

Proof We will use theorem 1, which means that we have to show that the mapping
G0(p, T, α) given by (2.8) is a submersion at (p0, T0, 0). Since Γ0 is normal we have that
Im (D(p,T )G0(p0, T0, 0)) = W⊥, and therefore it is sufficient to show that for α ∈ Rk the con-
dition DαG0(p0, T0, 0) · α ∈ W⊥ implies α = 0; indeed, when this condition is satisfied then
Im (DαG0(p0, T0, 0)) is a k-dimensional subspace of Rn complementary to W⊥, and hence
DG0(p0, T0, 0) is surjective.

So we fix some α = (α1, α2, . . . , αk) ∈ Rk and suppose that DαG0(p0, T0, 0) · α ∈ W⊥. Let
F (u) :=

∑k
j=1 αjFj(u); then F ∈ F and Dαg(u0(s), 0) · α = ∇F (u0(s)); also ∇F (p0) ∈ W

and therefore DF (p0) ·DαG0(p0, T0, 0) ·α = 0. Using (2.14) this last relation takes the form

T0DF (p0)M

∫ 1

0

V (s)−1∇F (u0(s)) ds = 0;

because of (3.5) and (3.6) this further simplifies to∫ 1

0

DF (u0(s)) · ∇F (u0(s)) ds =

∫ 1

0

‖∇F (u0(s))‖2 ds = 0.

It follows that ∇F (u0(s)) = 0 for all s ∈ R; taking s = 0 we find
∑k

j=1 αj∇Fj(p0) =
∇F (p0) = 0, and hence α = 0, since the vectors ∇Fj(p0) (1 ≤ j ≤ k) are linearly indepen-
dent. We conclude that DG0(p0, T0, 0) is indeed surjective.
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Theorem 1 then shows that locally near (p0, T0, 0) the solution set of (2.17) forms a k-
dimensional submanifold of Rn × R × Rk. For each (p, T, α) on this submanifold p is the
initial point of a T -periodic solution of u̇ = gα(u); it follows then from lemma 6 that α = 0,
and so p is the initial point of a T -periodic solution of the conservative equation u̇ = g0(u).
Since p ∈ Σ we get a k-parameter family of (geometrically different) periodic orbits of the
vector field g0. As long as (p, T ) stays sufficiently close to (p0, T0) this periodic solution will
also be normal; this can be seen as follows. With an appropriate choice of the parameter
λ ∈ Rk we get smooth functions p∗ : Rk → Σ ⊂ Rn and T ∗ : Rk → R with p∗(0) = p0 and
T ∗(0) = T0, and such that G(p∗(λ), T ∗(λ), 0) = 0 for all (sufficiently small) λ ∈ Rk. For each
such λ there will be a monodromy matrix Mλ and a subspace Wλ such that

Im (Mλ − I) + Rg0(p
∗(λ)) ⊂ W⊥

λ . (3.13)

By continuity the codimension of the subspace at the left hand side of (3.13) is at most
equal to k (its value for λ = 0), while the dimension of Wλ is at least equal to k: indeed,
the vectors ∇Fj(p

∗(λ)) (1 ≤ j ≤ k) belong to Wλ and are linearly independent for small
λ. It follows from this dimension argument that we must have equality in (3.13), i.e. p∗(λ)
generates a normal periodic orbit.

Since our arguments are based on the implicit function theorem it is clear that the result will
persist for nearby conservative systems (having k first integrals F̃j close to Fj (1 ≤ j ≤ k)).
We leave it to the interested reader to write out the details. �

It is important to observe that next to the k-parameter family of periodic orbits given by
theorem 7 there may be other periodic orbits near Γ0, such as for example branches of
subharmonic solutions (see section 8 for some examples); however such periodic orbits will
have minimal periods which are away from the minimal period T0 of Γ0.

Next we turn to the question how we can parametrize the k-parameter family of periodic
orbits given by theorem 7; the argument given at the beginning of this section suggests that
we should try the values fj of the first integrals Fj (1 ≤ j ≤ k) along the periodic orbit. The
next proposition shows that this is indeed possible if ma = k + 1.

Proposition 8 Let Γ0 be a periodic orbit of the conservative vector field g0, with minimal
period T0 > 0. Define W , k and f0 ∈ Rk by (3.3) and (3.4), and assume that ma = k + 1.
Then the vector field g0 has for each f = (f1, f2. . . . , fk) ∈ Rk sufficiently close to f0 a unique
periodic orbit Γf close to Γ0, with period Tf close to T0, and such that Fj(p) = fj (1 ≤ j ≤ k)
for each p ∈ Γf .

Proof Consider the unfolding gα of g0 given by (3.12), and let G0 : Rn × R × Rk → Rn be

the associated map as given by (2.8). Then define G̃ : Rn ×R×Rk ×Rk → Rn ×R×Rk by

G̃(p, T, α, f) :=
(
G0(p, T, α), 〈g0(p0), p − p0〉, F1(p) − f1, . . . , Fk(p) − fk

)
.

Near (p0, T0, 0, f0) the equation G̃(p, T, α, f) = 0 will only have solutions for α = 0 (lemma 6);
each such solution (p, T, 0, f) then gives us the initial point p ∈ Σ of a T -periodic solution
of u̇ = g0(u), and such that Fj(p) = fj (1 ≤ j ≤ k). Therefore it is sufficient to show that
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the equation G̃(p, T, α, f) = 0 can be solved by the implicit function theorem for (p, T, α) as

a function of f ; since G̃(p0, T0, 0, f0) = 0 this means that we have to show that

D(p,T,α)G̃(p0, T0, 0, f0) · (p, T, α) = 0 (3.14)

implies (p, T, α) = (0, 0, 0).

So suppose that (3.14) holds for some (p, T, α) ∈ Rn × R × Rk; it follows then from (2.15)
and (3.8) that DαG0(p0, T0, 0) ·α ∈ W⊥, and the proof of theorem 7 shows that in that case
we must have α = 0. Taking this into account (3.14) reduces to

(M − I)p + Tg0(p0) = 0, 〈g0(p0), p〉 = 0 and DFj(p0) · p = 0 (1 ≤ j ≤ k). (3.15)

Applying (M−I) to the first of these equations gives (M−I)2p = 0, such that in combination
with the last equation we can conclude that p ∈ Ker ((M −I)2 )∩W⊥. It follows from (3.11)
that p = λg0(p0) for some λ ∈ R, and bringing this in the second equation of (3.15) gives
λ = 0 and hence p = 0. The first equation of (3.15) then finally gives T = 0, and the proof
is complete. �

The examples worked out in sections 7 and 8 show that the conclusion of proposition 8 may
fail when ma > k + 1. When k = 1 it is also sometimes convenient to parametrize the
one-dimensional branch of periodic orbits given by theorem 7 by the corresponding period
T ; this is possible if mg = 1, as the next proposition shows.

Proposition 9 Let p0 ∈ Rn be a point on a periodic orbit Γ0 of the conservative vector
field g0, with minimal period T0 > 0, dim W = 1 and mg = 1. Then there exists a smooth
mapping p∗ : R → Σ ⊂ Rn with p∗(T0) = p0, such that for each T near T0 the point p∗(T )
generates a T -periodic orbit ΓT of g0.

Proof Since mg = k = 1 the periodic orbit Γ0 is normal; in fact we have Im (M − I) = W⊥

and Ker (M − I) = Rg0(p0). Using theorem 7 (with k = 1) it is then sufficient to show that
the equations

G0(p, T, α) = 0 and 〈g0(p0), p − p0〉 = 0

(with α ∈ R) can be solved for (p, α) as a function of T , i.e. we have to prove that for each
(p, α) ∈ Rn × R the conditions

D(p,α)G0(p0, T0, 0) · (p, α) = (M − I)p + α
∂G0

∂α
(p0, T0, 0) = 0 and 〈g0(p0), p〉 = 0 (3.16)

imply (p, α) = (0, 0). The same argument as in the proof of proposition 8 shows that the
first equation of (3.16) implies α = 0; but then p ∈ Ker (M − I) = Rg0(p0), and the second
equation of (3.16) implies p = 0, as wanted. �

Remark 10 Also when k > 1 and mg = k we can use T as one of the parameters for
parametrizing the k-parameter family of periodic orbits given by theorem 7; this follows
from the fact that mg = k implies that

∂G0

∂T
(p0, T0, 0) = g0(p0) ∈ Im (M − I) = Im (DpG0(p0, T0, 0)),
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such that the T -variable is not needed in order to make G0 a submersion at (p0, T0, 0). This
is no longer the case when mg = k + 1 and g0(p0) 6∈ Im (M − I) (the other alternative
when Γ0 is normal). Indeed, denote the solutions of G(p, T, α) = 0 as (p∗(λ), T ∗(λ), 0) with
λ ∈ Rk any admissible parameter; differentiating G0(p

∗(λ), T ∗(λ), 0) = 0 at λ = 0 then gives
(M − I)Dp∗(0) + g0(p0)DT ∗(0) = 0, which implies DT ∗(0) = 0 when g0(p0) 6∈ Im (M − I).

When k = 1 the foregoing results can be immediately implemented numerically. When
k > 1 one has to impose further conditions in order to obtain one-dimensional branches of
periodic orbits which one could attempt to calculate numerically. For example, under the
conditions of proposition 8 one can look for periodic orbits along which Fj = f0,j for k − 1
of the k independent first integrals Fj (1 ≤ j ≤ k). Of course there are many ways in which
one can impose such additional conditions, none of which however seems to be “natural”.
This situation changes when we restrict to Hamiltonian systems for which the additional
structure provides a natural way to select a one-dimensional subbranch of periodic orbits.
In section 5 we will show how this can be done; in the next section we first give a brief survey
on Hamiltonian systems.

4 A brief survey on Hamiltonian systems and their

symmetries

In Hamiltonian systems there is always an immediate first integral, namely the Hamiltonian
itself. But in many cases there are also other first integrals, usually called “symmetries”
in the Hamiltonian context, because of Noether’s theorem — see theorem 11 below. In
specializing the results of the foregoing section to Hamiltonian systems we will explicitly
use the symplectic structure behind such systems; therefore we give here a very brief survey
of some basic elements of the theory of Hamiltonian systems, emphasizing in particular
the role of first integrals. We restrict to the elementary case of a symplectic vector space
with the standard symplectic form; the extension to general symplectic manifolds should be
straightforward.

We start with an even-dimensional phase space R2n = Rn×Rn, whose elements we denote as
u = (x, y) and on which we use the standard scalar product 〈u, ũ〉 =

∑2n
j=1 ujũj. We denote

by J ∈ L(R2n) the standard symplectic matrix given by J(x, y) := (y,−x); observe that J
is anti-symmetric and such that J2 = −I. We define a symplectic (i.e. anti-symmetric and
non-degenerate bilinear) form ω : R2n × R2n → R by

ω(u, ũ) := 〈u, Jũ〉, ∀u, ũ ∈ R2n. (4.1)

For each smooth function H : R2n → R we define a corresponding Hamiltonian vector field
XH : R2n → R2n by

DH(u) · ũ = ω(XH(u), ũ), ∀u, ũ ∈ R2n, (4.2)

or equivalently, by
XH(u) = J∇H(u), ∀u ∈ R2n. (4.3)

We call
u̇ = XH(u) (4.4)
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the Hamiltonian equation with Hamiltonian H ; we denote its flow by ϕH(t, u) = ϕ t
H(u) (with

t ∈ R and u ∈ R2n). From DH(u) · XH(u) = ω(XH(u), XH(u)) = 0 it is immediate that H
is a first integral of (4.4). Differentiating (4.2) once more gives us in combination with the
symmetry of D2H(u) the relation

ω(DXH(u) · ū, ũ) = ω(DXH(u) · ũ, ū), ∀u, ū, ũ ∈ R2n. (4.5)

Next we consider symmetries of the Hamiltonian system (4.4); for this we need three ingre-
dients. First there is the concept of a symplectic diffeomorphism, which is a diffeomorphism
Ψ : R2n → R2n such that

ω(DΨ(u) · ū, DΨ(u) · ũ) = ω(ū, ũ), ∀u, ū, ũ ∈ R2n. (4.6)

In particular, for each t ∈ R the diffeomorphism Ψ(u) := ϕ t
H(u) is symplectic: to see this

just combine (4.5) with the fact that for each u, ū ∈ R2n the mapping t 7→ Dϕ t
H(u) · ū is a

solution of the variational equation

ẇ = DXH(ϕ t
H(u)) · w

to show that

d

dt
ω
(
Dϕ t

H(u) · ū, Dϕ t
H(u) · ũ

)
= 0 =⇒ ω

(
Dϕ t

H(u) · ū, Dϕ t
H(u) · ũ

)
= ω(ū, ũ).

Second, a symmetry of (4.4) is a symplectic diffeomorphism Ψ : R2n → R2n such that the
Hamiltonian H is invariant under Ψ: H(Ψ(u)) = H(u) for all u ∈ R2n. Differentiating this
identity and using (4.2) and (4.6) we find then that DΨ(u)−1XH(Ψ(u)) = XH(u) for all
u ∈ R2n, which in turn implies that the flow ϕ t

H of (4.4) commutes with Ψ:

ϕ t
H(Ψ(u)) = Ψ

(
ϕ t

H(u)
)
, ∀t ∈ R, ∀u ∈ R2n.

Third, a smooth function F : R2n → R is a first integral of (4.4) if F (ϕ t
H (u)) = F (u) for

all (t, u) ∈ R × R2n, which means that ϕ t
H is for each t ∈ R a symmetry of the Hamiltonian

vector field XF , and which is also equivalent to the condition

{F, H}(u) := DF (u) · XH(u) = ω (XF (u), XH(u)) = 0, ∀u ∈ R2n.

The smooth function {F, H} : R2n → R, defined as indicated, is called the Poisson bracket
of F and H ; it is obviously anti-symmetric: {F, H} = −{H, F}, and hence we have the
following result.

Theorem 11 Let F : R2n → R and H : R2n → R be two smooth functions; then the
following properties are equivalent:

(i) {F, H} ≡ 0;
(ii) F is a first integral for the Hamiltonian vector field XH ;
(iii) H is a first integral for the Hamiltonian vector field XF ;
(iv) ϕ s

F is for each s ∈ R a symmetry of XH ;
(v) ϕ t

H is for each t ∈ R a symmetry of XF .
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Moreover, each of these properties implies that the flows of XH and XF commute:

ϕ t
H (ϕ s

F (u)) = ϕ s
F

(
ϕ t

H(u)
)
, ∀t, s ∈ R, ∀u ∈ R2n. (4.7)

Under fairly mild conditions (namely that either XF or XH has at least one bounded orbit)
also the converse is true: (4.7) implies each of the properties (i)–(v).

Sometimes it is convenient to write Hamiltonian systems in complex coordinates; this can
be done as follows. We identify the phase space R2n = Rn × Rn with Cn, via the mapping

(x, y) ∈ Rn × Rn 7−→ z =
1√
2

(y + ix) ∈ Cn;

observe that this identification means that we consider Cn as a real vector space. For each
z, z̃ ∈ Cn we set z · z̃ :=

∑n
j=1 zj z̃j . One can then directly verify that the scalar product

〈·, ·〉 and the symplectic form ω(·, ·) on R2n take on Cn the respective forms〈
z(1), z(2)

〉
:= z(1) · z̄(2) + z̄(1) · z(2), ∀z(1), z(2) ∈ Cn, (4.8)

and
ω
(
z(1), z(2)

)
:=
〈
z(1), iz(2)

〉
, ∀z(1), z(2) ∈ Cn. (4.9)

We identify a real-valued mapping H : Cn → R with the mapping H̃ : Rn × Rn → R given
by H̃(x, y) := H

(
1/
√

2 (y + ix)
)
; in particular, H is smooth if H̃ is smooth. If this is the

case then we have for each z = 1/
√

2 (y + ix) and each ζ = 1/
√

2 (η + iξ) in Cn that

DH(z) · ζ = DxH̃(x, y) · ξ + DyH̃(x, y) · η =
∂H

∂z
(z) · ζ +

∂H

∂z̄
(z) · ζ̄ ,

where
∂H

∂z
: Cn → Cn and

∂H

∂z̄
: Cn → Cn are defined by

∂H

∂z
(z) :=

1√
2

(
∇yH̃(x, y) − i∇xH̃(x, y)

)
and

∂H

∂z̄
(z) :=

1√
2

(
∇yH̃(x, y) + i∇xH̃(x, y)

)
.

(So
∂H

∂z̄
(z) is the complex conjugate of

∂H

∂z
(z)). Using (4.8) and (4.9) we see that

DH(z) · z̃ =

〈
∂H

∂z̄
(z), z̃

〉
= ω

(
i
∂H

∂z̄
(z), z̃

)
, ∀z, z̃ ∈ Cn, (4.10)

which shows that in this complex setting we should replace ∇H(u) and XH(u) by respectively
∂H

∂z̄
(z) and i

∂H

∂z̄
(z). In particular, the Hamilton equation corresponding to the Hamiltonian

H(z) takes the form

ż = i
∂H

∂z̄
(z), (4.11)

while the Poisson bracket of two smooth functions F, G : Cn → R is given by

{F, G}(z) := DF (z) ·
(

i
∂G

∂z̄
(z)

)
= i

(
∂F

∂z
(z) · ∂G

∂z̄
(z) − ∂F

∂z̄
(z) · ∂G

∂z
(z)

)
. (4.12)
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5 Continuation in symmetric Hamiltonian systems

Now we return to our discussion of the continuation of periodic orbits, replacing the unper-
turbed vector field g0 of section 3 by a Hamiltonian vector field XH(u), with u ∈ R2n and
H ∈ C∞(R2n; R). The space F then takes the form

F :=
{
F ∈ C∞(R2n; R) | {F, H} ≡ 0

}
;

in particular we have H ∈ F . As in section 3 we assume that p0 ∈ R2n generates a non-trivial
periodic orbit of XH , with minimal period T0 > 0. Using the notations introduced before it
is easily seen that

V (t) = DϕT0t
H (p0) (∀t ∈ R) and M = DϕT0

H (p0). (5.1)

In order to determine the multiplicities mg and ma we also introduce the spaces

Z0 :=
{
G ∈ F | {G, F}(p0) = 0, ∀F ∈ F

}
and Z0 :=

{
XG(p0) | G ∈ Z0

}
; (5.2)

of course H ∈ Z0 and XH(p0) ∈ Z0. As before we set W :=
{
∇F (p0) | F ∈ F

}
and k :=

dim W ; clearly Z0 ⊂ JW =
{
J∇F (p0) | F ∈ F

}
=
{
XF (p0) | F ∈ F

}
. When choosing a

collection {Fj | 1 ≤ j ≤ k} ⊂ F such that {∇Fj(p0) | 1 ≤ j ≤ k} forms a basis of W it
seems advisable (although not strictly necessary) to include the Hamiltonian H , for example
by taking F1 := H .

We can then prove the following (see also K. Meyer [16]).

Proposition 12 Under the foregoing conditions the monodromy matrix M is symplectic
(i.e. MT JM = J), JW ⊂ Ker (M − I) and

Im (M − I) + Z0 ⊂ W⊥. (5.3)

As a consequence ma is even, mg ≥ k and ma ≥ k + dim Z0.

Proof It follows from (5.1) and the fact that ϕT0
H is symplectic that ω(Mu, Mũ) = ω(u, ũ),

which proves that M is symplectic. As a consequence the eigenvalues of M come in quadru-
ples {λ, λ−1, λ̄, λ̄−1}, with each of the eigenvalues in such quadruple having the same multi-
plicities; such quadruple reduces to a pair for |λ| = 1, λ 6= ±1, and to a singleton for λ = ±1.
Moreover det M = ±1, and since the non-singular matrix V (t) homotopes M = V (1) to the
identity I = V (0) we conclude that det M = 1. Hence both the eigenvalues +1 and −1 of
M must have an even algebraic multiplicity, and ma is even.

Next let F ∈ F ; it follows then from theorem 11 and ϕT0
H (p0) = p0 that

ϕT0
H (ϕ s

F (p0)) = ϕ s
F

(
ϕT0

H (p0)
)

= ϕ s
F (p0), ∀s ∈ R,

i.e. t 7→ ϕt
H(ϕs

F (p0)) forms for each s ∈ R a T0-periodic solution of u̇ = XH(u). Differentiating
with respect to s at s = 0 and using (5.1) then shows that MXF (p0) = XF (p0). We conclude
that

XF (p0) ∈ Ker
(
M − I

)
, ∀F ∈ F , (5.4)

or stated differently: JW ⊂ Ker (M − I). This directly implies that mg ≥ k.
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Finally let G ∈ Z0; then (by definition of Z0)

〈∇F (p0), XG(p0)〉 = DF (p0) · XG(p0) = {F, G}(p0) = 0, ∀F ∈ F .

This shows that Z0 ⊂ W⊥, which in combination with Im (M − I) ⊂ W⊥ (see (3.8)) gives
us (5.3); moreover, from Im ((M − I)2) = (M − I)(Im (M − I)) ⊂ (M − I)(W⊥), Z0 ⊂ W⊥

and Z0 ⊂ JW ⊂ Ker (M − I) it follows that Im ((M − I)2) has codimension at least equal
to k + dim Z0, which implies ma ≥ k + dim Z0. �

As an immediate consequence of Proposition 12 we see that Proposition 8 can not apply
if Γ0 is a normal periodic orbit of the Hamiltonian equation u̇ = XH(u) such that either
dim Z0 ≥ 2 or when k is even; in such case Γ0 still belongs to a k-parameter family of normal
periodic orbits, but this family cannot be parametrized by the values of the first integrals
Fj (1 ≤ j ≤ k). A further remark is that in certain cases Proposition 12 may not give
the optimal lower bound for ma. Suppose for example that k > 1, dim Z0 = 1, and that
there exist m < k first integrals F1, F2, . . . , Fm ∈ F (including H) such that the following
holds:

(i) {Fi, Fj}(p0) = 0 for 1 ≤ i, j ≤ m;

(ii) the vectors ∇Fi(p0) (1 ≤ i ≤ m) are linearly independent;

(iii) 2m > k + 1 if k is odd, or 2m > k + 2 if k is even.

Then the same arguments as in the proof of Proposition 12 will show that ma ≥ 2m, which
by (iii) is strictly larger than the lower bound given by Proposition 12.

Now we come to the main result of this section; essentially this result says that along the k-
parameter continuation of a normal periodic orbit of the Hamilton equation u̇ = XH(u) there
is a natural way to select a one-parameter subfamily which is easily calculated numerically
and which generates the full k-parameter family via the symmetries. More precisely, we have
the following.

Theorem 13 Assume that Γ0 = {ϕt
H(p0) | t ∈ R} is a normal T0-periodic orbit of u̇ =

XH(u); with W , k and Fj (1 ≤ j ≤ k) as before, define g : R2n × Rk → R2n by

g(u, α) := XH(u) +
k∑

j=1

αj∇Fj(u). (5.5)

Denote the flow of u̇ = Tg(u, α) by ũ(t; p, T, α), and let

G0(p, T, α) := ũ(1; p, T, α) − p, ∀(p, T, α) ∈ R2n× ]0,∞[ ×Rk.

Then near (p0, T0, 0) the solution set of the equations{
G0(p, T, α) = 0,

〈 XFj
(p0), p − p0 〉 = 0, 1 ≤ j ≤ k,

(5.6)

consists of a smooth one-dimensional curve along which α ≡ 0. This curve can be parametri-
zed by the period T if mg = k. Projecting this curve on the phase space R2n and acting on
the projection with the flows of the Hamiltonian vector fields XFj

(1 ≤ j ≤ k) generates a
(k + 1)-dimensional manifold invariant under the flow of XH and foliated by a k-parameter
family of normal periodic orbits of u̇ = XH(u).
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Proof In the foregoing section we have shown that G0 is a submersion at (p0, T0, 0), and
that α ≡ 0 along any solution branch of G0(p, T, α) = 0. Moreover, we have that

Ker (M − I) × {0} × {0} ⊂ Ker (DG0(p0, T0, 0)) .

Now the phase conditions in (5.6) have the form

A · (p − p0, T − T0, α) = 0,

with A ∈ L(R2n × R × Rk; Rk) given by

A · (p, T, α) := (〈XF1(p0), p 〉, 〈XF2(p0), p 〉, . . . , 〈XFk
(p0), p 〉) .

According to the discussion in section 1 on one-dimensional solution curves of submersions
and using the facts that dim(JW ) = k and JW ⊂ Ker (M − I) it is sufficient to show that
the restriction of A to JW × {0} × {0} is injective; then the solution set of (5.6) is locally
near (p0, T0, 0) indeed a smooth one-dimensional curve, and all other statements follow easily
from the foregoing discussions (in particular from Theorem 11 and Remark 10).

So let F ∈ F , and suppose that A · (XF (p0), 0, 0) = 0. Since XF (p0) can be written as a
linear combination of the vectors XFj

(p0) (1 ≤ j ≤ k) this implies that

‖XF (p0)‖2 = 〈XF (p0), XF (p0) 〉 = 0.

Hence XF (p0) = 0, which proves the required injectivity of A. �

As with all our continuation results also the foregoing one is robust under (appropriate)
small perturbations. Since the equations (5.6) have a one-dimensional solution branch these
equations can be used directly for numerical continuation of a given normal periodic orbit
of the Hamiltonian vector field XH . We refer to the next section for a more geometrical
interpretation of Theorem 13 in the case of an integrable system. We continue this section
with the discussion of a particular case and conclude with one further continuation result,
this time using an external parameter.

In systems which have a so-called scaling property the application of Theorem 13 produces
a one-parameter family of periodic orbits related by scaling. We say that the Hamiltonian
vector field XH has a scaling property if there exists a smooth mapping (the scaling matrix)

S : ]0,∞[ −→ L(R2n), c 7−→ Sc

such that Sc is invertible for each c > 0, S1 = I and

ϕct
H(Scu) = Scϕ

t
H(u), ∀(t, u) ∈ R2n × R, ∀c > 0, (5.7)

or equivalently
cXH(Scu) = ScXH(u), ∀u ∈ R2n, ∀c > 0. (5.8)

For example the equations for the n-body problem have such property. Suppose then that
XH has some further symmetries, and that p1 ∈ R2n generates a normal periodic orbit
Γ1 := {ϕt

H(p1) | t ∈ R} with minimal period T1 > 0 and monodromy matrix M1. Then (5.7)
implies that for each c > 0 the point pc := Scp1 generates a periodic orbit Γc = Sc(Γ1) with
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minimal period Tc = cT1, i.e. we have G0(pc, cT1, 0) = 0 for all c > 0. Since the solution
branch can be parametrized by the period we necessarily have that mg = k (otherwise
differentiating G0(pc, cT1, 0) = 0 in c at c = 1 leads to T1 = 0). Moreover, differentiating
(5.7) in u at (t, u) = (T1, p1) shows that the monodromy matrix Mc of Γc is similar to
M1: S−1

c McSc = M1. Therefore the multipliers stay fixed along the whole branch, and in
particular each of the periodic orbits is normal, with mg = k. Finally, different orbits along
this branch can not be related by symmetry, since they have different periods. We conclude
that up to phase shift, symmetry and reparametrization the solution branch given by an
application of Theorem 13 must coincide with the branch {(pc, cT1, 0) | c > 0} obtained from
the scaling property. An explicit example of a Hamiltonian system with a scaling property
is given by the n-body problem; in particular, all so-called figure-eight orbits of the 3-body
problem with equal masses (see [3]) are related by scaling, and starting from one such orbit
our continuation method will give the full branch of figure-eight orbits (see [6] for details).

We conclude this section with a continuation result which uses explicitly an external pa-
rameter and which can be applied to periodic orbits of symmetric Hamiltonian systems for
which mg = k (so in particular to normal periodic orbits of Hamiltonian systems with a
scaling property). We consider a one-parameter family XHλ

of Hamiltonian vector fields,
depending smoothly on the parameter λ ∈ R, and we assume that {Hλ, Fλ,j} ≡ 0 for all
λ ∈ R and for certain functions Fλ,j ∈ C∞(R2n; R) (2 ≤ j ≤ k) which also depend smoothly
on λ. Suppose that p0 ∈ R2n generates a periodic orbit Γ0 := {ϕt

H0
(p0) | t ∈ R} of XH0 , with

minimal period T0 > 0 and such that

(i) the vectors ∇H0(p0), ∇F0,2(p0), . . . , ∇F0,k(p0) are linearly independent; and

(ii) mg = k.

We then set up the following scheme:

(1) define the unfolding

g(u, λ, α) := XHλ
(u) + α1∇Hλ(u) +

k∑
j=2

αj∇Fλ,j(u);

(2) denote by ũ(t; p, T, λ, α) the flow of u̇ = Tg(u, λ, α);

(3) let G0(p, T, λ, α) := ũ(1; p, T, λ, α) − p.

Then we have the following continuation result.

Theorem 14 Under the foregoing conditions the set of equations
G0(p, T, λ, α) = 0,

〈XH0(p0), p − p0 〉 = 0,

〈XF0,j
(p0), p − p0 〉 = 0, (2 ≤ j ≤ k),

(5.9)

has for each (fixed) T near T0 a unique one-dimensional solution branch near (p, λ, α) =
(p0, 0, 0); we have α ≡ 0 along this branch, and the branch can be parametrized by λ.

Proof The condition mg = k implies that Im (M − I) = W⊥, and therefore the derivative
D(p,α)G0(p0, T0, 0, 0) is surjective from R2n × Rk onto R2n. The same arguments as in the
proof of Theorem 13 show that the set of equations (5.9) has near (p, T, λ, α) = (p0, T0, 0, 0)
a two-parameter family of solutions; also, α ≡ 0 along this family which can be parametrized
by (T, λ). Fixing the period T then proves the result. �
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For an application of Theorem 14 to the 3-body problem we refer to [6] where it is shown
how the method described above gives a numerical continuation of the figure-eight orbits
(which appear when all masses are equal) when one of the masses is allowed to vary. An
application to the spring pendulum is briefly described in [18].

6 Some particular cases

In this section we consider in some generality two particular situations which will appear
in the examples given in sections 7 and 8. First we look at relative equilibria and show
how our methods can be adapted to deal to some extent with such relative equilibria; then
we consider integrable Hamiltonian systems with two degrees of freedom, using action-angle
variables to explain the geometrical meaning of our continuation scheme.

6.1 Continuation of relative equilibria

To start consider a Hamiltonian system (4.4) with Hamiltonian H ∈ C∞(R2n; R), and fix
some F ∈ F , i.e. F ∈ C∞(R2n; R) and {H, F} ≡ 0. According to theorem 11 this con-
dition means that the Hamiltonian vector field XH is equivariant with respect to the one-
dimensional symmetry group G := {ϕs

F | s ∈ R} of symplectic transformations generated
by the Hamiltonian vector field XF ; that is, we have Dϕs

F (u) · XH(u) = XH(ϕs
F (u)) for all

u ∈ R2n. Then choose some Ω ∈ R and set u(t) = ϕΩt
F (v(t)) in (4.4); one can easily see that

v(t) will satisfy the Hamilton equation

v̇ = XH(v) − ΩXF (v) = XH−ΩF (v). (6.1)

Since u(0) = v(0) we conclude that

ϕt
H(u) = ϕΩt

F

(
ϕt

H−ΩF (u)
)

and Dϕt
H(u) = DϕΩt

F

(
ϕt

H−ΩF (u)
)
· Dϕt

H−ΩF (u). (6.2)

Next suppose that p0 ∈ R2n is an equilibrium of (6.1):

XH−ΩF (p0) = XH(p0) − ΩXF (p0) = 0; (6.3)

then ϕt
H(p0) = ϕΩt

F (p0) is a solution of (4.4) with the property that the corresponding flow-
orbit is contained in (and if Ω 6= 0 actually coincides with) a symmetry-orbit (a G-orbit).
Such orbits (and the corresponding initial points p0) are called relative equilibria with respect
to the group G since they correspond to equilibria in the reduced system obtained from
(4.4) using the G-symmetry — see [16] or [15] for some of the earlier accounts on symmetry
reduction in Hamiltonian systems, [13], [22], [2] and [20] for some more recent work, [14] or
[19] for a general and comprehensive account of symmetry reductions, [5] for some explicitly
worked out examples, or [25] for an introduction in the case where G is isomorphic to the
circle group S1; we also refer to section 8 where for a particular system the reduction will
be carried out explicitly. Now assume that the group orbit G(p0) is closed, meaning that
p0 generates a periodic orbit of XF ; then p0 also generates a periodic solution of XH . More
precisely, if s 7→ ϕs

F (p0) is periodic with minimal period τ0 then t 7→ ϕt
H(p0) is periodic with

minimal period T0 = τ0/Ω. If moreover such periodic orbit Γ0 = G(p0) = {ϕt
H(p0) | t ∈ R}
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is normal (as a periodic orbit of XH) then our foregoing continuation schemes will give
us a branch of periodic orbits of XH containing the relative equilibrium p0. Observe that
when checking whether Γ0 is normal the fact that ∇H(p0) and ∇F (p0) are proportional will
influence the value of k = dim W . Also, in order to calculate M = DϕT0

H (p0) we can use the
fact that (6.2) and (6.3) imply that

Dϕt
H(p0) = DϕΩt

F (p0) · exp (tDXH−ΩF (p0)) , ∀t ∈ R,

and
M = Dϕτ0

F (p0) · exp (T0DXH−ΩF (p0)) . (6.4)

The examples in sections 7 and 8 show that in a number of cases the continuation of such
“periodic” relative equilibrium leads to a whole branch of relative equilibria. Moreover, in
many applications the symmetry group G is such that all its orbits are closed, which implies
that all relative equilibria are periodic. In such cases one can consider the problem of the
continuation of relative equilibria as part of the problem of the continuation of periodic
orbits. We will show next that in fact the continuation approach of the foregoing sections
can be adapted to the problem of the continuation of (certain) relative equilibria. But first
we put the definition of a relative equilibrium in a somewhat broader and slightly different
setting.

This time we start with a finite-dimensional subspace G of C∞(R2n; R) with the property
that {F, G} ∈ G for all F, G ∈ G (i.e. G forms a finite-dimensional Lie algebra). Denote
by G the Lie group of diffeomorphisms on R2n generated by the one-parameter groups
{ϕs

F | s ∈ R} with F ∈ G. Consider also a Hamiltonian vector field XH with Hamiltonian
H ∈ C∞(R2n; R) and such that G ⊂ F := {F ∈ C∞(R2n; R) | {H, F} ≡ 0}. Then the vector
field XH is equivariant with respect to the group G (theorem 11), and a point p0 ∈ R2n is
a relative equilibrium of XH with respect to G if XH(p0) = XF (p0) for some F ∈ G; more
precisely, if we choose elements Fi ∈ G (1 ≤ i ≤ m) such that {XFi

(p0) | 1 ≤ i ≤ m} forms
a basis of Y := {XF (p0) | F ∈ G}, then p0 is a relative equilibrium of XH with respect to G

if there exist elements Ωi ∈ R such that

XH(p0) =

m∑
i=1

ΩiXFi
(p0). (6.5)

Geometrically this means that the flow orbit {ϕt
H(p0) | t ∈ R} of p0 is contained in the

symmetry orbit G(p0). Observe that together with p0 also all other points of G(p0) are
relative equilibria.

Next we formulate and prove a continuation result for relative equilibria under a restrictive
condition for G; we hope to give more general results in a later paper. We will assume that
G ⊂ Z := {G ∈ F | {G, F} ≡ 0, ∀F ∈ F}; this implies in particular that the group G is
abelian. Fix some relative equilibrium p0 ∈ R2n of XH with respect to G, i.e. assume that

XH(p0) =
m∑

i=1

Ω0
i XFi

(p0) (6.6)

for some Ω0
i ∈ R (1 ≤ i ≤ m) and with Fi ∈ G (1 ≤ i ≤ m) such that {XFi

(p0) | 1 ≤ i ≤ m}
forms a basis of Y = {XF (p0) | F ∈ G}. Also choose Fj ∈ F (m + 1 ≤ j ≤ k) such that
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{∇Fj(p0) | 1 ≤ j ≤ k} forms a basis of W = {∇F (p0) | F ∈ F}, and set

L := DXH(p0) −
m∑

i=1

Ω0
i DXFi

(p0) ∈ L(R2n). (6.7)

Lemma 15 Under the foregoing conditions we have

JW ⊂ Ker (L) and Im (L) + Y ⊂ W⊥. (6.8)

As a consequence zero is an eigenvalue of L with geometric multiplicity at least equal to k,
and algebraic multiplicity at least equal to (k + m).

Proof Let H0 := H −
∑m

i=1 Ω0
i Fi; then L = DH0(p0), and it follows from G ⊂ Z that

{H0, F} ≡ 0 for all F ∈ F . Theorem 11 implies that XH0(ϕ
s
F (p0)) = Dϕs

F (p0) ·XH0(p0) = 0
for all F ∈ F and all s ∈ R; differentiation at s = 0 gives L · XF (p0) = 0 for all F ∈ F .
This proves the first inclusion of (6.8) and the fact that zero is an eigenvalue of L with
geometric multiplicity equal to dim Ker (L) ≥ dim(JW ) = k. Differentiating the identity
DF (u) ·XH0(u) = {F, H0}(u) = 0 at u = p0 and using XH0(p0) = 0 gives DF (p0) ·L(u) = 0
for all u ∈ R2n and all F ∈ F ; this shows that Im (L) ⊂ W⊥. Combining this with the fact
that Y ⊂ W⊥ (an immediate consequence of G ⊂ Z) gives the second inclusion in (6.8),
which then also implies Im (Lν) + Y ⊂ W⊥ for each ν ≥ 1. Moreover, for ν sufficiently large
we have R2n = Im (Lν) ⊕ Ker (Lν) and hence (since Y ⊂ JW ⊂ Ker (L))

Im (Lν) ∩ Y ⊂ Im (Lν) ∩ Ker (L) ⊂ Im (Lν) ∩ Ker (Lν) = {0}.

It follows that Im (Lν) has codimension at least equal to dim Y = m in W⊥, and codimension
at least equal to (k + m) in R2n; consequently dim Ker (Lν) ≥ k + m, which proves that the
algebraic multiplicity of the zero eigenvalue of L (which is equal to dim Ker (Lν)) must be
at least equal to (k + m). �

We will say that the relative equilibrium p0 is normal if we have equality in the second
inclusion of (6.8), i.e. if

Im (L) + Y = W⊥. (6.9)

More in particular this condition will be satisfied when the zero eigenvalue of L has either
geometric multiplicity equal to k, or algebraic multiplicity equal to (k + m). Indeed, in
the first case Im (L) has codimension k in R2n, and therefore Im (L) = W⊥, by (6.8) and
dim W = k. In the second case we have R2n = Im (Lν) ⊕ Ker (Lν) and dim Ker (Lν) =
k + m for ν ≥ 1 sufficiently large (see the proof of lemma 15); hence Im (Lν) ⊂ Im (L) has
codimension m in W⊥ and since Im (Lν) ∩ Y = {0} it follows that Im (Lν) ⊕ Y = W⊥ and
W⊥ = Im (L) + Y .

In order to continue such normal relative equilibrium p0 we define a smooth mapping G0 :
R2n × Rm × Rk → R2n by

G0(p, Ω, α) := XH(p) −
m∑

i=1

ΩiXFi
(p) +

k∑
j=1

αj∇Fj(p), (6.10)

with Ω = (Ω1, Ω2, . . . , Ωm) ∈ Rm and α = (α1, α2, . . . , αk) ∈ Rk; if moreover we set Ω0 :=
(Ω0

1, Ω
0
2, . . . , Ω

0
m) ∈ Rm then (6.6) can be rewritten as G0(p0, Ω0, 0) = 0. We have the follo-

wing continuation result.
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Theorem 16 Assume that G ⊂ Z, and let p0 ∈ R2n be a normal relative equilibrium of XH

with respect to G. Define m, k, Fj (1 ≤ j ≤ k), G0 and Ω0 as indicated before. Then the
solution set near (p0, Ω0, 0) of the system of equations{

G0(p, Ω, α) = 0,

〈XFj
(p0), p − p0〉 = 0, (1 ≤ j ≤ k),

(6.11)

consists of a smooth m-dimensional submanifold of R2n × Rm × Rk along which α ≡ 0. If
(p, Ω, 0) ∈ R2n × Rm × Rk is such solution then XH(p) =

∑m
i=1 ΩiXFi

(p) and p is a normal
relative equilibrium of XH with respect to G.

Proof We have

DG0(p0, Ω0, 0) · (p, Ω, α) = L(p) −
m∑

i=1

ΩiXFi
(p0) +

k∑
j=1

αj∇Fj(p0),

and it follows then immediately from (6.9) that DG0(p0, Ω0, 0) ∈ L(R2n × Rm × Rk; R2n) is
surjective, i.e. G0 is a submersion at (p0, Ω0, 0). Also the linear mapping A ∈ L(R2n; Rk)
given by

A · p :=
(
〈XF1(p0), p〉, 〈XF2(p0), p〉, . . . , 〈XFk

(p0), p〉
)

is surjective; more precisely, the restriction of A to the k-dimensional subspace JW =
{XF (p0) | F ∈ F} is injective and hence surjective, by the same argument as in the last part
of the proof of theorem 13. Since JW ⊂ Ker (L) we conclude that locally near (p0, Ω0, 0)
the solution set of (6.11) is an m-dimensional submanifold of R2n × Rm × Rk.

Next suppose that G0(p, Ω, α) = 0 for some (p, Ω, α) ∈ R2n × Rm × Rk with p close to p0.
Taking the scalar product of G0(p, Ω, α) = 0 with

∑k
j=1 αj∇Fj(p) gives∥∥∥∥∥

k∑
j=1

αj∇Fj(p)

∥∥∥∥∥
2

= 0 =⇒
k∑

j=1

αj∇Fj(p) = 0 =⇒ αj = 0 (1 ≤ j ≤ k),

since the vectors ∇Fj(p) (1 ≤ j ≤ k) are linearly independent for p close to p0. We conclude
that p is a relative equilibrium of XH with respect to G; this relative equilibrium is normal
by a perturbation argument similar to the one given in the proof of theorem 7. �

In case m = 1 the foregoing theorem gives us a one-dimensional branch of normal relative
equilibria; we can then use numerical continuation packages to solve the system (6.11) and
calculate such branches. We refer to sections 7 and 8 for some explicit examples.

6.2 Integrable Hamiltonian systems

The second special case we want to consider in more detail is that of integrable Hamiltonian
systems with two degrees of freedom; we will show how for such systems the continuation
results of the foregoing section can be interpreted in terms of action-angle variables. The
set-up is as follows. We start with a Hamiltonian system XH on R4, corresponding to
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the Hamilton function H ∈ C∞(R4; R); such Hamiltonian system is integrable if there is
at least one further first integral which is independent of H , it is superintegrable if next
to H there are at least two more independent first integrals. A well-known example of a
superintegrable system is that of the Kepler motion in the plane: next to the energy and the
angular momentum there is a third constant of motion, namely (an appropriate component
of) the Laplace-Runge-Lenz vector (see [11]). In the superintegrable case we will have k = 3
and ma = 4 along each periodic orbit Γ0, and hence each such periodic orbit is normal (see
Proposition 12 and Proposition 5). Moreover it follows from Theorem 7 that all orbits near
Γ0 will be periodic.

In the remainder of this subsection we exclude the superintegrable case and assume that
next to the Hamiltonian H there is just one further independent constant of motion F ∈
C∞(R4; R), i.e. {H, F} ≡ 0. For some (h0, f0) ∈ R2 let T0 be a bounded connected component
of the set {u ∈ R4 | (H(u), F (u)) = (h0, f0)} such that the vectors ∇H(u) and ∇F (u) are
linearly independent for all u ∈ T0. It is shown in [5] that under these conditions T0 is a
two-dimensional torus, and that there exists an open neighborhood of T0 in which one can
introduce canonical coordinates (I1, I2, θ1, θ2) ∈ R×R×S1 ×S1 (with S1 := R/Z) such that
the following holds:

(i) in the new coordinates T0 is given by {I 0
1 } × {I 0

2 } × S1 × S1, for some (I 0
1 , I 0

2 ) ∈ R2;

(ii) for (I1, I2) ∈ R2 close to (I 0
1 , I 0

2 ) the torus T(I1,I2) := {I1} × {I2}× S1 × S1 is invariant
under the flow of XH ;

(iii) near T0 and in the new coordinates the system XH takes the form

İ1 = 0, İ2 = 0, θ̇1 = Ω1(I1, I2), θ̇2 = Ω2(I1, I2), (6.12)

with

Ωi(I1, I2) =
∂K

∂Ii
(I1, I2), (i = 1, 2)

for some K ∈ C∞(R2; R).

The variables (Ii, θi) (i = 1, 2) are called (local) action-angle variables. The property (iii)
means that in these action-angle variables the system is still Hamiltonian, with a Hamilton
function K which depends only on the action variables Ii and is independent of the angle
variables θi; in the new variables the coordinate functions I1 and I2 are two independent
constants of motion. It is easy to write down the flow of (6.12), namely

ϕ t
K(I1, I2, θ1, θ2) =

(
I1, I2, θ1 + Ω1(I1, I2) t, θ2 + Ω2(I1, I2) t

)
, (6.13)

where the angle variables should of course be taken modulo Z. We set Ω0
i := Ωi(I

0
1 , I 0

2 )
(i = 1, 2) and assume that (Ω0

1, Ω
0
2) 6= (0, 0). For fixed (I1, I2) ∈ R2 near (I 0

1 , I 0
2 ) the flow on

the torus T(I1,I2) will be periodic if and only if there exist some T > 0 and some k1, k2 ∈ Z

such that Ω1(I1, I2)T = k1, Ω2(I1, I2)T = k2 and gcd(|k1|, |k2|) = 1. This condition in turn
is equivalent to the existence of some k1, k2 ∈ Z such that

gcd(|k1|, |k2|) = 1 and k2Ω1(I1, I2) − k1Ω2(I1, I2) = 0; (6.14)

the minimal period T is then given by |k1|/|Ω1(I1, I2)| or |k2|/|Ω2(I1, I2)|, depending on
whether Ω1(I1, I2) 6= 0 or Ω2(I1, I2) 6= 0. We can consider (k1, k2) ∈ Z2 as the winding
numbers of the periodic orbits on the torus T(I1,I2).
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Now suppose that the flow on the torus T0 is periodic, with minimal period T0 > 0, and
let k1, k2 ∈ Z be such that Ω0

1T0 = k1 and Ω0
2T0 = k2. It follows from (6.13) that the

corresponding monodromy matrix M0 is given by

M0 · (I1, I2, θ1, θ2) = (I1, I2, θ1, θ2) + (0, 0, δ11I1 + δ12I2, δ21I1 + δ22I2),

with

δij := T0
∂Ωi

∂Ij

(
I 0
1 , I 0

2

)
, (i, j = 1, 2).

Since the coordinate functions I1 and I2 are two independent constants of motion we have
k = 2 and W = {(I1, I2, 0, 0) | I1, I2 ∈ R}. Also, let D be the 2 × 2-matrix with matrix-
elements δij (i, j = 1, 2). Then the periodic orbits on T0 will be normal if either det D 6= 0,
or if D 6= 0, det D = 0 and (Ω0

1, Ω
0
2) 6∈ Im (D). Some elementary algebra (using Ω0

1T0 = k1

and Ω0
2T0 = k2) shows that these conditions are equivalent to the condition(
k2

∂Ω1

∂I1
(I 0

1 , I 0
2 ) − k1

∂Ω2

∂I1
(I 0

1 , I 0
2 ), k2

∂Ω1

∂I2
(I 0

1 , I 0
2 ) − k1

∂Ω2

∂I2
(I 0

1 , I 0
2 )

)
6= (0, 0). (6.15)

Assuming that the flow on T0 is periodic and normal we next apply the continuation theo-
rem 13, starting from an arbitrary point p0 = (I 0

1 , I 0
2 , θ 0

1 , θ 0
2 ) ∈ T0. Using (6.12) the equations

(5.6) take the explicit form

α1T = 0, α2T = 0, Ω1(I1, I2)T = k1, Ω2(I1, I2)T = k2, θ1 = θ0
1, θ2 = θ0

2,

to be solved for (I1, I2, θ1, θ2, T, α1, α2) near (I 0
1 , I 0

2 , θ 0
1 , θ 0

2 , T0, 0, 0). As expected, we have
α1 = α2 = 0, while the phase conditions fix the angle variables θ1 and θ2. The remaining
two equations for T , I1 and I2, namely

Ω1(I1, I2) =
k1

T
, Ω2(I1, I2) =

k2

T
, (6.16)

can be solved for I1 and I2 as a function of T if det D 6= 0, i.e. if mg = 2 = k (compare with
theorem 13). In general, the normality condition (6.15) shows that the equivalent equations

T =
ki

Ωi(I1, I2)
, k2Ω1(I1, I2) − k1Ω2(I1, I2) = 0, (6.17)

(where i ∈ {1, 2} is chosen such that Ω0
i 6= 0) can either be solved for (T, I1) as a function of

I2, or for (T, I2) as a function of I1. We obtain a one-dimensional curve in the (I1, I2)-plane;
the flow on the tori corresponding to points on this curve is periodic and normal; moreover,
the winding numbers (k1, k2) of the periodic orbits on these tori (see (6.16)) remain constant
along the curve. We conclude that in the case of an integrable Hamiltonian system with two
degrees of freedom our method allows the continuation of periodic tori with given winding
numbers. In this context it is important to observe that in practice it is usually impossible
to obtain the action-angle variables explicitly; however, our method also works when we use
the original coordinates or any other (canonical) coordinate system that is convenient.
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7 Example 1

In this and in the next section we consider two explicit examples on which we apply our
foregoing results. These examples are relatively simple and are chosen such that they clearly
illustrate some particular features of the theory. Both examples consist of 4-dimensional
Hamiltonian systems with one additional constant of motion, i.e. the systems are integrable.
The first example can be solved explicitly; it contains three different types of branches of
periodic orbits, and we show that our continuation results can be used to reconstruct each
of these branches. The second example (given in the next section) derives from a physical
application and will be treated partly analytically, partly numerically. In both cases we use
the complex notation for Hamiltonian systems such as discussed in section 4.

For our first example we take n = 2, set z = (a, b) ∈ C2 and consider the Hamiltonian

H(a, b) := aā − bb̄ +
1

2
(aā )2 . (7.1)

The solution of the corresponding Hamilton equations{
ȧ = i (1 + |a|2) a

ḃ = −ib
(7.2)

with initial values (a0, b0) is given by

ã(t; a0, b0) = a0e
i(1 + |a0|2)t, b̃(t; a0, b0) = b0e

−it, ∀a0, b0 ∈ C. (7.3)

The system (7.2) has the functions G1(a, b) := aā = |a|2 and G2(a, b) := bb̄ = |b|2 as
constants of motion: one can verify this directly from (7.3), or by checking that {H, G1} ≡ 0
and {H, G2} ≡ 0. The Hamiltonian H is functionally dependent on G1 and G2, since
H = G1 − G2 + 1/2 G2

1. Also the function F (a, b) := aā + bb̄ = G1(a, b) + G2(a, b) is a

first integral; the corresponding Hamiltonian vector field i
∂F

∂z̄
(a, b) = i(a, b) generates an

S1-action on C2, explicitly given by

(θ, a, b) ∈ (R mod 2π) × C2 = S1 × C2 7−→
(
eiθa, eiθb

)
∈ C2. (7.4)

The equations (7.2) and the flow (7.3) are equivariant with respect to this S1-symmetry.
As a consequence we can for this particular case consider the equation (6.1) as the original
Hamiltonian equation (7.2) in a frame rotating with angular velocity Ω; relative equilibria are
actual equilibria in an appropriate rotating frame, and are automatically periodic solutions
of (7.2). The system has a unique equilibrium at the origin (a, b) = (0, 0), and, as one
can easily see from (7.3), three different types of periodic solutions. We now analyse these
periodic solutions one by one, and show what happens when we continue them using the
approach of theorem 13 or theorem 16.

Case 1. Solutions with initial value p0 = (a0, 0) 6= (0, 0) are periodic with minimal period
T0 = 2π(1 + |a0|2)−1. Along these periodic orbits the gradients of H and F are linearly
dependent, i.e. these periodic orbits are relative equilibria with respect to the S1-action
(take Ω = (1 + |a0|2) in (6.3)). Using phase shifts or the S1-symmetry we can restrict our
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attention to the case where a0 is real and strictly positive, i.e. we can w.l.o.g. assume that
a0 = ρ0 for some ρ0 ∈ R, ρ0 > 0. The monodromy matrix M of the corresponding periodic
solution can be obtained by differentiating the mapping (a, b) 7→ (ã(T0; a, b), b̃(T0; a, b)) at
the initial point (ρ0, 0); we find

M · (a, b) =
(
a + iρ2

0 T0 (a + ā ) , bei T0

)
, with T0 = 2π

(
1 + ρ2

0

)−1
.

Hence Ker (M − I) = iR × {0} and mg = 1. Moreover, W contains the nonzero vector
∇H(p0) = (ρ0 + ρ3

0, 0) and JW ⊂ Ker (M − I) by Proposition 12; so k = dim W = 1 = mg

and the periodic orbit is normal. In order to apply the continuation scheme of theorem 13
we choose F1 = G1. We have to find initial points p = (a0, b0) near (ρ0, 0) which generate
1-periodic solutions of {

ȧ = iT (1 + |a|2)a + αTa,

ḃ = −iT b,
(7.5)

with (T, α) near (T0, 0), and subject to the phase condition〈
(iρ0, 0), (a0 − ρ0, b0)

〉
= −iρ0(a0 − ā0) = 0 =⇒ a0 = ā0.

So a0 = ρa ∈ R with ρa > 0 near ρ0. Using polar coordinates to integrate the first equation
of (7.5) with initial value a = ρa shows that the solution has the form

ã(t) = ρae
αT t + iT φ̃(t), φ̃(t) =

∫ t

0

(
1 + ρ2

ae
2αTτ

)
dτ ;

imposing the periodicity condition ã(1) = ρa and using the fact that (T, ρa) must be close
to (T0, ρ0) we get then

α = 0 and T =
2π

1 + ρ2
a

,

with ρa > 0 arbitrary (but close to ρ0). Imposing the periodicity condition on the solution
of the second equation of (7.5) (with initial value b0 near 0 and T near T0) gives b0 = 0. We
conclude that the continuation method gives us the one-dimensional branch A := {(ρa, 0) |
ρa ∈ R, ρa > 0} of initial points which generate normal periodic orbits of (7.2) which are
relative equilibria and which have minimal period T = 2π (1 + ρ2

a)
−1

. Observe that the
branch A can be parametrised by the period T if one wishes to do so. The same branch A
of normal relative equilibria can also be obtained by an application of theorem 16; we leave
the details to the reader.

Case 2. Also initial points of the form (0, b0) with b0 6= 0 lead to periodic orbits which
are relative equilibria; using phase shifts or the S1-symmetry we can w.l.o.g. restrict to the
case where b0 = ρ0 for some ρ0 ∈ R, ρ0 > 0. First we show that p0 = (0, ρ0) is a normal
relative equilibrium. We have XH(p0) = −XF (p0) (i.e. Ω0 = −1), XF (p0) = (0, iρ0) ∈ Y ,
and the matrix L defined by (6.7) is here given by L = DXH(p0) + DXF (p0), or explicitly
by L · (a, b) = (2ia, 0), such that Im (L) = C × {0}. It follows then from (6.8) that

C × {0} + {0} × iR ⊂ Im (L) + Y ⊂ W⊥;

since ∇F (p0) = (0, ρ0) ∈ W we conclude that we must have equality in the foregoing
inclusion, and that p0 is a normal relative equilibrium. Moreover, W = {0} × R and
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k = dim W = 1. We can continue the relative equilibrium p0 by the procedure given in
theorem 16; for the implementation of this procedure we set m = k = 1, Ω0 = −1 and
F1 = F . According to theorem 16 we should look for solutions (a, b, Ω, α) ∈ C × C × R × R

near (0, ρ0,−1, 0) of the set of equations(
i(1 + |a|2)a,−ib

)
− Ω (ia, ib) + α (a, b) = (0, 0),

〈
(0, iρ0), (a, b − ρ0)

〉
= 0. (7.6)

It follows easily that b must be real (i.e. b = ρb ∈ R near ρ0), a = 0, α = 0 and Ω = −1. Hence
the continuation method of theorem 16 will give us the branch B = {(0, ρb) | ρb ∈ R, ρb > 0}
of normal relative equilibria. Now observe that each of these relative equilibria generates a
2π-periodic orbit of (7.2) which is not normal: indeed, the minimal period is T0 = 2π and the
monodromy matrix is just the identity (M · (a, b) = (a, b)); hence mg = dim Ker (M − I) =
4 > k + 1 = 2, and the periodic orbit generated by (0, ρ0) is not normal.

Case 3. When both a0 and b0 are nonzero then according to (7.3) the solution of (7.2)
with initial value (a0, b0) is periodic if and only if we can find a T > 0 and strictly positive
integers p̃ and q̃ such that(

1 + |a0|2
)
T = 2πp̃ and T = 2πq̃, (7.7)

that is if and only if (1 + |a0|2) is rational, or equivalently, if and only if |a0|2 is rational. If
this is the case we write

|a0|2 =
p

q
, with p, q ∈ N and gcd(p, q) = 1;

then Γ0 = {(ã(t; a0, b0), b̃(t; a0, b0)) | t ∈ R} is periodic with minimal period T = 2πq, and
(7.7) is satisfied for (p̃, q̃) = (p + q, q). Applying the S1-symmetry to Γ0 gives us the 2-torus

Ta0,b0 :=
{(

a0e
iθ, b0e

iϑ
)
| θ, ϑ ∈ R

}
which is invariant under the flow of (7.2) and under the symmetry, and which is foliated by
periodic orbits of (7.2). These orbits wind p̃ = p + q times around Ta0,b0 in the a-direction
and q̃ = q times in the negative b-direction before closing up; we say that the orbits have
winding numbers equal to (p + q,−q). The flow on the torus Ta0,b0 is quasi-periodic when
|a0|2 is irrational.

We now apply the continuation method of theorem 13 to a particular such periodic solution;
using phase shifts and symmetry we can w.l.o.g. assume that both initial coordinates a0 and
b0 are real and strictly positive. To fix the notation we consider the periodic orbit Γ0 through
the point p0 = (β1/2, ρ0), with ρ0 ∈ R, ρ0 > 0, β ∈ Q and β > 0; writing β = p/q with
gcd(p, q) = 1 the minimal period T0 is equal to 2πq. The gradients of G1 and G2 at p0 are
given by respectively (β1/2, 0) and (0, ρ0); they are linearly independent, and hence k ≥ 2
and dim W⊥ ≤ 2. The monodromy matrix is given by

M · (a, b) = (a + iT0β (a + ā ) , b) = (a + 2πpi (a + ā ) , b) ,

from which it follows that Ker (M −I) = i R×C, mg = 3 and Im (M −I) = i R×{0}. Since
g0(p0) = (i(1 + β)β1/2,−iρ0) does not belong to Im (M − I) it follows that the subspace
Im (M − I) + Rg0(p0) is two-dimensional; this subspace is contained in W⊥ (by (3.8)), and
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since dim W⊥ ≤ 2 we conclude that Im (M − I) + Rg0(p0) = W⊥ and that Γ0 is a normal
periodic orbit, with k = 2.

For the implementation of theorem 13 we take F1 = G1 and F2 = G2, and consider the
system {

ȧ = iT (1 + |a|2)a + α1Ta,

ḃ = −iT b + α2Tb,
(7.8)

with (T, α1, α2) near (T0, 0, 0). We have to look for initial values (a0, b0) near (β1/2, ρ0) such
that the corresponding solution of (7.8) is 1-periodic; moreover, these initial values must
satisfy the phase conditions〈

(iβ1/2, 0), (a0 − β1/2, b0 − ρ0)
〉

=
〈
(0, iρ0), (a0 − β1/2, b0 − ρ0)

〉
= 0,

which implies that both a0 and b0 must be real. Therefore we set a0 = ρa and b0 = ρb, with
ρa and ρb real and close to respectively β1/2 and ρ0 (in particular both ρa and ρb are strictly
positive). Solving the second equation of (7.8) with initial value ρb > 0 and imposing the
periodicity condition gives us

ρbe
(−i + α2)T = ρb =⇒ α2 = 0 and T = T0 = 2πq.

Next we set T = T0 in the first equation of (7.8), integrate this equation using polar coordi-
nates, and impose the periodicity condition; we find

ρae
(α1 + iφ)T0 = ρa, with φ =

∫ 1

0

(
1 + ρ2

ae
2α1T0τ

)
dτ.

This implies α1 = 0 and (1 + ρ2
a)T0 = (1 + ρ2

a)2πq ∈ 2πZ; since ρ2
a must be close to β = p/q

we get (1 + ρ2
a)q = p + q and hence ρa = β1/2. We conclude that the continuation method

gives us a one-dimensional branch Cβ = {(β1/2, ρb) | ρb ∈ R, ρb > 0} of initial points which
generate (under the flow of (7.2) and the S1-symmetry) invariant tori on which the flow is
periodic, with constant period 2πq and constant winding numbers (p + q,−q). Such branch
exists for each strictly positive β ∈ Q.

It is interesting to draw the branches A, B and Cβ (β ∈ Q, β > 0) in a (H, F )-diagram (see
Fig. 1). First observe that the mapping (ρa, ρb) 7−→ (H, F ) := (ρ2

a − ρ2
b + 1

2
ρ4

a, ρ
2
a + ρ2

b) is
bijective from R+×R+ onto C := {(H, F ) ∈ R2 | F ≥ 0, −F ≤ H ≤ F + 1

2
F 2}. The branches

A and B of relative equilibria correspond to respectively {(H, F ) | F > 0, H = F + 1
2
F 2}

and {(H, F ) | F > 0, H = −F}; together with the equilibrium at the origin they form the
boundary of C. Each interior point of C corresponds to an invariant torus. The curves Cβ

(with β > 0) take the form {(H, F ) | F > β, H = −F + 2β + 1
2
β2}; the corresponding tori

are periodic if β is rational, and quasi-periodic if β is irrational.

Observe also that the branch Cβ (β > 0, β = p/q ∈ Q) has the boundary point (β1/2, 0)
on the branch A; this boundary point generates a relative equilibrium with minimal period
Tβ := 2π(1 + β)−1 = 2πq/(p + q). Since the minimal period 2πq along Cβ is an integer
multiple of Tβ we can consider Cβ as a branch of subharmonic solutions bifurcating from
the branch A at (β1/2, 0) (see also Fig. 1). Going into some further detail we see that the
monodromy matrix M at (β1/2, 0) (see case 1) has next to the eigenvalue 1 (with mg = 1
and ma = 2) also the pair of simple eigenvalues

e±iTβ = e±2πiq/(p + q) = e±2πip̂/q̂, with p̂ = q and q̂ = p + q;
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Figure 1: Branches of periodic orbits for the system (7.2); the branches Cβ are shown for
β = 1/2, β = 1 and β = 2. At the point N there is a 2-subharmonic bifurcation (period-
doubling), at both points © a 3-subharmonic bifurcation.

these multipliers (of the periodic orbit generated by (β1/2, 0)) are q̂-th roots of unity, and at
the same time q̂ is also equal to the quotient of the minimal period along Cβ (which is equal to
2πq = 2πp̂) and the minimal period Tβ = 2πp̂/q̂ at (β1/2, 0). So along the branch A we have
bifurcation of a branch of q̂-subharmonics precisely at those points where there is a pair of
multipliers which are q̂-th roots of unity; except for the fact that there is only a single branch
of bifurcating subharmonics this agrees with the general theory on subharmonic bifurcation
such as developed e.g. in [26] for the general case, and in [4] for the Hamiltonian case. The
discrepancy in the number of bifurcating branches is due to the symmetry; we refer to some
future work for a general treatment of subharmonic bifurcation in symmetric Hamiltonian
systems.

In the foregoing example we do not really need our continuation techniques to obtain the
different branches of periodic orbits: we could have obtained those directly and more easily
from the formula (7.3) for the solutions of (7.2); we nevertheless included a detailed analysis
because it clearly and explicitly illustrates certain aspects of our continuation method:

(i) The unfolding parameters αi (with i = 1, 2 in this example) are indeed zero along the
calculated solution branches.

(ii) When a relative equilibrium p0 generates a periodic orbit (as is the case in this example)
then p0 may be normal as a relative equilibrium while the corresponding periodic orbit
is not normal (see case 2). In such situation one can apply theorem 16 to continue the
periodic orbit.

(iii) One can parametrize by the period when mg = k (case 1), while there is isochrony
(constant period) when mg stays equal to k +1 along a branch (case 3). These are two
extremes of the more general situation where one will find mg = k along a branch, ex-
cept at isolated points where mg = k +1; these exceptional points typically correspond
to maxima and minima of the period.

(iv) Along the branch A we have ma = 2 = k + 1, and it is possible to parametrize this
branch by the value of either H or F , which illustrates proposition 8. This same pro-
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position is not applicable (and indeed the conclusion of the proposition is not true)
along the branches Cβ where ma = 4 = k + 2.

(v) The system we have considered here is an integrable Hamiltonian system with two
degrees of freedom. The branches Cβ (with β ∈ Q and β > 0) form an illustration of
what we have found in section 6 for such systems, namely one-dimensional curves of
invariant and periodic tori, with fixed winding numbers for the orbits.

(vi) The dimension k of W (and hence the number of unfolding parameters) depends on
the starting solution but stays constant along the continuation, at least as long as the
solution remains normal.

(vii) Although branches do not intersect (by the uniqueness part of our continuation results)
it may be that a given branch has a limit point on a different branch (e.g. each of the
Cβ branches limits on the A branch); the first branch can then be seen as a branch
of subharmonics bifurcating from the second branch. Such bifurcating branches of
subharmonics may be detected by monitoring the multipliers along a given branch,
more precisely by looking for multipliers which are roots of unity. This idea will be
used to explore the periodic orbits in the example of the next section.

(viii) Both branches A and B bifurcate from the equilibrium at the origin. The linearization
of (7.2) at the origin has the eigenvalues ±i; these eigenvalues are double and semisim-
ple. Hence we can not directly apply the Lyapunov Center Theorem, since this requires
simple purely imaginary eigenvalues — see [23]. However, a more detailed bifurcation
analysis using the S1-equivariance reveals that at least two branches of relative equi-
libria should bifurcate from the origin; along one of these branches the limiting value
of Ω (see 6.3) should be +1, along the other branch this limiting value should be −1.
It is clear that these branches are precisely the branches A and B, respectively.

8 Example 2

Keeping the same notation as in the foregoing section we consider the Hamiltonian

H(a, b) := ab̄ + āb − 1

2

(
bb̄
)2

, (8.1)

with corresponding Hamilton equations{
ȧ = ib,

ḃ = ia − i |b|2b.
(8.2)

This system forms a simplified version of a mean field approximation of a model of coupled
quantum wells; it represents the evolution of the charge accumulation in a two-site system
for which the electrostatic interaction is non-negligible in one of the sites (see [8] and [9] for
more details).

8.1 Branches of relative equilibria

As in our first example also here the function F (a, b) := |a|2+|b|2 is a first integral, generating
an S1-action which is given by (7.4) and which commutes with (8.2). This time it is no
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longer possible to write down explicitly the flow of (8.2), but we can still find some special
solutions, namely the equilibria and relative equilibria. The origin (a, b) = (0, 0) is the only
equilibrium of (8.2), and the linearization of (8.2) at this equilibrium has the double and
semisimple eigenvalues ±i. In a similar way as outlined in remark (viii) at the end of the
foregoing section one can show that at least two branches of relative equilibria bifurcate
from the origin, with limiting values of Ω equal to +1 and −1, respectively. To find these
branches explicitly we look for the equilibria of the system (6.1) which here takes the form{

ȧ = i(b − Ωa),

ḃ = i(a − Ωb) − i |b|2b,
(8.3)

with v = (a, b) ∈ C2. A nontrivial equilibrium (a, b) 6= (0, 0) of (8.3) must satisfy

b = Ωa and |b|2 = g(Ω) :=
1

Ω
− Ω, (8.4)

and hence such equilibria can only exist if g(Ω) > 0, i.e. if Ω belongs either to the interval
I− :=]−∞,−1[ or to the interval I+ :=]0, 1[ . Using the S1-symmetry we can without loss of
generality assume that b is real and strictly positive; then (8.4) gives us for each Ω ∈ I−∪ I+

a unique relative equilibrium

vΩ :=
√

g(Ω)

(
1

Ω
, 1

)
;

this relative equilibrium generates a periodic orbit of (8.2), given by

ΓΩ :=
{
ϕt

H(vΩ) | t ∈ R
}

=
{
eiΩtvΩ | t ∈ R

}
,

and with minimal period equal to TΩ = 2π/|Ω|. To determine the monodromy matrix MΩ

corresponding to this periodic orbit we use (6.4) and observe that XF is linear: XF (v) = iv
and ϕs

F (v) = exp(is)v for all s ∈ R. Hence DϕΩTΩ
F (vΩ) = exp(iΩTΩ)I = exp(±2πi)I = I

and (6.4) reduces to

MΩ = DϕTΩ
H (vΩ) = exp(TΩLΩ), with LΩ := DXH−ΩF (vΩ). (8.5)

We obtain the explicit form of LΩ from (8.3):

LΩ(a, b) =
(
i(b − Ωa), i(a − Ωb) − 2ig(Ω)b − ig(Ω)b̄

)
, ∀(a, b) ∈ C2.

Observe that LΩ coincides with the matrix L associated with the relative equilibrium vΩ, as
defined by (6.7). We know from lemma 15 that LΩ has the eigenvalue zero with algebraic
multiplicity at least equal to two, since k ≥ m = 1 and hence k + m ≥ 2. To determine the
other eigenvalues we use the fact that (4.5) implies LT

Ω = −JLΩJ−1; hence, if µ ∈ C is an
eigenvalue of LΩ then so is −µ. Therefore the characteristic polynomial of LΩ has the form
λ4 −µ2λ2, with ±µ the nontrivial eigenvalues of LΩ. A simple calculation (using the explicit
form of LΩ and splitting a and b into their real and imaginary part) gives

µ2 = −
(

Ω2 +
3

Ω2

)
=⇒ µ = ±i

√
Ω2 +

3

Ω2
.

It follows that the zero eigenvalue of LΩ has algebraic multiplicity equal to two; consequently
we must have k = 1, and the relative equilibrium vΩ is normal for all Ω ∈ I− ∪ I+ (see the
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discussion after (6.9)). Starting the continuation procedure of theorem 16 at vΩ0 will give
us the branch A+ := {vΩ | Ω ∈ I+} of relative equilibria if Ω0 ∈ I+, and the branch
A− := {vΩ | Ω ∈ I−} if Ω0 ∈ I−.

Going back to the monodromy matrix we see from (8.5) that MΩ has next to the eigenvalue 1
also the eigenvalues

exp (±2πiλ(Ω)) , with λ(Ω) :=

√
1 +

3

Ω4
. (8.6)

For Ω ∈ I− we have 1 < λ(Ω) < 2 and exp (±2πiλ(Ω)) 6= 1; it follows that the nontrivial
multipliers are simple, while the multiplier 1 has algebraic multiplicity ma = 2. From
proposition 5 and the fact that k = 1 at a relative equilibrium of (8.2) we conclude that for
Ω ∈ I− the periodic orbit ΓΩ is normal. Starting the continuation procedure of theorem 13
at any such relative equilibrium vΩ will give us again the full branch A− of relative equilibria.
For Ω ∈ I+ we have λ(Ω) > 2, and both nontrivial multipliers will be equal to 1 if λ(Ω) ∈ N;
for such Ω one can easily verify that mg = 3 > k + 1, and therefore the periodic orbit ΓΩ

will not be normal. Setting Ωm := ((m2 − 1)/3)−1/4 for m ≥ 3 we see that the branch A+

gets subdivided into a countable number of subbranches A
(m)
+ := {vΩ | Ωm+1 < Ω < Ωm}

(m ≥ 3) along which the periodic orbit ΓΩ is normal. Starting the continuation procedure

of theorem 13 at some vΩ with Ωm+1 < Ω < Ωm will give only the subbranch A
(m)
+ , while the

procedure of theorem 16 gives the full branch A+. This again illustrates remark (ii) at the
end of section 7.

It is interesting to depict the results so far in an (H, F )-diagram (see Fig. 2), obtained by
mapping points z = (a, b) ∈ C2 onto (H(z), F (z)) ∈ R2. In such diagram the branches A−
and A+ of relative equilibria get the form

A− = {(H(vΩ), F (vΩ)) | Ω ∈ I−} and A+ = {(H(vΩ), F (vΩ)) | Ω ∈ I+} , (8.7)

with the following explicit expressions for H(vΩ) and F (vΩ):

H(vΩ) =
1

2Ω2

(
3 + Ω2

) (
1 − Ω2

)
and F (vΩ) =

1

Ω3
− Ω. (8.8)

We have H(vΩ) < 0 for Ω ∈ I− and H(vΩ) > 0 for Ω ∈ I+; also (H(vΩ), F (vΩ)) → (0, 0) as
Ω → 1 or Ω → −1. The mapping Ω 7→ F (vΩ) is a diffeomorphism from I− onto ]0, +∞[ ,
and also from I+ onto ]0, +∞[ ; this allows us to parametrize the branches A− and A+ by
the value f of F (vΩ), as follows. For each f > 0 there exist unique elements Ω−(f) ∈ I−
and Ω+(f) ∈ I+ such that F (vΩ−(f)) = F (vΩ+(f)) = f ; setting h−(f) := H(vΩ−(f)) < 0 and
h+(f) := H(vΩ+(f)) > 0 (and h−(0) = h+(0) = 0) the branches A− and A+ obtain in the
(H, F )-plane the form

A− = {(h−(f), f) | f > 0} and A+ = {(h+(f), f) | f > 0} .

Moreover, we have that

(H(z), F (z)) ∈ R := {(h, f) | f ≥ 0, h−(f) ≤ h ≤ h+(f)} , ∀z ∈ C2. (8.9)

To prove (8.9) take some z ∈ C2 (z 6= 0), and let f := F (z). The continuous function
H : C2 → R maps the compact and connected subset F−1(f) = {z̃ ∈ C2 | F (z̃) = f}
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Figure 2: Branches of periodic orbits for the system (8.2). The labels along the branches of
relative equilibria indicate the value of λ(Ω) (see (8.6)).

of C2 onto a compact interval [α, β], and therefore α ≤ H(z) ≤ β. Let z− ∈ C2 be such
that F (z−) = f and H(z−) = α; then H attains at the point z− its minimum on F−1(f),
and hence we have ∇H(z−) = Ω∇F (z−) for some Ω ∈ R. It follows that z− is a relative
equilibrium for the Hamiltonian vector field XH , and therefore z− = eiθvΩ for some θ ∈ R

and some Ω ∈ I− ∪ I+. From f = F (z−) = F (vΩ) we get Ω = Ω−(f) or Ω = Ω+(f), and
then α = H(z−) = H(vΩ) = min {H(Ω−(f)), H(Ω+(f))} = min {h−(f), h+(f)} = h−(f). In
the same way one proves that β = h+(f), and (8.9) follows. In subsection 8.2 we will show
that for each point (h, f) in the interior of the region R the set

Th,f := {z ∈ C2 | (H(z), F (z)) = (h, f)} (8.10)

is a 2-torus invariant under the flows of XH and XF ; this same property also follows from
general considerations — see for example [5].

To obtain periodic solutions which do not correspond to relative equilibria we have to find
those (h, f) ∈ int(R) for which the flow on the torus Th,f is periodic; our discussion on
integrable systems in section 6 suggests that in (H, F )-space we should find one-dimensional
curves of points corresponding to periodic tori. One way to get a grip on such curves of
periodic tori is to look for subharmonic bifurcations from the branches of relative equilibria
— compare with remark (vii) at the end of section 7. A numerical study using AUTO indeed
detects lots of such subharmonic bifurcations, both from the branch A+ and from the branch
A−. Fixing one such bifurcation point (say on A+), switching branches and continuing the
subharmonic periodic orbit using the continuation scheme of theorem 13 (with k = 2, F1 = H
and F2 = F ) gives a one-dimensional curve in the (H, F )-diagram which terminates on a
relative equilibrium along the branch A− (see Fig. 2), i.e. numerically we find “bridges”
between the branches A− and A+ of relative equilibria.
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In the remainder of this section we will first work out a symmetry-reduction for the system
(8.2) and then use the reduced system to (a) prove the existence of invariant 2-tori, (b)
introduce the rotation number for such torus, (c) give a theoretical proof for the existence of
subharmonic bifurcations from the branches of relative equilibria, and (d) obtain a formula
relating the points on A− and A+ which are connected by a bridge.

8.2 The symmetry reduction, invariant tori and rotation numbers

Following Cushman and Bates [5] we define a mapping w : C2 → R3 by
w1 = w1(z) := i(ab̄ − āb),

w2 = w2(z) := ab̄ + āb,

w3 = w3(z) := aā − bb̄,

∀z = (a, b) ∈ C2; (8.11)

together with F (z) the scalar functions w1(z), w2(z) and w3(z) form a basis for the quadratic
invariants under the S1-action on C2. Observe that F (z) and w1(z)2+w2(z)2+w3(z)2 = F (z)2

are constants of motion for the system (8.2), which implies that in w-space all spheres around
the origin are flow-invariant. Using polar coordinates for the components a and b of z ∈ C2

we can rewrite (8.11) as

w(z) =
(
2ρaρb sin(β − α), 2ρaρb cos(β − α), ρ2

a − ρ2
b

)
, ∀z =

(
ρae

iα, ρbe
iβ
)
∈ C2. (8.12)

It follows from this formula that for each w̄ ∈ R3 \ {0} the inverse image w−1(w̄) = {z ∈
C2 | w(z) = w̄} is an S1-orbit in C2. Indeed, from

w̄3 = ρ2
a − ρ2

b and
√

w̄2
1 + w̄2

2 + w̄2
3 = ρ2

a + ρ2
b

we can uniquely determine ρa ≥ 0 and ρb ≥ 0, and the relations w1(z) = w̄1 and w2(z) = w̄2

then give us (β − α) modulo 2π (at least if ρa > 0 and ρb > 0 — one has to consider
separately the cases ρa = 0 or ρb = 0); this proves our claim. For later use we also write out
the explicit expression for w̃(Ω) := w (vΩ), namely

w̃(Ω) =

(
0 ,

2(1 − Ω2)

Ω2
,
(1 − Ω2)2

Ω3

)
, ∀Ω ∈ I− ∪ I+. (8.13)

Next we consider in more detail the flow on the sphere Sf := {w ∈ R3 | w2
1 + w2

2 + w2
3 = f 2}

with radius f > 0; an easy calculation shows that this flow takes the form
ẇ1 = 2w3 − 1

2
w2(f − w3),

ẇ2 = 1
2
w1(f − w3),

ẇ3 = −2w1,

or equivalently: ẇ = −2w ×∇wHf(w), (8.14)

with Hf : R3 → R given by

Hf (w) := w2 − 1
8
(f − w3)

2, ∀w = (w1, w2, w3) ∈ R3. (8.15)

Since Hf(w(z)) = H(z) for each z on the level set {z ∈ C2 | F (z) = f} it follows that the
restriction of Hf to the sphere Sf is a first integral for the flow on that sphere; this can also
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be seen directly from (8.14). The discussion in subsection 8.1 implies that for f > 0 and
h ∈ R the set Λh,f := {w ∈ Sf | Hf(w) = h} is nonempty if and only if h−(f) ≤ h ≤ h+(f),
i.e. if and only if (h, f) ∈ R. In Fig. 3 we depict (for a fixed value of f > 0 and a few
values of h between h−(f) and h+(f)) the projection of Λh,f onto the (w2, w3)-plane. The
sets Λh−(f),f and Λh+(f),f consist each of a single point, namely

Λh−(f),f = {w̃(Ω−(f))} = w(ΓΩ−(f)) and Λh+(f),f = {w̃(Ω+(f))} = w(ΓΩ+(f));

in these points the sphere Sf is tangent to the level sets {w ∈ R3 | Hf(w) = h−(f)}
and {w ∈ R3 | Hf (w) = h+(f)}, respectively. It follows that the points w̃(Ω−(f)) and
w̃(Ω+(f)) are the critical points of the restriction of Hf to Sf and the equilibria for the flow
on Sf ; these equilibria correspond to the relative equilibria of the original system (8.2). For
h−(f) < h < h+(f) the set Λh,f is a closed curve on Sf , invariant under the reduced flow
(8.14); as a consequence the set w−1(Λh,f) = {z ∈ C2 | F (z) = f and H(z) = h} = Th,f

is a 2-torus which is invariant under the flow (8.2) and under the S1-action. In order to
determine whether the flow on this torus is periodic or quasi-periodic we first introduce the
rotation number for this flow.

For each (h, f) ∈ int (R) the closed curve Λh,f forms a periodic orbit for the reduced system
(8.14), with minimal period τ(h, f) > 0; this means that for each point z ∈ Th,f we have

w
(
ϕ

τ(h,f)
H (z)

)
= w(z), which in turn implies that

ϕ
τ(h,f)
H (z) = ϕ

2πΘ(h,f)
F (z), ∀z ∈ Th,f , (8.16)

for some real number Θ(h, f) which is uniquely determined modulo 1. This number Θ(h, f)
is independent of the choice of the point z ∈ Th,f , as follows immediately from the fact that
ϕH and ϕF commute and that Th,f = {ϕt

H(ϕs
F (z)) | t, s ∈ R} for each z ∈ Th,f . We call

w2

w3

f

h=h+(f)h=h−(f)

Figure 3: The sets Λh,f projected onto the (w2, w3)-plane.

36



Θ(h, f) the rotation number of the flow on Th,f . The same argument also shows that
either all points on Th,f generate a periodic orbit of XH (all with the same period), or no
orbit on Th,f is closed (the quasi-periodic case). If the flow on Th,f is periodic then the
minimal period is necessarily an integer multiple of τ(h, f), say p τ(h, f) for some p ≥ 1. If
p = 1 then Θ(h, f) = 0 (mod Z) (this case seems not to appear in our example), if p > 1
then p Θ(h, f) ∈ Z, i.e.

Θ(h, f) =
q

p
(mod Z), with 0 < q < p and gcd(q, p) = 1. (8.17)

Conversely, if either Θ(h, f) = 0 (mod Z) or if (8.17) holds, then the flow on Th,f is periodic,
with minimal period equal to τ(h, f) in the first case and to p τ(h, f) in the second case. A
careful analysis shows that both τ(h, f) and Θ(h, f) depend smoothly on (h, f) ∈ int (R);
moreover, if (h0, f0) ∈ int (R) is such that the orbits on Tf0,h0 are periodic and normal, then
the continuation of one of these orbits using the approach of theorem 13 will result in a
smooth one-dimensional curve contained in the interior of R and such that each point on
this curve corresponds to a periodic torus and hence to a rational rotation number. It follows
that Θ(h, f) will be constant along such curve (compare with the analysis in subsection 6.2,
where we found constant winding numbers along curves of periodic orbits). In particular,
the rotation number should be constant along the bridges which we found numerically and
which are displayed in Fig. 2.

We conclude this subsection with the observation that the reduced system
ẇ1 = 2w3 −

1

2
w2

(√
w1

1 + w2
2 + w2

3 − w3

)
,

ẇ2 =
1

2
w1

(√
w1

1 + w2
2 + w2

3 − w3

)
,

ẇ3 = −2w1,

(8.18)

(obtained from (8.14) by replacing f by
√

w1
1 + w2

2 + w2
3 ) is also time-reversible, since it is

invariant under the transformation (w1, w2, w3, t) 7→ (−w1, w2, w3,−t). This is in agreement
with the fact that for each (h, f) ∈ int (R) the periodic orbit Λh,f of (8.18) has precisely two
intersection points with the symmetry plane w1 = 0; these two points are under the flow of
(8.18) precisely half a period (i.e. 1

2
τ(h, f)) away from each other.

8.3 Subharmonic bifurcations from the relative equilibria

In this subsection we show that a branch of subharmonic solutions bifurcates from the
branches A− and A+ of relative equilibria at points where the nontrivial multipliers are
roots of unity. The nontrivial multipliers of the relative equilibrium vΩ (with Ω ∈ I− ∪ I+)
are equal to exp(±2πiλ(Ω)), with λ(Ω) > 1 given by (8.6). Let Ω0 ∈ I− ∪ I+ be such that

λ(Ω0) =

√
1 +

3

Ω4
0

=
p

q
, with p, q ∈ N, 0 < q < p and gcd(p, q) = 1. (8.19)

Then we can expect at vΩ0 the bifurcation of so-called q-subharmonics, i.e. periodic orbits
near ΓΩ0 with minimal period near q TΩ0 = 2πq/|Ω0|. Due to the S1-symmetry each subhar-
monic solution generates a torus Th,f filled with subharmonic solutions, all with the same
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minimal period and related to each other by symmetry; the parameters (h, f) identifying
the torus must be close to (F (vΩ0), H(vΩ0)), the rotation number Θ(h, f) must be rational,
and the minimal period for the flow on the torus must be close to 2πq/|Ω0|. In order to
determine the bifurcating subharmonics we will first find the appropriate rotation number,
and then solve an equation such as (8.17) for (h, f) near (F (vΩ0), H(vΩ0)). Unfortunately, to
work this out we cannot use the obvious variables (h, f); indeed, the point (F (vΩ0), H(vΩ0))
is at the boundary of the region int(R) where the functions τ(h, f) and Θ(h, f) are defined,
and this makes it difficult to apply the implicit theorem to solve (8.17). Instead we will use
the variables (w2, w3), as follows.

As we have seen in subsection 8.2 each of the tori Th,f takes in w-space the form of a curve
Λh,f which has two intersection points with the plane w1 = 0; for relative equilibria the
curve Λh,f shrinks down to a point in the same plane. The idea is now to use the coordinates
(w2, w3) of these intersection points to parametrize the tori Th,f . Taking (8.15) into account
we consider the continuous mapping

(w2, w3) 7→ (H∗(w2, w3), F
∗(w2, w3)) :=

(
w2 −

1

8

(√
w2

2 + w2
3 − w3

)2

,
√

w2
2 + w2

3

)
(8.20)

which is smooth outside of the origin and maps the (w2, w3)-plane onto the region R in the
(h, f)-plane. The mapping (8.20) has a fold along the curve

A∗ :=

{
(w2, w3) | 4w3 = w2

(√
w2

2 + w2
3 − w3

)}
and maps the complement of this curve in a two-to-one way onto the interior of R; the
curve A∗ itself represents the equilibria of (8.18) and is mapped in a one-to-one way onto the
boundary of R. We can split A∗ as A∗ = A∗

− ∪ {(0, 0)} ∪ A∗
+, where A∗

− and A∗
+ represent

respectively A− and A+ in the (w2, w3)-plane (compare with (8.13)):

A∗
± = {(w̃2(Ω), w̃3(Ω)) | Ω ∈ I±} =

{(
2(1 − Ω2)

Ω2
,
(1 − Ω2)2

Ω3

)
| Ω ∈ I±

}
.

For each (w2, w3) ∈ R2 not on A∗ we set

τ ∗(w2, w3) := τ(F ∗(w2, w3), H
∗(w2, w3)) and Θ∗(w2, w3) := Θ(F ∗(w2, w3), H

∗(w2, w3));

τ ∗(w2, w3) is the minimal period of the periodic solution of (8.18) which starts at the point
(0, w2, w3), and a local analysis of (8.18) near its equilibria shows that τ ∗(w2, w3) can be
extended to a smooth function on R2\{(0, 0)}. The same then also holds true for the function
Θ∗(w2, w3). Next we will calculate τ ∗(w2, w3) and Θ∗(w2, w3) for (w2, w3) ∈ A− ∪ A+.

Fix some Ω0 ∈ I−∪I+; in order to determine τ ∗(w̃2(Ω0), w̃3(Ω0)) we set f = F (vΩ0) in (8.14)
and linearize this conservative and reversible system at its equilibrium w̃(Ω0); the resulting
matrix 

0 −1 − Ω2
0

Ω2
0

1 + Ω2
0

Ω2
0

1 − Ω2
0

Ω2
0

0 0

−2 0 0


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has eigenvalues µ = 0 and µ = ± i |Ω0| λ(Ω0) (with λ(Ω) given by (8.6)). We conclude that

τ ∗(w̃2(Ω0), w̃3(Ω0)) =
2π

|Ω0| λ(Ω0)
. (8.21)

Moreover, we have that ϕt
H(vΩ0) = ϕΩ0t

F (vΩ0), which gives us via (8.16) the rotation number

Θ∗(w̃2(Ω0), w̃3(Ω0)) =
Ω0

2π
τ ∗(w̃2(Ω0), w̃3(Ω0)) =

sgn Ω0

λ(Ω0)
(mod Z). (8.22)

Now let us fix some Ω0 ∈ I− ∪ I+ such that (8.19) holds; then

τ ∗(w̃2(Ω0), w̃3(Ω0)) =
2πq

p |Ω0|
and Θ∗(w̃2(Ω0), w̃3(Ω0)) = (sgn Ω0)

q

p
(mod Z). (8.23)

Bifurcating q-subharmonic solutions correspond to values (w2, w3) ∈ R2 \A∗ which are close
to (w̃2(Ω0), w̃3(Ω0), for which Θ∗(w2, w3) is rational, say Θ∗(w2, w3) = q̃/p̃ (mod Z) with
0 < q̃ < p̃ and gcd(p̃, q̃) = 1, and for which p̃ τ ∗(w2, w3) is close 2πq/|Ω0|. In view of (8.23)
and the continuity of τ ∗ and Θ∗ this implies p̃ = p and q̃ = (sgn Ω0) q (mod p); therefore we
will find all bifurcating q-subharmonics by solving the equation

Θ∗(w2, w3) = (sgn Ω0)
q

p
(8.24)

for (w2, w3) near (w̃2(Ω0), w̃3(Ω0). Differentiation of (8.22) shows that

d

dΩ
Θ∗(w̃2(Ω), w̃3(Ω))

Ω=Ω0

=
6 sgnΩ0

Ω5
0 λ(Ω0)3

6= 0;

it follows that D(w2,w3)Θ
∗(w̃2(Ω0), w̃3(Ω0)) ∈ L(R2; R) is surjective, and that the solution

set of (8.24) forms near (w̃2(Ω0), w̃3(Ω0) a smooth curve which is transversal to A∗ at the
same point. It is important to notice that the solutions (w2, w3) 6∈ A∗ of (8.24) come in
pairs; the two solutions of each such pair are related by the fact that they parametrize the
two intersection points of the same closed orbit Λh,f of (8.18) with the plane w1 = 0 (see
the remark at the end of the foregoing subsection). When we return to the (H, F )-plane
two such related solutions are mapped on the same point; as a consequence, the branch of
subharmonics which in (w2, w3)-space crosses A∗

− or A∗
+ at (w̃2(Ω0), w̃3(Ω0)) will be folded

onto a half branch bifurcating from A− or A+ at (H(vΩ0), F (vΩ0)). It is precisely these kind
of branches which we have obtained numerically and some of which are indicated on Fig. 2.

One may observe that the result which we have found here differs from the typical sub-
harmonic branching behaviour in Hamiltonian or reversible systems (see e.g. [4] and [24]),
where in general two branches of subharmonics bifurcate from branches of periodic orbits at
points where there are some multipliers which are roots of unity. The reason for the non-
typical behaviour of our example is the S1-symmetry; we hope to give in the near future a
more general treatment of subharmonic bifurcation in symmetric Hamiltonian or reversible
systems.

39



8.4 Relative equilibria connected by bridges

We finish our discussion of the example (8.2) by finding out which relative equilibria can
be connected by a bridge of subharmonics such as indicated in Fig. 2; we do not prove the
existence of such bridges, but assume their existence based on the numerical evidence. Let
Ω1, Ω2 ∈ I− ∪ I+ be such that

λ(Ωi) =
pi

qi

, with 0 < qi < pi and gcd(pi, qi) = 1, (i = 1, 2).

The branch of subharmonic solutions bifurcating from A− or A+ at vΩi
has rotation number

(see (8.23))

Θi =
sgn Ωi

λ(Ωi)
= (sgn Ωi)

qi

pi

, (i = 1, 2).

The two branches starting at respectively vΩ1 and vΩ2 can only be connected if Θ1 = Θ2

(mod Z). We see from (8.6) that 1 < λ(Ω) < 2 if Ω ∈ I−, and λ(Ω) > 2 if Ω ∈ I+; therefore
we have −1 < Θi < −1

2
if Ωi ∈ I−, and 0 < Θi < 1

2
if Ωi ∈ I+. It follows that no bridge

can exist between two different relative equilibria on A−, or between two different relative
equilibria on A+. If there is a bridge connecting vΩ1 ∈ A− to vΩ2 ∈ A+ then necessarily

−q1

p1
=

q2

p2
(mod Z) =⇒ −q1

p1
=

q2

p2
− 1 =⇒ p1 = p2 and q1 = p2 − q2, (8.25)

i.e. we must have that λ(Ω1) = λ(Ω2)/(λ(Ω2)−1). This shows that for each relative equilib-
rium on A+ where the nontrivial multipliers are roots of unity there exists a unique relative
equilibrium on A− such that both relative equilibria can be connected by a bridge of sub-
harmonics; our numerical results indicate that such bridge indeed exists. These numerical
results also confirm the rule (8.25) which relates connected relative equilibria (see Fig. 2).

At this point a natural topological question arises regarding the invariant tori along a sub-
harmonic bridge: how does the flow on these tori change as we move from one end of the
bridge to the other? Remember that the flow induces opposite orientations on the relative
equilibria at both ends of the bridge. Introducing appropriate angle coordinates one obtains
explicit formulae which verify the “−1”-jump in (8.25) and which explain the reversal of
the orientation; again the numerics confirm the analytical results. Details on this particular
aspect of the model will be given elsewhere (see [27]).

We finish this rather long discussion of the system (8.2) with the observation that in this
example, as in many others, numerical continuation techniques give us some very valuable
global information which nicely complements the analytical results which usually are only
local.

9 Discussion

Hamiltonian systems with symmetry arise abundantly when modeling the most diverse kind
of applications; understanding the structure of the periodic orbits and invariant tori of such
systems forms a first but indispensable step towards understanding the full system. We
believe that the continuation method elaborated in the foregoing sections can in many cases

40



help to unraffle the sometimes complicated branching behaviour of these periodic orbits;
together with local analytical results it can provide a kind of “skeleton” of the full system.
Moreover, the method is relatively easy to implement; in setting up the system there is no
need for special choices of coordinates, and all the required routines are provided by well
tested packages such as AUTO.

Beside the (more didactical) examples worked out in this paper we have applied the method
to a number of other systems; the results of these applications have or will be reported
elsewhere. First there is the mean field model for four coupled quantum wells (see [8] and
[9]). This is an 8-dimensional system which is both Hamiltonian and reversible and which has
an S1-symmetry; the example (8.2) discussed in Section 8 forms in fact a scaled down version
with only two coupled quantum wells. The method has also been applied extensively on two
particular instances of the 3-body problem (see [6] and [10]), namely the circular restricted
three-body problem and the continuation of the Chenciner-Montgomery solution [3] of the
3-body problem with equal masses when one of the masses is allowed to vary. Further models
on which the method has been tested successfully include the spring pendulum, the spherical
pendulum and the normal form system at a Hamiltonian Hopf bifurcation. The approach
can also be adapted to handle the Kepler problem which is an example of a superintegrable
system due to the fact that next to the linear and the angular momentum there is an
additional first integral, namely the Lagrange-Runge-Lenz vector.

While one can think of many more applications, also some further theoretical work remains
to be done. In particular, it would be nice to overcome the restriction to abelian symmetry
groups in the continuation results for relative equilibria as given in subsection 6.1; recent
discussions with Juan-Pablo Ortega and James Montaldi give us some hope that this is
indeed possible.
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Almaraz, E. Freire, and J. Galán was also supported by DGYCIT (DGES PB98-1152) and
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