2014年度

線型代数学演習A

No.11 要約

2014年7月7日実施

1 置換.

Sを集合とするとき, S上の全単射 $\sigma:S \longrightarrow S$ を S上の**置換**という. 以下では, n を 正整数とし, 集合 S として, 1 から n までの整数全体のなす集合 Ω_n を考えることにする.

$$\Omega_n = \{1, 2, \dots, n\}.$$

 Ω_n 上の置換を n 次の置換と呼ぶことにする. σ を n 次の置換とすると, $1 \le j \le n$ なる整数 j は $\sigma(j)$ に写る. このことを, 以下のように表す.

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}.$$

この表示の方法は (2,n) 行列と同じ形をしているが, 全く別物である ことに注意しておく. なお, この表示は j の下に $\sigma(j)$ があることが本質であるから, それを守る限り横の順序は変えてもよい.

 σ, τ を n 次の置換とする. σ, τ はともに Ω_n 上の全単射だから、その合成写像 $\tau \circ \sigma$ も Ω_n 上の全単射である. この $\tau \circ \sigma$ を τ, σ の積と呼び、 $\tau \sigma$ と表す. 即ち、 $1 \leq j \leq n$ なる任意の整数 j について、 $\tau \sigma(j) = \tau(\sigma(j))$ である. また、 Ω_n 上の恒等写像は明らかに全単射であるから n 次の置換である. この置換を恒等置換と呼び、単に Ω_n と表すことにする.

$$1_n = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}.$$

さらに, n 次の置換 σ について, σ は Ω_n 上の全単射だから, その逆写像 σ^{-1} が存在し, σ^{-1} も Ω_n 上の全単射だから n 次の置換である. この σ^{-1} を σ の逆置換と呼ぶ.

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$
は対して,
$$\sigma^{-1} = \begin{pmatrix} \sigma(1) & \sigma(2) & \cdots & \sigma(n) \\ 1 & 2 & \cdots & n \end{pmatrix}.$$

n次の置換全体のなす集合を S_n と表し, S_n における乗法を置換の積で与えるとする. すると, S_n は以下の性質をみたす.

- (1) $(\rho \tau) \sigma = \rho(\tau \sigma)$.
- (2) $\sigma 1_n = 1_n \sigma = \sigma$.
- (3) $\sigma \sigma^{-1} = \sigma^{-1} \sigma = 1_n$.

このような性質をもつ集合を群と呼ぶ. S_n は n 次対称群と呼ばれる. n 次の置換 σ につい

て、列 $\sigma(1), \sigma(2), \ldots, \sigma(n)$ は $1, 2, \ldots, n$ の順列になっている。逆に、 $1, 2, \ldots, n$ の順列は n 次の置換を与える。よって、 S_n の濃度は $\sharp S_n = n!$ である。

 Ω_n の相異なる元 j_1, j_2, \ldots, j_r が存在し、 $\sigma(j_1) = j_2, \sigma(j_2) = j_3, \ldots, \sigma(j_{r-1}) = j_r, \sigma(j_r) = j_1, \sigma(k) = k \ (k \neq j_1, j_2, \ldots, j_r)$ となる n 次の置換を巡回置換と呼び、r をその長さと呼ぶ、長さ 1 の巡回置換は恒等置換である、巡回置換はしばしば (j_1, j_2, \ldots, j_r) と表される、 $r \geq 2$ とし、 σ を長さ r の巡回置換とすると、 $\sigma^r = 1_n$ 、 $\sigma^l \neq 1_n \ (1 \leq l \leq r-1)$ である、恒等置換でない n 次の置換は、実際に動かす元を共通にもたない巡回置換の積で表される。

長さ2の巡回置換は**互換**と呼ばれる. 実際に動かす元をa,bとすると, 互換は(a,b)と表される. 巡回置換と互換には次の関係がある.

- $2 \le r \le n$ とするとき、長さ r の n 次の巡回置換 $\sigma = (j_1, j_2, \ldots, j_r)$ について、 $(j_1, j_2, \ldots, j_r) = (j_1, j_r)(j_1, j_{r-1}) \cdots (j_1, j_2)$ が成り立つ. 恒等置換でない任意の n 次の置換が巡回置換の積で表されることと組み合わせると、次のことが得られる.
 - 任意のn次の置換は高々n-1個の互換の積で表わされる. ただし, 恒等置換は互換の0個の積と考える.

2 符号函数.

n を $n \ge 2$ なる整数とし、n 個の変数 X_1, X_2, \ldots, X_n を考える. 次で与えられる $\frac{n(n-1)}{2}$ 次多項式 D を X_1, X_2, \ldots, X_n の差積と呼ぶ.

$$D = D(X_1, X_2, \dots, X_n) = \prod_{1 \le j < k \le n} (X_j - X_k).$$

n=1 のときは $D=D(X_1)=1$ とする. n 次の置換 σ について、差積 D の各因子 X_j-X_k の添え字 j,k をそれぞれ $\sigma(j),\sigma(k)$ に変えたものを σD と表す.

$$\sigma D = \prod_{1 \le j < k \le n} (X_{\sigma(j)} - X_{\sigma(k)}).$$

すると, σD は D または -D のいずれかになる. $\sigma D = D$, -D なる置換 σ をそれぞれ偶置換, 奇置換と呼ぶ. 任意の互換は奇置換である. また, S_n 上の函数 $\operatorname{sgn}: S_n \longrightarrow \{\pm 1\}$ を, σ が偶置換のとき 1, 奇置換のとき -1 と定義する. この sgn を符号函数と呼ぶ. このとき, 任意の n 次の置換 σ について $\operatorname{sgn}\sigma = \frac{\sigma D}{D}$ が成り立つ. sgn には次の性質がある.

• $\operatorname{sgn}(\tau\sigma) = (\operatorname{sgn}\tau)(\operatorname{sgn}\sigma).$ 明らかに $\operatorname{sgn} 1_n = 1$ だから, $\operatorname{sgn}(\sigma^{-1}) = (\operatorname{sgn}\sigma)^{-1} = \operatorname{sgn}\sigma$ が成り立つ.

 $n \geq 2$ のとき, n 次の偶置換全体のなす集合を A_n で表し, n 次交代群と呼ぶ. 二つの n 次の偶置換の積はまた偶置換であり, 偶置換の逆置換も偶置換になる. さらに, 恒等置換は偶置換である. よって, A_n も群になる. 偶置換と奇置換の積は奇置換であり, 奇置換と奇置換の積は偶置換である. 互換は奇置換であることから, A_n の濃度は $\sharp A_n = \frac{n!}{2}$ である.