2014年度

線型代数学演習A

No.1 問題

2014年4月21日実施

- $\boxed{1}$ (1) $z^8 = \frac{-1-\sqrt{3}i}{2}$ をみたす複素数 z で、偏角が最小の正実数であるものを求めよ.
 - (2) $z^8 = -8 8\sqrt{3}i$ をみたす複素数 z をすべて求めよ.
- ②(1) n を正整数, a_0, a_2, \ldots, a_{2n} を実数, $a_1, a_3, \ldots, a_{2n+1}$ を純虚数とし, $f(z) = \sum_{k=0}^{2n+1} a_k z^k$ とする. いま, 複素数 α について, $f(\alpha) = 0$ が成り立つとする. このとき, $f(-\overline{\alpha}) = 0$ も成り立つことを示せ.
 - (2) z を変数とし、偶数次の係数が実数、奇数次の係数が純虚数である零多項式でない多項式 f(z) で、f(1+i)=f(3i)=0 が成り立ち、次数が最小なものを考える。そのようなもののうち、それが偶数次多項式であれば最高次の係数が i であるものを求めよ。
- ③ 複素数 z について、z の実部、虚部をそれぞれ $\operatorname{Re} z$ 、 $\operatorname{Im} z$ と表すことにする.即ち、 z=x+yi (x,y) は実数)であるとき、 $\operatorname{Re} z=x$ 、 $\operatorname{Im} z=y$ である.
 - (1) 相異なる複素数 z_1, z_2 について、複素平面内で z_1, z_2 を通る直線 l の方程式は次で与えられる (このことは証明しなくてよい).

$$(\overline{z}_2 - \overline{z}_1)(z - z_1) - (z_2 - z_1)(\overline{z} - \overline{z}_1) = 0.$$

いま, $\operatorname{Im} z_1 > 0$, かつ $\operatorname{Im} z_2 < 0$ とする. このとき, 直線 l と実軸の交点である実数 a を, $\operatorname{Im} z_1$, $\operatorname{Im} z_2$, および $\operatorname{Im} z_1 \overline{z}_2$ を用いて表せ.

(2) z_1, z_2 を小問 (1) の仮定に加えて $|z_1|=1$ が成り立つものとし、さらに小問 (1) における a は |a|<1 をみたすとする。いま、 $|z_1-a|\cdot|z_2-a|=1-a^2$ が成り立つとする。このとき、 $|z_2|=1$ であることを、初等幾何 (円周角、三角形の相似等) を用いずに示せ。なお、 $0<\arg w_1<\pi<\arg w_2<2\pi$ なる複素数 w_1,w_2 および 0 が複素平面において同一直線上にあるとき、 $\arg w_2=\arg w_1+\pi$ であることは証明なしで用いてよい。(ヒント: $(z_1-a)(\overline{z_2}-a)$ がどのような値になるか考えよ。)