2014年度

線型代数学演習A

No 8 例題

2014年6月16日実施

|1| 以下の \mathbb{C}^3 の部分集合 $S \subset \mathbb{C}^3$ が部分ベクトル空間であるか、根拠を添えて述べよ.

(1)
$$S = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{C}^3 \; ; \; \frac{3x_1 - 2x_2 + 5x_3 = 0}{x_1 + 3x_2 - 4x_3 = 0} \right\}.$$
(2) $S = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{C}^3 \; ; \; x_1^2 - x_2^2 + x_3^2 = 0 \right\}.$

(2)
$$S = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{C}^3 \; ; \; x_1^2 - x_2^2 + x_3^2 = 0 \right\}.$$

(略解) (1)
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $A = \begin{pmatrix} 3 & -2 & 5 \\ 1 & 3 & -4 \end{pmatrix}$ とおく、そして, $f: \mathbb{C}^3 \longrightarrow \mathbb{C}^2$ を $f(\boldsymbol{x}) = 0$

Ax $(x \in \mathbb{C}^3)$ とする. すると, f は線型写像であり, $S = \{x \in \mathbb{C}^3 ; f(x) = Ax = 0\}$, 即ち、 $S \subset \mathbb{C}^3$ は線型写像 f の核 $\operatorname{Ker} f$ である. ゆえに、S は \mathbb{C}^3 の部分ベクトル空間で ある. 実際, $f(\mathbf{0}) = A\mathbf{0} = \mathbf{0}$ であるから $\mathbf{0} \in \operatorname{Ker} f = S$ であり, $\mathbf{x}, \mathbf{x}' \in S$, $\alpha \in \mathbb{C}$ とす ると、 $S = \operatorname{Ker} f$ より f(x) = f(x') = 0 となり、

$$f(x + x') = f(x) + f(x') = 0 + 0 = 0,$$

$$f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) = \alpha \mathbf{0} = \mathbf{0}.$$

ゆえに, x + x', $\alpha x \in \text{Ker} f = S$ であることがわかる.

(2)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{x'} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ とする. すると, $1^2 - 1^2 + 0^2 = 1 - 1 + 0 = 0$, $0^2 - 1^2 + 1^2 = 0$

$$0-1+1=0$$
 であるから、 $m{x},m{x}'\in S$ である. ここで、 $m{x}+m{x}'=egin{pmatrix}1\\2\\1\end{pmatrix}$ であるが、 $1^2-2^2+1^2=1-4+1=-2\neq 0$ であるから、 $m{x}+m{x}'
ot\in S$.従って、 S は \mathbb{C}^3 の部分べ

クトル空間ではない.

|2| $v_1, v_2, v_3, v_4 \in \mathbb{C}^4$ を以下で与えられる 4 次複素数ベクトルとする.

$$\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 0 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \boldsymbol{v}_3 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{v}_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$

1

そして, $U_1 = \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle$, $U_2 = \langle \boldsymbol{v}_3, \boldsymbol{v}_4 \rangle \subset \mathbb{C}^4$ を, それぞれ \boldsymbol{v}_1 と \boldsymbol{v}_2 , \boldsymbol{v}_3 と \boldsymbol{v}_4 で生成され た \mathbb{C}^4 の部分ベクトル空間とする.

- (1) $U_1 \geq U_2$ の共通部分 $U_1 \cap U_2$ の基底を 1 組与えよ.
- (2) (1) で与えられる $U_1 \cap U_2$ の基底に適当なベクトルを付け加えて, $U_1 \geq U_2$ の和空間 $U_1 + U_2$ の基底を 1 組構成せよ.

(略解) (1)
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in U_1 \cap U_2$$
とすると、 $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{C}$ が存在して、 $\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_1 + \alpha_3 \boldsymbol{v}_2 \boldsymbol{v}_3$

$$lpha_2 oldsymbol{v}_2 = lpha_3 oldsymbol{v}_3 + lpha_4 oldsymbol{v}_4$$
 と表される. すると, $egin{pmatrix} lpha_1 \ -lpha_2 \ -2lpha_1 \ lpha_2 \end{pmatrix} = egin{pmatrix} lpha_3 \ -2lpha_3 \ lpha_4 \ -lpha_4 \end{pmatrix}$ が成り立つから,

$$2\alpha_1=\alpha_2=2\alpha_3=-\alpha_4$$
 となる. そこで, $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=(t,2t,t,-2t)$ $(t\in\mathbb{C})$ とする

と、
$$m{x}=egin{pmatrix} t \\ -2t \\ -2t \\ 2t \end{pmatrix}$$
 であり、 $m{x}=tm{v}_1+2tm{v}_2\in U_1$ 、かつ $m{x}=tm{v}_3-2tm{v}_4\in U_2$ であるから、

$$m{x} \in U_1 \cap U_2$$
 である. 従って, $U_1 \cap U_2$ の基底として $\left\{ \begin{pmatrix} 1 \\ -2 \\ -2 \\ 2 \end{pmatrix} \right\}$ をとることができる.

(2) v_1 , v_2 は一次独立であるから $\dim U_1 = 2$ であり, v_3 , v_4 も一次独立であるから

$$\dim U_2=2$$
 である. いま, $m{v}_0=egin{pmatrix}1\\-2\\-2\\2\end{pmatrix}$ とすると, (1) より $\{m{v}_0\}$ は $U_1\cap U_2$ の基底で

ある. 特に、 $v_0 \in U_1$ であり、 v_0 、 v_1 は一次独立であるから、 $\{v_0, v_1\} \subset U_1$ は U_1 の基底である。同様にして、 $v_0 \in U_2$ であり、 v_0 、 v_3 は一次独立であるから、 $\{v_0, v_3\} \subset U_2$ は U_2 の基底である。ところで、 $x \in U_1 + U_2$ について、 $x_1 \in U_1$ 、 $x_2 \in U_2$ が存在して、 $x = x_1 + x_2$ と表される。 $\{v_0, v_1\}$ 、 $\{v_0, v_3\}$ はそれぞれ U_1 , U_2 の基底であるから、 β , β' 、 γ , $\gamma' \in \mathbb{C}$ が存在して、 $x_1 = \beta v_0 + \beta' v_1$ 、 $x_2 = \gamma v_0 + \gamma' v_3$ と表される。よって、 $x = (\beta + \gamma)v_0 + \beta' v_1 + \gamma' v_3$ となり、 $\{v_0, v_1, v_3\}$ は $U_1 + U_2$ を生成する。次に、 α , β , $\gamma \in \mathbb{C}$, かつ $\alpha v_0 + \beta v_1 + \gamma v_3 = \mathbf{0}$ とすると、 $\alpha v_0 + \beta v_1 = -\gamma v_3 \in U_1 \cap U_2$ である。ここで、 $\{v_0\}$ は $U_1 \cap U_2$ の基底であるから、 $\delta \in \mathbb{C}$ が存在して、 $\alpha v_0 + \beta v_1 = \delta v_0 = \delta v_0 + 0 v_1$ である。そして、 $\{v_0, v_1\}$ は U_1 の基底であるから、 $\alpha = \delta$ 、 $\beta = 0$ が成り立つ。よって、 $\alpha v_0 + 0 v_3 = \alpha v_0 = -\gamma v_3 = 0 v_0 - \gamma v_3$ であり、 $\{v_0, v_3\}$ は U_2 の基底であるから、 $\alpha = \gamma = 0$.従って、 v_0 , v_1 , v_3 は一次独立である.以上により、 $\{v_0, v_1, v_3\}$ は $U_1 + U_2$ の基底である.