2013年度

線型代数学演習A

No.6 問題

2013年5月20日実施

- \bigcirc 記号: $i = \sqrt{-1} \in \mathbb{C}$ で虚数単位を表す.
- 〇 記号: n を正整数とするとき, n 次複素正方行列全体のなすベクトル空間を $M(n,\mathbb{C})$ と表すことにする.
- ① $V = \{a_3x^2 + a_2x^2 + a_1x + a_0; a_0, a_1, a_2, a_3 \in \mathbb{C}\}$ を高々3 次複素係数一変数多項式全体のなす \mathbb{C} 上のベクトル空間とし、 $T: V \longrightarrow V$ を次で与えられる線型写像とする.

$$Tf(x) = x(f(x+1) - f(x-1)) - 3f(1)x.$$

このTについて,Vの以下の基底 $\{f_0, f_1, f_2, f_3\}$ に関する行列表示を求めよ.

- (1) $f_0(x) = 1$ (定数項のみの多項式), $f_1(x) = x, f_2(x) = x^2, f_3(x) = x^3$.
- (2) $f_0(x) = 3x 1, f_1(x) = x, f_2(x) = x^2 x, f_3(x) = x^3 + 4x^2 3x.$
- ② $V=\mathbb{C}^3, \ A=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ とし、線型写像 $f:V\longrightarrow V$ を $f(\boldsymbol{x})=A\boldsymbol{x}$ $(\boldsymbol{x}\in V=\mathbb{C}^3)$ で与えられるものとする.そして、 $\boldsymbol{e}_j\in\mathbb{C}^3$ (j=1,2,3) を、それぞれ第 j 成分が 1、それ以外の成分が 0 である基本ベクトルとする.このとき、以下のベクトル $\boldsymbol{v}_1,\ \boldsymbol{v}_2,\ \boldsymbol{v}_3\in V=\mathbb{C}^3$ について、基底 $\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}$ に関する f の行列表示を求めよ.
 - (1) $v_1 = e_1 ie_2$, $v_2 = e_1 + ie_3$, $v_3 = e_1 e_2 e_3$.
 - (2) $v_1 = e_2 e_3$, $v_2 = 2e_1 e_2 e_3$, $v_3 = e_1 + e_2 + e_3$.
- ③ $V=M(2,\mathbb{C})$ とし、 $A=\begin{pmatrix}1&-1\\1&1\end{pmatrix}$ 、 $B=\begin{pmatrix}-1&-1\\1&-1\end{pmatrix}$ とする.いま、V 上の線型写像 $\Phi:V\longrightarrow V$ を $\Phi(X)=AXB$ $(X\in V=M(2,\mathbb{C}))$ で与える.
 - $\Phi:V\longrightarrow V$ を $\Phi(X)=AXB$ $(\stackrel{.}{X}\in V=\stackrel{.}{M}(2,\mathbb{C}))$ で与える. $(1) \quad X_1=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ X_2=\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \ X_3=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ X_4=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ とするとき, $\{X_1,X_2,X_3,X_4\}\subset V=M(2,\mathbb{C})$ が V の基底であることを示せ.
 - (2) $\{X_1, X_2, X_3, X_4\}$ に関する Φ の行列表示を求めよ.