2013年度

* 0 * 0 * 0 * 0 * 数学基礎演習 [* 0 * 0 * 0 *

No. 9 2013年6月27日実施

- **1** 実数の列による集合 $l^\infty=\{(x_n)_{n=0}^\infty|\sup_n(|x_n|)<+\infty\}$ を考える.この集合 l^∞ は, $d((x_n),(y_n))=\sup_n(|x_n-y_n|)$ によって距離空間になる. l^∞ の原点 O を, $O=(0)_{n=0}^\infty\in l^\infty$ とする.このとき,球面の類似である有界集合 $S=\{x\in l^\infty\,|\,d(x,O)=1\}$ が考えられるが、この S は全有界にはならないことを示せ.
- ② V,W を体 K 上の有限次元ベクトル空間, $\varphi:V\longrightarrow W$ を線形写像とする. $V^*:=\{f:V\longrightarrow K\mid f$ は線形写像 $\},W^*:=\{g:W\longrightarrow K\mid g$ は線形写像 $\}$ をそれぞれ V,W の双対空間とし, $^t\varphi:W^*\longrightarrow V^*$ を φ の双対写像とする $(^t\varphi$ は, $g\in W^*$ に $g\circ\varphi\in V^*$ を対応させる線形写像である). このとき, φ が単射であることと, $^t\varphi$ が全射であることは同値であることを示せ.
- ③ 次の \mathbb{R}^3 上のベクトル場X, Y について, X, Y がスカラーポテンシャルを持つかそうでないかを理由をつけて答えよ。また、スカラーポテンシャルを持つ場合には、それを一つ構成せよ。ここで, \mathbb{R}^3 上の函数f がベクトル場Z のスカラーポテンシャルであるとは、 $\operatorname{grad} f = Z$ となることを言う。

$$X(x,y,z) = (y^3 + 4x^3z, 2z^5 + 3xy^2, x^4 + 10yz^4),$$

$$Y(x,y,z) = (yz^2, zx^2, xy^2).$$