2013年度

* 0 * 0 * 0 * 数学基礎演習 [* 0 * 0 * 0 *

No. 7 2013年6月6日実施

- $\boxed{1}$ (1) $\{a_i \in \mathbb{R}^{n+1} \mid 1 \leq i \leq n+1\}$ を一次独立な n+1 個のベクトルの集合とする. 各 i にたいして、n 次元球面 S^n の二つの部分集合 $U_i^\pm=\{x\in S^n\mid \pm\langle a_i,x\rangle>0\}$ が 定義される。ここで、 $\langle \cdot, \cdot \rangle$ は \mathbb{R}^{n+1} 上の標準的な内積を意味する。このとき、これら 2(n+1) 個の集合の族 $\{U_i^{\pm} \mid 1 \le i \le n+1\}$ は S^n の開被覆になることを示せ. (2) $\{p(U_i^+) \mid 1 \leq i \leq n+1\}$ は P^n の開被覆になることを示せ. ただし, $p:S^n \longrightarrow P^n$ は標準的な商写像、即ち、 S^n 上の同値関係「 $x \sim y \iff y = \pm x$ 」に関する商空間 として P^n を定義したときの商写像とする.
- $\boxed{\bf 3}$ \mathbb{R}^2 上の滑らかなベクトル場 X と実数 $\alpha>1$ が, すべての $p\in\mathbb{R}^2$ に対して, 以下をみ たしているとする.

$$(\|p\|^{\alpha} + 1) \cdot \|X(p)\| \le 1.$$

ここで、||p|| はユークリッドノルムを表すとする. $C_r = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}$ (r>0) とするとき、X の C_r 上の線積分について、次が成り立つことを示せ、ただし、 C_r 上では正の向きに積分するものとする.

$$\lim_{r \to \infty} \int_{C_r} X \cdot dl = 0.$$