離散凸解析の理論とアルゴリズム

塩浦 昭義

(東北大学 大学院情報科学研究科)

簡単な自己紹介

□経歴

- 1989-1997 東京工業大学 理学部 情報科学科(数理・計算科学専攻)
- 1998 博士学位取得 論文題目 "Convexity and Well-Solvability in Combinatorial Optimization"

指導教官:小島政和(東工大),室田一雄(京大数研(当時))

- 1997-2001 上智大学 理工学部 機械工学科 助手
- 2001-現在 東北大学 大学院情報科学研究科 准教授

□専門

- 数理計画, 組合せ最適化, オペレーションズ・リサーチ
- アルゴリズム理論, 計算理論, 組合せ論

発表の流れ

- □離散凸解析の概要
- □ 基本概念(M凸関数, L凸関数)の定義
- □ M凸関数, L凸関数の性質
- □ M凸性, L凸性の一般化
- □(アルゴリズム)
- □幾何への応用

離散凸解析の概要

最適化問題(数理計画問題)

□ 与えられた解集合Sから 与えられた関数 f を最小化(最大化)する解を求める

Minimize (Maximize) f(x) subject to x∈S

Sが実数ベクトル集合→連続最適化

Sが整数ベクトル集合、離散的な集合

→離散最適化

最適化問題の例

□連続最適化問題の例

Minimize
$$x^3-3xy$$
 subject to $2x^2+(y-4)^2\leq 5$ $-3\leq x\leq 1,\ 1\leq y\leq 2$ $x,y\in \mathbf{R}$

□離散最適化問題の例

$$\begin{array}{ll} \text{Minimize} & 2x+3y+5z\\ \text{subject to} & 4x+y+7z \geq 9\\ & x,y,z \in \{0,1\} \end{array}$$

最適化問題と凸性

解きやすい

凸2次計画 半正定値計画 2次錐計画 凸計画

線形計画

最小全域木問題 最短路問題 最大流問題 最小費用流問題

離散最適化

凹関数最小化 DC計画 非凸計画 ナップサック問題 安定集合問題 巡回セールスマン問題 2次割当問題

解きにくい

連続最適化

最適化問題と凸性

「凸解析」統一的な枠組

連続最適化

共通する良い構造 「凸性」

四計画

線形計画 凸2次計画 半正定値計画 2次錘計画

凹関数最小化 DC計画 非凸計画

解きやすい

最小全域木問題 最短路問題 最大流問題 最小費用流問題

ナップサック問題 安定集合問題 巡回セールスマン問題 2次割当問題

解きにくい

離散最適化

最適化問題と凸性

線形計画

凸2次計画

2次錘計画

解きや「プ

、共通する良い構造 「マトロイド+凸性?」

最小全域木問題

最短路問題

最大流問題

最小費用流問題

連続最適化

凹関数最小化

半正定值計画

DC計画

凸計画

非凸計画

ナップサック問題

安定集合問題

巡回セールスマン問題

2次割当問題

解きにくい

離散最適化

存統

的

組

たは

在

離散凸解析の目指すところ

解きやすい離散最適化問題 (貪欲に解ける, 多項式時間で解ける)

共通する構造:離散凸性

組合せ論からの視点マトロイド理論

統一的枠組

解析的な視点の解析

離散凸解析

離散凸解析の目指すところ

- □離散凸解析の目標
 - ■「離散凸」にふさわしい概念を見いだす
 - □(ポリ)マトロイド →交換公理 →M凸性
- □劣モジュラ集合関数→劣モジュラ性→L凸性
- ■通常の凸解析における諸定理の離散版を確立する
 - □最小性基準. 共役性. 双対定理. など
- ■離散最適化のアルゴリズムを体系的に構成する
 - □関数最小化アルゴリズムなど
- 様々な分野への応用を広げる
 - □ オペレーションズ・リサーチ(在庫管理, スケジューリング), 制御, ゲーム理論,組合せオークション,数理経済,数学

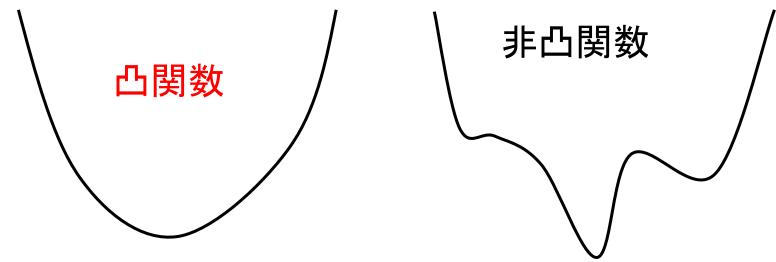
離散凸解析の歴史

```
1935 マトロイド Whitney, 中澤
1965 劣モジュラ関数, ポリマトロイド Edmonds
1975 マトロイドの応用 伊理, 富澤, Recski
1983 劣モジュラ関数と凸性 Lovász, Frank, 藤重
1992 付値マトロイド Dress, Wenzel
1996 離散凸解析の提唱, M凸/L凸性 室田
1996-2000 M凸/L凸性の拡張 室田, 塩浦, 藤重
```

M凸関数とL凸関数の定義

凸関数

定義: f: Rⁿ→RU{+∞} が凸関数



等価な定義: f のエピグラフ

epi f = $\{(x, \alpha) \mid \alpha \ge f(x)\}$ が凸集合

連続最適化における凸関数の意義

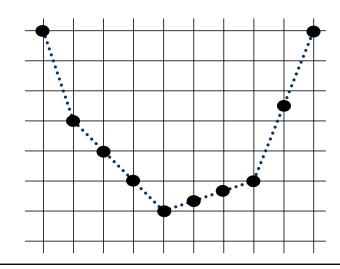
- □局所最適性=大域的最適性
 - →降下アルゴリズム
- □ 双対定理, 分離定理
 - →主双対アルゴリズム, 感度分析

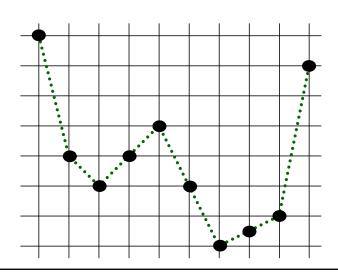
目的関数が凸関数、集合が凸集合

→ 連続最適化問題は「解きやすい」

離散最適化における「凸性」とは?

- □ f: Zⁿ→Rに対する「凸性」
- □望ましい性質
 - ■問題が「離散凸性」をもつ→問題が「解きやすい」
 - ■普通の凸関数への拡張可能性
 - ■局所最適性=大域的最適性
 - 双対定理, 分離定理



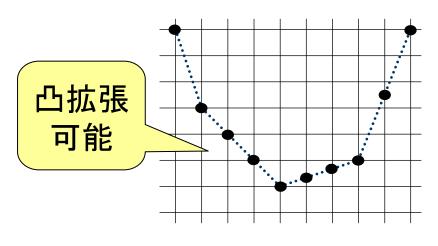


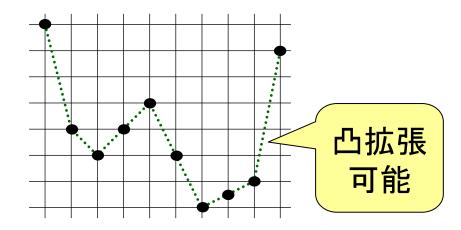
凸拡張可能性と離散凸性

□ 定義:

f: Zⁿ→R が凸拡張可能

lacktrl





1次元の場合:これで十分

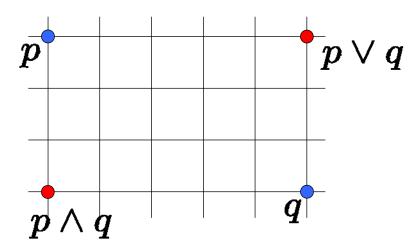
2次元以上の場合: 凸拡張可能性だけでは良い性質が得られない

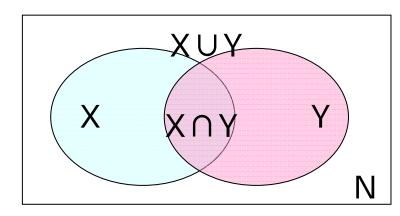
→ 離散数学の成果を利用

劣モジュラ関数

□ g: Zⁿ→R が劣モジュラ

$$g(p) + g(q) \ge g(p \lor q) + g(p \land q)$$





集合関数 $\rho: 2^N \to \mathbf{R}$ が劣モジュラ $\rho(X) + \rho(Y) \ge \rho(X \cup Y) + \rho(X \cap Y)$

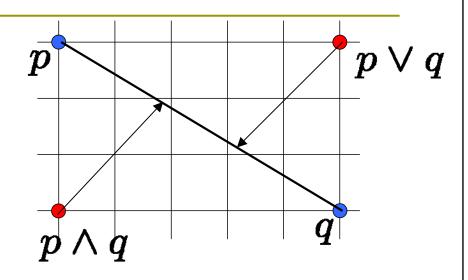
劣モジュラ集合関数と離散凸性

集合関数 $\rho: 2^N \to \mathbf{R}$ が劣モジュラ $\rho(X) + \rho(Y) \ge \rho(X \cup Y) + \rho(X \cap Y)$

- □最小化/最大化アルゴリズム
 - 最小化は効率的に解ける。 最大化は計算困難
- □ 凸拡張可能 (Lovász)
 - 集合関数が劣モジュラ←→Lovász拡張が凸関数
- □双対定理,分離定理 (Edmonds, Frank, 藤重)

L凸関数の定義

g: Zⁿ→RU{+∞} pVq 成分ごとの最大値 pAq 成分ごとの最小値



定義[室田]: g がL凸関数←→

[劣モジュラ] $g(p)+g(q)\geq g(p\vee q)+g(p\wedge q)$

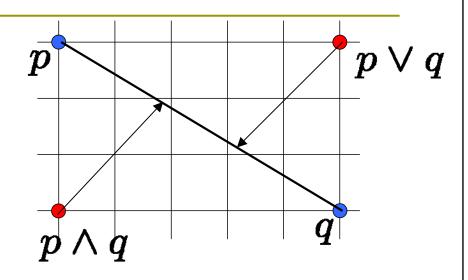
[並進不变] $\exists r, \forall p \in \mathbf{Z}^n : g(p+1) = g(p) + r$

L = lattice

g: L凹 ←→ -g: L凸

L凸集合の定義

D⊆Zⁿ p∨q 成分ごとの最大値 p∧q 成分ごとの最小値



定義[室田]: D がL凸集合←→

[分配束] $p, q \in D \Longrightarrow p \lor q, p \land q \in D$

[並進不変] $\forall p \in D : p + 1 \in D$

L = lattice

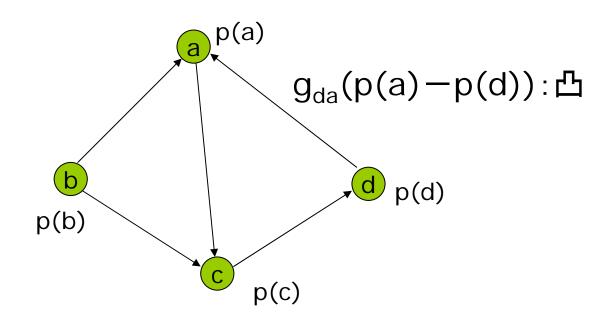
L凸関数の例

N: 有限集合, E⊆N×N

g_{uv}: R→R ((u,v)∈E), 凸関数

$$\Rightarrow g(p) = \sum_{(u,v) \in E} g_{uv}(p(v) - p(u))$$

はL凸関数



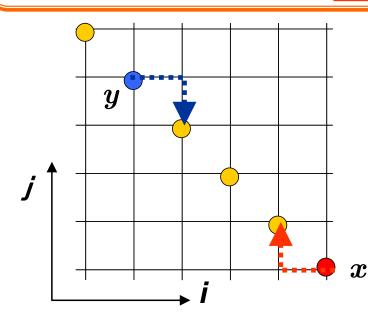
M凸関数の定義

f: $Z^n \rightarrow R \cup \{+\infty\}$

定義[室田]: f がM凸関数←→ (M-EXC)

 $\forall x,y \in \mathsf{dom} f, \ \forall i \in \mathsf{supp}^+(x-y), \exists j \in \mathsf{supp}^-(x-y) \ \mathsf{s.t.}$

$$f(x) + f(y) \ge f(x - \chi_i + \chi_j) + f(y + \chi_i - \chi_j)$$



dom
$$f = \{x \mid f(x) < +\infty\}$$

 $supp^+(x - y) = \{i \mid x(i) > y(i)\}$
 $supp^-(x - y) = \{i \mid x(i) < y(i)\}$

M = matroid

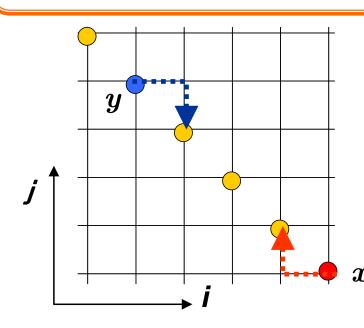
f: M凹 ←→ -f: M凸

M凸集合の定義

 $B \subseteq Z^n$

定義: B がM凸集合←→ (B-EXC)

$$\forall x, y \in B, \ \forall i \in \text{supp}^+(x-y), \exists j \in \text{supp}^-(x-y) \text{ s.t.}$$
$$x - \chi_i + \chi_j, y + \chi_i - \chi_j \in B$$



$$supp^{+}(x - y) = \{i \mid x(i) > y(i)\}$$
$$supp^{-}(x - y) = \{i \mid x(i) < y(i)\}$$

M凸集合 = ポリマトロイド 0-1ベクトルからなるM凸集合 x =マトロイド

M凸関数の例: 多項式行列

- □ A: n×m 実数行列
- □ N=列集合, 部分行列 A[I] = $(a_j \mid j \in I)$ (I⊆N)

 Grassmann-Plücker 関係式 $\forall i \in I \setminus I'$: $\det A[I] \cdot \det A[I'] = \sum_{j \in I' \setminus I} \det A[I-i+j] \cdot \det A[I'+i-j]$
- □ \mathcal{F} ={| | A[|] は正則} → G-P関係式より次を満たす $\forall I, I \in \mathcal{F}, \ \forall i \in I \setminus I', \exists j \in I' \setminus I$: $I i + j, I' + i j \in \mathcal{F}$

F はマトロイド

M凸関数の例: 多項式行列

- □ A: n×m 行列, 各成分は変数 x を変数とする多項式
- □ N=列集合, 部分行列 $A[I] = (a_j \mid j \in I) (I \subseteq N)$ **Grassmann**—**Plücker 関係式** $\forall i \in I \setminus I'$: $\det A[I] \cdot \det A[I'] = \sum_{j \in I' \setminus I} \det A[I-i+j] \cdot \det A[I'+i-j]$

$$\mathcal{F} = \{ \ | \ \mathsf{A}[\ | \ \mathsf{I}] \ \mathsf{l}$$
 は正則 $\}$ $f(I) = \left\{ egin{array}{ll} \deg_x \det A[I] & (I \in \mathcal{F}) \ -\infty & (その他) \end{array}
ight.$

fはM凹関数

→ G-P関係式より次を満たす

$$\forall I, I \in \mathcal{F}, \ \forall i \in I \setminus I', \exists j \in I' \setminus I:$$
 (付値マトロイド) $I - i + j, I' + i - j \in \mathcal{F},$ [Dress, 室田] $f(I) + f(I') \leq f(I - i + j) + f(I' + i - j)$

離散凸解析の性質

M凸/L凸関数の性質

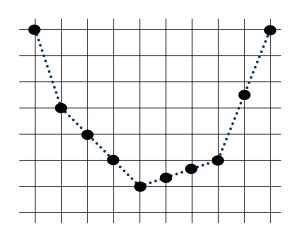
- □ M凸/L凸関数は離散凸関数としてふさわしい性質を もつ
 - 凸拡張可能性
 - ■局所最適性=大域的最適性
 - (離散)分離定理
 - ■共役性

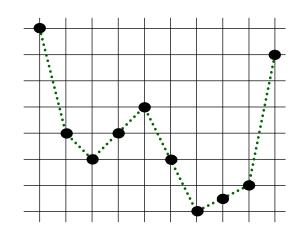
凸拡張可能性

□ 定義:

f: Zⁿ→R が凸拡張可能

←→ ∃ 凸関数 $\overline{f}: \mathbf{R}^n \to \mathbf{R}: f(x) = \overline{f}(x) \ (\forall x \in \mathbf{Z}^n)$





定理[室田]:任意のM凸関数とL凸関数は凸拡張可能

注: {0,1} n 上で定義された任意の関数は凸拡張可能

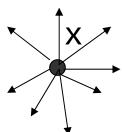
局所最適性=大域的最適性: 凸関数の場合

定理: f:Rⁿ→RU{+∞}, 凸, x∈dom f

 $f(x) \le f(y) (\forall y \in \mathsf{dom} f)$

 \iff すべての方向 $d \in \mathbf{R}^n$ に対して方向微分 f'(x;d) が非負

$$f'(x;d) = \lim_{\alpha \downarrow 0} \frac{f(x+\alpha d) - f(x)}{\alpha}$$



x の近傍をチェック

→最適性のチェックが可能

局所最適性=大域的最適性: M凸関数の場合

定理[室田]: $f: Z^n \to R \cup \{+\infty\}$, M凸, $x \in \text{dom } f$ $f(x) \leq f(y) (\forall y \in \text{dom} f)$ $\iff f(x) \leq f(x - \chi_i + \chi_j) \ (\forall i, j \in \{1, 2, \dots, n\})$ 第 j 特性(単位) ベクトル

x の近傍(n²個の点)をチェック

→ xの最適性のチェックが可能

局所最適性=大域的最適性: L凸関数の場合

定理[室田]:
$$g: Z^n \to R \cup \{+\infty\}$$
, L凸, $p \in dom g$ $g(p) \le g(q) (\forall q \in dom g)$ $\iff g(p) \le g(p + \chi_X) \ (\forall X \subseteq \{1, 2, ..., n\})$ 集合Xの

特性ベクトル

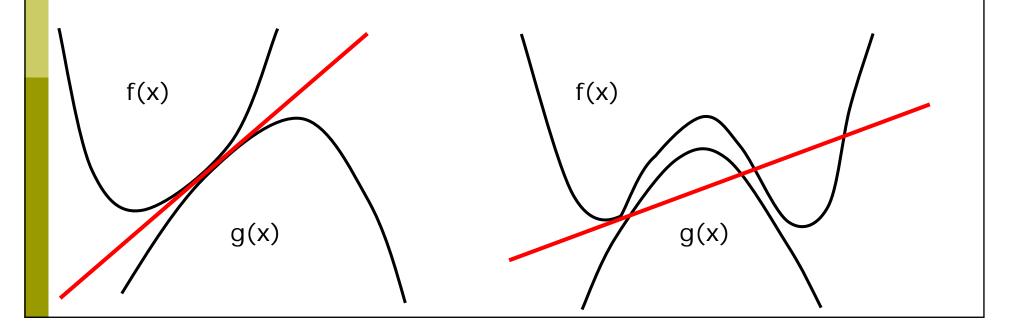
pの近傍をチェック → pの最適性のチェックが可能

- •2ⁿ個の方向のみ調べれば十分
- •効率的なチェックが可能

凸関数に対する分離定理

定理:

```
f: \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}, 凸, g: \mathbf{R}^n \to \mathbf{R} \cup \{-\infty\}, 凹 (-g) が凸) ri(dom f) \cap ri(dom g) \neq \emptyset f(x) \geq g(x) \ (\forall x \in \mathbf{R}^n) \Longrightarrow \exists 線形関数 \ h(x) = ax + b \ \mathbf{s.t.} \ f(x) \geq ax + b \geq g(x) \ (\forall x \in \mathbf{R}^n)
```



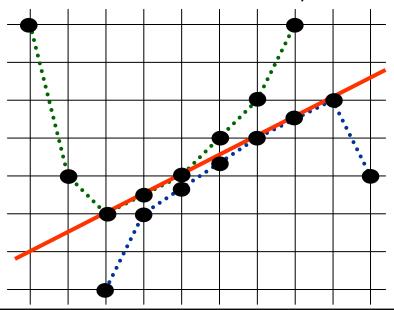
離散凸関数に対する分離:望ましい主張

成り立って欲しい主張:

 $f: {f Z}^n o {f R} \cup \{+\infty\}$,「離散凸」, $g: {f Z}^n o {f R} \cup \{-\infty\}$,「離散凹」 適当な仮定の下で

 $f(x) \ge g(x) \ (\forall x \in \mathbf{Z}^n)$

 \implies 3 線形関数 h(x)=ax+b S.t. $f(x)\geq ax+b\geq g(x)$ ($\forall x\in \mathbf{Z}^n$) とくに、f,g が整数値関数 $\implies a\in \mathbf{Z}^n,\ b\in \mathbf{Z}$ が存在



離散凸関数に対する分離: 難しさ(1)

```
f(x) \ge g(x) \ (\forall x \in \mathbf{Z}^n)
\implies 3 線形関数 h(x) = ax + b s.t. f(x) \ge ax + b \ge g(x) (\forall x \in \mathbb{Z}^n)
とくに、f,g が整数値関数 \Longrightarrow a \in \mathbf{Z}^n, b \in \mathbf{Z} が存在
                                                            成り立たない
                                                            例がある
      f(x,y)=max{0, x+y} 凸関数
      g(x,y)=min\{x,y\} 凹関数
                                                        h(x) = (x+y)/2
  15
  10
   -5
  -10
                                                                         -10
```

離散凸関数に対する分離: 難しさ(2)

2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

成り立たない例がある $f(x) \ge g(x) \ (\forall x \in \mathbf{Z}^n)$ \implies \exists 線形関数 h(x) = ax + b s.t. $f(x) \ge ax + b \ge g(x)$ $(\forall x \in \mathbb{Z}^n)$ f(x,y)=|x+y-1| 凸関数 g(x,y)=1-|x-y| 凹関数 x, y 整数のとき f(x,y)≧g(x,y) x=y=1/2のとき f(x,y)=0 < 1 = g(x,y)3 2 0 -1 -2 -3

-0.5

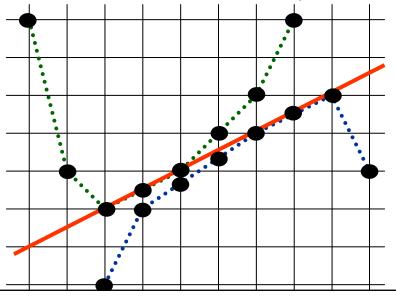
M凸/L凸関数に対する分離定理

定理[室田]:

 $f: \mathbf{Z}^n \to \mathbf{R} \cup \{+\infty\}$, $g: \mathbf{Z}^n \to \mathbf{R} \cup \{-\infty\}$ f, g がM凸/M凹, またはL凸/L凹 $\mathsf{dom} f \cap \mathsf{dom} g \neq \emptyset$

 $f(x) \ge g(x) \ (\forall x \in \mathbf{Z}^n)$

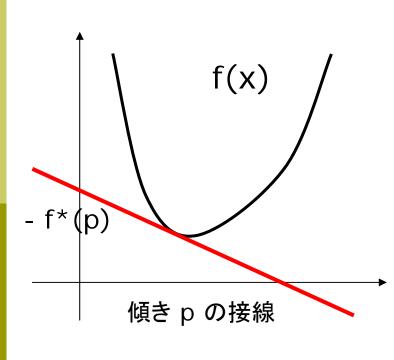
 \implies \exists 線形関数 h(x)=ax+b **s.t.** $f(x)\geq ax+b\geq g(x)$ ($\forall x\in \mathbf{Z}^n$) とくに、f,g が整数値関数 $\implies a\in \mathbf{Z}^n,\ b\in \mathbf{Z}$ が存在



マトロイドや 劣モジュラ集合関数に 対する 既存の双対定理 ・分離定理の拡張

凸関数の共役性

定義: 関数 f: $R^n \rightarrow R \cup \{+\infty\}$ の共役関数 f*: $R^n \rightarrow R \cup \{\pm\infty\}$ $f^*(p) = \sup\{p^T x - f(x) \mid x \in \mathbf{R}^n\}$



定義: 凸関数 f は

閉 **←→** f のエピグラフは閉集合

真 ←→ dom f は非空, f >-∞

定理:

- 任意の関数の共役は閉凸関数
- f: 閉真凸→f*: 閉真凸, (f*)*=f

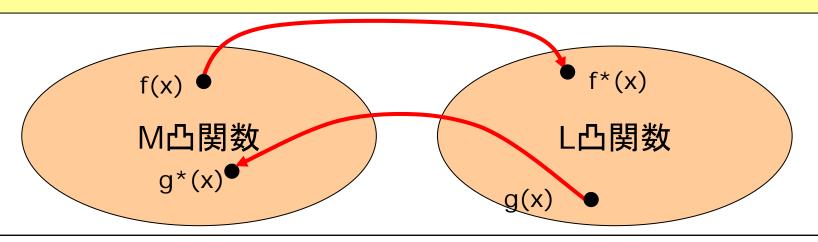
M凸/L凸関数の共役性

定義[室田]:整数値関数 f: Zn→Z∪{+∞}の共役関数

 $f^*: Z^n \rightarrow Z \cup \{\pm \infty\}$ $f^*(p) = \sup\{p^T x - f(x) \mid x \in \mathbf{Z}^n\}$

定理[室田]:

- 整数値M凸関数 f: Zⁿ→Z∪{+∞}の共役関数は
 整数値L凸関数
- 整数値L凸関数 g: Zⁿ→Z∪{+∞} の共役関数は
 整数値M凸関数



実数空間上の関数への拡張

離散から連続へ:集合の場合

Edmonds (1965):マトロイドからポリマトロイドへの一般化

- マトロイド(⊆{0,1}n)の凸包の多面体的構造に注目
 - ある種の単調劣モジュラ集合関数により記述される
- ポリマトロイド(⊆Rn₁):一般の単調劣モジュラ集合関数により 定義される多面体
 - マトロイドの(整数性に依存しない)組合せ的性質が一般化できる
- □ 劣モジュラ集合関数の理論研究の発展

マトロイド {0,1}ⁿ 離散 ポリマトロイド Rⁿ₊ 連続

離散から連続へ:関数の場合

- M凸性, L凸性は f: Zⁿ→RU{+∞}に対する概念
- M凸関数, L凸関数の凸閉包はRⁿ上で定義される多面体的 凸関数 f: R^{n→}RU{+∞}
 - 良い組合せ的性質をもつ
- M凸性, L凸性のf: Rn→RU{+∞}への拡張
 - M凸関数, L凸関数の整数性に依存しない組合せ的性質 を明確に
 - 組合せ的な構造をもつ凸関数の導入

普通の凸関数 f: Rⁿ→RU{+∞} 連続 M/L凸関数 f: Zⁿ→RU{+∞} 離散 連続的M/L凸関数 f: Rⁿ→RU{+∞} 連続

連続的M凸/L凸関数の定義

- □「閉真凸関数+組合せ的な公理」により定義
- □ 離散的M凸/L凸関数の公理を連続化
 - → 連続的M凸/L凸関数の公理
 - 普通の凸関数に戻らないように注意が必要!

定義[室田-塩浦]:

連続的M凸/L凸関数の定義

- □「閉真凸関数+組合せ的な公理」により定義
- □ 離散的M凸/L凸関数の公理を連続化
 - → 連続的M凸/L凸関数の公理
 - 普通の凸関数に戻らないように注意が必要!

定義[室田-塩浦]:

閉真凸関数 g: $R^n \rightarrow R \cup \{+\infty\}$ がL凸関数 $\longleftarrow \rightarrow$

[劣モジュラ] $g(p)+g(q)\geq g(p\vee q)+g(p\wedge q)$

[並進不変]

 $\exists r \in \mathbb{R}, \ \forall p \in \mathbb{R}^n, \ \alpha \in \mathbb{R} : g(p+\alpha 1) = g(p) + \alpha r$

連続的M凸/L凸関数の性質

- □ 連続的M凸/L凸関数は特殊な凸関数
 - ■分離定理は自明に成立
- □ 連続的M凸/L凸関数は良い組合せ構造をもつ
 - ■局所最適性=大域的最適性
 - ■共役性
 - **■**(連続性)
 - などなど
- □証明には組合せ論だけでなく解析的な手法も必要

局所最適性=大域的最適性: 連続的M凸関数の場合

定理[室田-塩浦]: $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, M凸, $x \in \text{dom } f$ $f(x) \leq f(y)(\forall y \in \text{dom} f)$ $\iff f'(x; -\chi_i + \chi_j) \geq 0 \ (\forall i, j \in \{1, 2, ..., n\})$ $f'(x; d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}$

n²個の方向のみ 調べれば十分

局所最適性=大域的最適性: 連続的L凸関数の場合

```
定理[室田-塩浦]: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, L凸, p \in \text{dom } g g(p) \leq g(q) (\forall q \in \text{dom} g) \iff g'(p; +\chi_X) \geq 0 \ (\forall X \subseteq \{1, 2, \dots, n\})
```

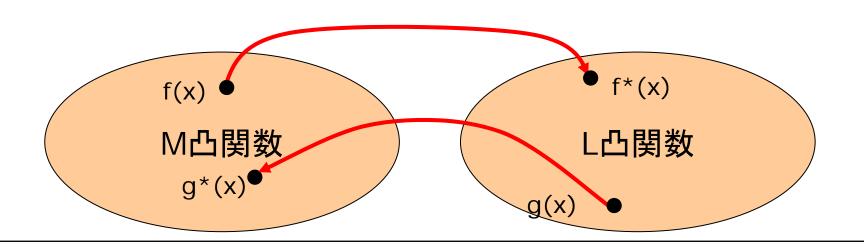
- •2ⁿ個の方向のみ調べれば十分
- •効率的なチェックが可能

連続的M凸/L凸関数の共役性

 $f: \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$ の共役関数 $f^*(p) = \sup\{p^T x - f(x) \mid x \in \mathbf{R}^n\}$

定理[室田-塩浦]:

- 連続的M凸関数 f: Rⁿ→R∪{+∞}の共役関数は
 連続的L凸関数
- 連続的L凸関数 g: Rⁿ→R∪{+∞} の共役関数は
 連続的M凸関数



連続的M凸/L凸関数の連続性

定理[室田-塩浦]:

連続的M凸関数および連続的L凸関数は定義域上で連続

- ※閉真凸関数は連続とは限らない $f(x,y) = y^2/x (x>0), 0 (x=y=0), +\infty (o.w.)$
- ※連続的M凸/L凸関数の定義域は閉集合とは限らない

幾何への応用

有限距離空間と離散凸性

□ 有限集合 V 上の距離(metric) d: V×V→R

$$d(i, i) = 0, \quad d(i, j) \ge 0,$$
 $d(i, j) = 0 \leftarrow \rightarrow i = j,$
 $d(i, j) = d(j, i),$
 $d(i, j) + d(j, k) \ge d(i, k) (三角不等式)$

- □ 距離関数とM凸性、L凸性は深い関係をもつ
 - ■「三角不等式を満たす関数 d: V×V→R
 - ←→ L凸集合 ←→ 正斉次M凸関数」が1対1対応
 - 木距離は特殊なM凹関数(付値マトロイド)

三角不等式を満たす関数と L凸集合の1対1対応

定理[室田]: d: V×V→ZU{+∞}に対し,

d は d(i,i) = 0 $(i \in V)$, 三角不等式を満たす $\Longrightarrow D = \{p \in \mathbf{Z}^n \mid p(j) - p(i) \le d(i,j) \ (i,j \in V)\}$ はL凸集合, $d(i,j) = \sup\{p(j) - p(i) \mid p \in D\}$

D はL凸集合

 $\implies d(i,j) = \sup\{p(j) - p(i) \mid p \in D\}$ は d(i,i) = 0 $(i \in V)$, 三角不等式を満たす $D = \{ p \in \mathbf{Z}^n \mid p(j) - p(i) \le d(i,j) \ (i,j \in V) \}$ が成立

三角不等式を満たす関数 1対1

L凸集合

三角不等式を満たす関数と 正斉次M凸関数の1対1対応

定理[室田]: d: V×V→ZU{+∞}に対し,

$$d$$
 は $d(i,i) = 0$ $(i \in V)$, 三角不等式を満たす

$$\implies f(x) = \inf_{\lambda} \{ \sum_{i,j} \lambda_{ij} d(i,j) \mid \sum_{i,j} \lambda_{ij} (\chi_j - \chi_i) = x, \ \lambda_{ij} \ge 0 \}$$

は正斉次 M 凸関数、 $d(i,j)=f(\chi_j-\chi_i)$

$$f: \mathbf{Z}^n o \mathbf{R} \cup \{+\infty\}$$
 は正斉次 \mathbf{M} 凸関数

$$\Longrightarrow d(i,j) = f(\chi_j - \chi_i)$$
 は

$$d(i,i)=0$$
 $(i \in V)$, 三角不等式を満たす

$$f(x) = \inf_{\lambda} \{ \sum_{i,j} \lambda_{ij} d(i,j) \mid \sum_{i,j} \lambda_{ij} (\chi_j - \chi_i) = x, \ \lambda_{ij} \geq 0 \}$$

三角不等式を満たす関数

1対1

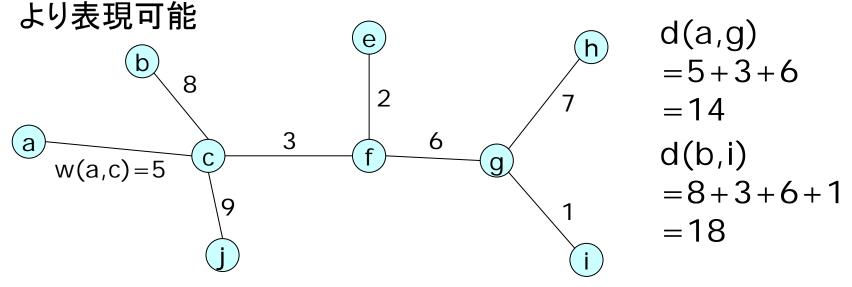
正斉次M凸関数

木距離と四点条件

系統樹への応用

定義:d: V×V→R は木距離

←→頂点集合を V とする木 (V, E)と枝長関数 w: E→R₊に



定理: d は木距離←→四点条件を満たす

 $d(i,j)+d(k,h) \le \max\{d(i,k)+d(j,h), d(i,h)+d(j,h)\}$

木距離とM凹関数

定義:d: V×V→R は木距離

←→頂点集合を V とする木 (V, E)と枝長関数 w: E→R₊により表現可能

定理: d は木距離←→四点条件を満たす

 $d(i,j)+d(k,h) \le \max\{d(i,k)+d(j,h), d(i,h)+d(j,h)\}$

M凹関数の公理(M-EXC)

定理[Dress, Moulton, Terhalle96]:

d は木距離 \longleftrightarrow $f(\chi_i + \chi_j) = d(i,j)$ はM凹関数

木距離とT理論

- □ T理論(T-theory)
 - 距離関数(とくに木距離)に関する理論
 - A. Dress らが提唱
 - 動機:系統樹の再構築
 - ■「タイトスパン」を用いて距離関数を解析
- □ d: V×V→R に関するタイトスパン

$$T(d) = \{ p \in \mathbf{R}^n \mid p(i) = \max_i \{ d(i,j) - p(j) \mid (1 \le i \le n) \}$$

 $\{p \in \mathbf{R}^n \mid p(i) + p(j) \ge d(i,j) \ (1 \le i,j \le n)\}$ の極小元の集合

多面体的な視点から距離関数を洞察

T理論:参考文献

- A. Dress, V. Moulton and W. Terhalle, *T*-theory: an overview, Eur. J. Comb. 17 (1996), 161–175.
- □ J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65–76.
- B. Sturmfels and J. Yu, Classification of six-point metrics, Electron. J. Combin. 11 (2004).
- H.-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992), 47– 105.
- H. Hirai, Characterization of the distance between subtrees of a tree by the associated tight span, Ann. Comb. 10 (2006), 111-128.
- H. Hirai, Tight spans of distances and the dual fractionality of undirected multiflow problems, J. Combinatorial Theory B 99 (2009), 843-868.
- L. L. Larmore and J. A. Oravec, T-theory applications to online algorithms for the server problem, preprint, arXiv:cs/0611088 (2006).

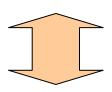
トロピカル幾何

- tropical semiring (=max-plus algebra):
 - addition $\oplus \Rightarrow \min$, multiplication $\otimes \rightarrow +$
 - $ullet a_1 \oplus a_2 \oplus \cdots \oplus a_k = 0$ $\Leftrightarrow a_1, a_2, \cdots, a_k$ のうち、最小値を実現するものが2つ以上存在
- □ tropical linear space [Speyer]:線形空間のトロピカル版
 - tropical linear space の組合せ構造を調べる
 - → tropical Plücker vector を利用

Tropical Plücker Vector

定義[Speyer]

 $p \in (\mathbf{R} \cup \{+\infty\})^{\binom{N}{d}}$ it tropical Plücker vector



 $\forall S \subseteq N, |S| = d - 2,$

 $\forall i, j, k, l \in N$

 $\{p(S \cup \{i,j\}) \otimes p(S \cup \{k,l\})\}$

 $\bigoplus \{p(S \cup \{i,k\}) \otimes p(S \cup \{j,l\})\}$

 $\bigoplus \{p(S \cup \{i,l\}) \otimes p(S \cup \{j,k\})\} = 0$

p の各成分は, 要素数 d の N={1,...,n}の部分集合に 対応

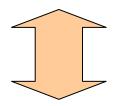
tropical Plücker relation

 $\{p(S \cup \{i,j\}) + p(S \cup \{k,l\})\}, \{p(S \cup \{i,k\}) + p(S \cup \{j,l\})\}, \{p(S \cup \{i,l\}) + p(S \cup \{j,k\})\}$

の3つの値のうち、最小値を実現するものが2つ以上存在

Tropical Plücker Vector とM凸関数

 $p \in (\mathbb{R} \cup \{+\infty\})^{\binom{N}{d}}$ it tropical Plücker vector



f(S) = p(S) で定義される集合関数がM凸関数

→ tropical linear space の組合せ構造を調べる際, 離散凸解析の結果が利用可能 (e.g., Rincón)

トロピカル幾何:参考文献

- D. E. Speyer, "Tropical linear space", SIAM J. Discrete Math. 22 (2008) 1527-1558.
- F. Rincón, "Isotropical linear space and valuated delta-matroids", preprint, arXiv:1004.4950 (2010).
- S. Herrmann, A. Jensen, M. Joswig, B. Sturmfels, "How to draw tropical planes", Electronic J. Combinatorics 16 (2009) R6.
- P. Brändán, "Discrete concavity and the half-plane property", preprint, arXiv:0904.0363 (2009).

おわりに

今後の研究の方向性

□理論

- M凸性、L凸性の構造に対するより深い理解
- より広いクラスの関数へ理論を拡張

□ アルゴリズム

- 効率的に解ける問題に対し、高速アルゴリズムの構築
- 計算困難な問題に対し、高性能近似アルゴリズムの提案

□応用

- 応用の範囲を広げる(現在:オペレーションズ・リサーチ,制御,ゲーム理論,数理経済,数学など)
- 離散凸解析の成果を応用分野へ適用
- 応用分野からのフィードバック