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ABsTRACT. We study the relation between the eigenvalues of the Laplacian of a Riemann-
ian manifold and the combinatorial Laplacians of an approximating sequence of nets in
the manifold.

1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREM

To recall the definition of the Laplacian of graphs [B], [F], let I' be a finite, connected
graph, V(T') the set of its vertices, and E(I") the set of its directed edges. We assume
there are no edges joining a vertex with itself and if two distinct vertices x and y are
joined by an edge, in which case we denote x ~ y, then there are exactly two edges of
opposite directions between them. The edge from z to y, if it exists, is denoted by [z, y]

or —[y, z].
A length function, | : E(T') — Ry, is a positive function on E(T") with I([z,y]) =
I([y,z]). Then the weight function on V(T'), my, is given by

mi(z) =) U[z,y)),

r~y

where > means to take the sum over all the vertices y connected to z. We sometimes
write m instead of m; for simplicity. Put

(V) ={f: V() = R},
L*(E(T)={¢: ET) =R | ¢(—e) =—¢(e)},

and define inner products for f,g € L?(V) and ¢,9 € L?(E) by
1
(F.9)= D m@)f@g), (69)=5 D Ue)d(e)p(e).
zeV (T) eeE(T)
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Define an operator d : L?(V) — L?*(E) by

f(z)—f(y)
[z, ])

The adjoint operator § : L?(E) — L?(V) is then given by

df ([z,y]) = for fe L*(V).

$9(r) = s b)) for b€ LA(E)

The definition of the Laplacian of (I',1), A, is
Af = ddf.

We have
(Af, f) = (df,df),

and we can rewrite

1 @ 1)
M@= e 2 i)

The smallest eigenvalue \o(I', 1) for A is always 0 and the one dimensional eigenspace
for 0 consists of the constant functions, since I' is connected. We denote the k-th positive
eigenvalue of A by A, (T, 1).

0=X <A1 <A <---<)\,, where n={V —1.
Before discussing the general case for approximating the eigenvalues of Laplacian of

a closed Riemannian manifold by graphs, we give a simple example. Let S be the unit
circle, and A\ (S') denote the k-th eigenvalue of the Laplacian of S'. Then

-

{A(SH}2 ={0,1,2%,8%,4%,.. .}

mult. =2

Let (Cp,l,) be the circle graph of n-vertices with length function l,, = 27w /n. We may
directly calculate the values for A\ (Cy,!,), which we denote by spec(Cy). If n is odd,

2 2 4 -1
spec(Cy) = (%) x {0,2(1 — cos %),2(1 — cos %), .oy2(1 = cos n -

-~

m)}.

vl

mult. =2

If n is even,

2 2 4
spec(Cp) = (%) x {0,2(1 — cos %), 2(1 — cos %), cey2(1—cos n -

~
mult. =2
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Since lim, (2£)?2(1 — cos 2E7) = k2, we have

nllrgo M (Cr) = Ap(S1),

for each k.

To approximate the eigenvalues of the Laplacian of a closed Riemannian manifold M,
we take an € — net in M, which is a graph obtained in the following way for ¢ > 0. A
subset of M is called ¢ — separated if dp(x,y) > € for any distinct points z,y of the
set. Take a maximal ¢ -separated subset V in M and join distinct points z and y of V'
by two directed edges from z to y and from y to z if and only if dps(z,y) < 3e. The
resulting graph is termed an € — net in M. It is known that a maximal e-separated set
exists for any € > 0 and its graph is connected if M is connected, [K]. It is clear from the
construction that an e-net in M roughly approximates M as a metric space. Moreover,
it approximates the eigenvalues of the Laplacian of M in a certain way, which we state
as the following theorem.

Theorem. Let M be a closed Riemannian manifold of dimension d. Take a sequence
of 1/n-nets in M, (T'y,l,),1 < n < oo, with length functions l, = 1/n. There exists a
constant C(d) depending only on the dimension d, s.t.

1
— limsup A\g(T'n, ln) < A(M) < Climinf A, (T, 1y),

C n—o0 n—00
for any k > 0. The constants C(d) satisfy C(d) < 2-50% for any d > 1.

Though it grows exponentially, the constant C(d) depends only on the dimension
of M, but not on other geometry of M, for example, curvatures. The speed of the
convergence in the estimate depends on the curvature.

In the theorem, the estimate is satisfied by any sequence of nets. There might exist
a constant C’, which does not depend even on the dimension of M, s.t. if we take a
nice sequence of nets in M, then the estimate of the theorem hold for the sequence and
the constant C’. But the author suspects one can find a sequence of nets in M s.t. the
eigenvalues of the combinatorial Laplacians of the nets converge to the eigenvalues of
Ajpr, ie., C =1 in the theorem.

2. PROOF OF THE THEOREM

The proof is an application of the following Lemma (see [B], Chapter 1 of [C]), called

the minimaz principle. In this section, we unambiguously write T' for V(T'), and L?(T)
for L2(V(I)).

Lemma.

M) e (D) = ot sup D)

where Fy1 runs over linear subspaces of L?(T)(resp. L2(M)) of dimension k + 1.
The expression (df,df)/(f, f) is called the Rayleigh quotient of f.
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The proof consists of two parts. First, to show A\y(M) < Climinf, A\g(T',), we con-
struct a linear operator

S, : L*(T,) = C=(M)

for each n, s.t. for sufficiently large n,

(dSn(f)adSn(f))M < C(df7df)rn
(Sn(f)s S = (£, Py’

for any f € L?(T',). Next, to show limsup,, A\x(I'y) < CAx(M), we construct a linear
operator

T, : C®°(M) — L*(T),)

for each n with the following property. Let F be a finite dimensional linear subspace of
C>*°(M), and F(1) denote the subset {f € F|(f,f) = 1}. Then for any ¢ > 0, taking
sufficiently large n, we have

(dTn(f)adTn(f))Fn < C(df7 df)M +e€
(Tn(f)aTn(f))I‘n - (f,f)M—é‘ ’

for any f € F(1). From the above two estimates of the Rayleigh quotient, applying the
Lemma, we obtain the inequalities in the theorem.

Constants. Here we give several geometric constants which we will use in the proof.
For a point z € M, we write the set {y € M|d(z,y) < r} by B(z,r) and denote
its volume in M by vol(B(z,r)). It is seen that there exist some positive constants
C1,Cs,...,Cs which depend only on the dimension of M, d, and satisfy the following
properties: taking sufficiently large n, we have for any z; € I',,

(i< € Do~ a;} < G,

1
ndvol(B(ari, ﬁ)) < Cs,

1
%))a

1
Cs < nvol(B(x;, %)) < Ce,

vol(B(z;, %)) < Crvol(B(, %))’

\ ﬂ(rn) S andVOI(M). )

Cy < ndvol(B (24,

These constants satisfy

- { 21 < 01,0 < 74,05 < 2%, (3/V2)" < Ci, }
(

1/\/§)d < 05506 < 1307 < 2d508 < (\/i)d
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Proof of the Theorem. Fix n and denote {z; }21;(11“”) = V(I'y). Take a partition of unity
{un,;}; on M with the following properties.

2
supp(un ;) C B(zj,—) for each j,
n
1
3
(dun j(2), dun j(z)) < n®, forany =z € M.

up; =1 on B(zj,

Since ) tn,j = 1,
(1) S dun, = 0.
J

For z € M, if d(z, z;) > %, then
(2) duy, j(x) = 0.
We define a linear operator
S, : L*(T,) — C®(M)

for each n by

= ) f(@5)un ()

$j€]-‘n

for f € L3(T',,). From the definition of S,,, S,, is injective. Thus, for any linear subspace
F in L*(T,), we have dim F = dim S, (F).

Claim 1. Taking sufficiently large n,
2C203

(dSn(f), dSn(f))m - (df,df)r,

for any f € L%(T,,).
Proof of the Claim 1. For each z € M, take z;, € ', with d(z, ) < 1, and fix it. Then

= Z f(zj)dun,;(z)

—Z P () = f (o)) dun,(2) + for) Y duun, ()
using (1)

= " (F(ay) — F(@1))dun 5(2),

J
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using (2)

= Y (f@) — faw)dun ().

@€l d(w,x;)<2

Since d(z,z;) < 2 and d(z, zx) < ~ imply d(z;j, zx) < 3,

dSa(H)@) < Y 1f(g) = flaw)l|dun ()]

xjid(zj,r)< 2

< Y f(ag) = flaw)ln.

Thus,
(dSn(f)(x), dSn(f) () < n*( .Z [f(z5) = f(@)])?
< nQC;’ JZ (f (z5) = f(zx))*
Therefore,

(A5a(£),dSa(£)) <72Co 301 2 (Fla) = aw) ol (Bla, )}

zr€l, TjiT; VT

<001 Y % (Flai) = ww)” _ 262Gs (4 gy

nd-1 n nd—1
TR €Ny Tj5T~Tk

g

Claim 2. For sufficiently large n, we have

Cy

(Sa(): Sl > g (1 P,

for any f € L*(T,,).
Proof of the Claim 2.

(FDre= X FPlagm, ) < 2 Y Py
$j€]-‘n $J€Fn
<o D PlayvolBlay, o)
fﬂjer‘n
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O
From the Claim 1 and the Claim 2, we have the next claim.

Claim 3. For sufficiently large n, we have

(A5 (£), dSu(F)u _ 2C3Cs (df, df)r,
Sl Suala = Ca (£.Fr,

for any f € L3(T,,).

Using the Claim 3, we can show Ag (M) < % lim inf,, Ax(T'p, 1) as follows. From

the Lemma, for any ¢ > 0, we can take a (k 4+ 1)-dimensional linear subspace F of
L2(T,,) such that

(df, df)
®) swp gy S Akl +e

From the Claim 3, for sufficiently large n, we have

4 .
) geili]i)f) (9,9) = Cs fer (f, 1)

Since dim(F) = dim(S,,(F)) = k + 1, we have

(dg, dg)
5 A(M) < sup ,
®) +(M) gesa(F) (9,9)

from the Lemma. Combining (3), (4), (5), we have

(6) Ak(M) <
for sufficiently large n. Since ¢ was arbitrary, we have

2
20205 1o it Ak (T 1)

4 n—o0

(7) Ae(M) <

Next, we define a linear operator
T, : C™®(M) — L*(T,)

for each n by

Jta., ) F4V
To(f) (i) = fo(ngjl)

n
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at z; € I', for f € C*°(M).

Let F be a finite dimensional linear subspace of C*°(M). F(1) is to denote the set
{f € F|(f, f) = 1}. Then for any ¢ > 0, taking sufficiently large n, we have

Claim 4.

(Dt < gt Tl Tal)r, +eCryol(M), for any £ € F(1),

Proof of the Claim 4. Taking n sufficiently large, we have
1
L DIV S RED )+ ol ),
B wi,%
for any z; € T', and f € F(1) since F is finite dimensional. Therefore,
fa M < /
2 ot
1
< ZZ ) ()2 vol B(z;, —)+stolB .’ITZ,E)

203 1
< —= i 1B(x;, —
< Z n(f)(z:) +€C7ZVO (x4 n)

203
= Cynd—1 Z(T my,, (2;) + eCqvol(M)
2C3
= Cynd-1 (Tn(f), Tn(f))r, + Crvol(M).
O
Also, for any € > 0, taking sufficiently large n, we have
Claim 5.

(dT,(f),dT.(f))r, < nd {902 (df, df ) i +€2—g2V01(M)} for any f e F(1).
5

Proof of the Claim 5. Since F is finite dimensional, taking n sufficiently large, we have,
for any z;,z; € I'y, with z; ~ z;,

2/, (df, df)dV
(Tul)le) - Tal)(e))? < { 2o 2 +e} Pl ,),
and since d?(z;,z;) < 5,
18 n?

9
— df, df)dvV + —e.
= nz CS B(mi,%)(ﬂ f) +n2€
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Therefore,
1
(@To (), dTo(Fry = 5 D (Ta(F)(w:) = Tulf)(5))"n
d—1
< [ v+ e
z, €T, ($1’2n

Qand_l 90277,d_1

<X /M(df, APV + Z 2 —vol(M)e
gczd 1(df, df ) s %wﬂ(mg.

O

Combining the Claim 4 and the Claim 5, we have the next claim.

Claim 6. Let F be a finite dimensional linear subspace of C°°(M). Then for any
sufficiently small e > 0, taking sufficiently large n, we have

(dTn(f)a dTn(f))l"n < 180203 (dfa df)M +e
(T (), Tn(f)r., — C1Cs (f, )M —

for any f € F(1).

Using the Claim 6, for any sufficiently small € > 0, taking sufficiently large n, we can

show that
18C2C3

8 ATy lp) < —————
( ) k( n 'n) — CICS
as we showed (6) from the Claim 3. In this case, we need a more subtle argument since
the operator T,, may decrease the dimension of the linear subspace F of L>°(M). But
we can always retake F to satisfy dimF = dimT,(F) in each step of the argument.
Details are left to the reader. From (8), we have

18C5C5

(Ae(M) +¢)

9 lim sup A (', 1) < A (M).
) msup ATy ) < T2 (M)
Therefore, taking C(d) = max{ 203 C"’, 12?2023 }, we have the Theorem from (7) and

(9). From (*) , C(d) satisfies C(d) < 2-50¢. [
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