CAT(0) ZHIDERLEH
- CAT(0) SPACES FOR RIEMANNIAN GEOMETERS -

KOJI FUJIWARA

This is a note for my talk at Geometry Symposium in August 2004.
I will talk about CAT(0) spaces from the view point of isometries or
isometric group actions.

CAT(0) spaces are generalizations of Hadamard manifolds, which
are simply connected, complete Riemannian manifolds such that the
sectional curvature is non positive. CAT(0) spaces are not manifolds
in general. It can be a tree, for example. However, many of the results
on Hadamard manifolds remain true for CAT(0) spaces. Some are easy,
or even simpler. For example, the Cartan-Hadamard theorem, which
says that Hadamard manifolds/CAT(0) spaces are contractible. That
CAT(0) spaces are contractible is straightforward from the definition
of CAT(0) spaces.

Some are not easy, but true. Typically, if one shows something on
Hadamard manifolds using calculus, then it may require some extra
effort to show the same thing for CAT(0) spaces because they are not
differentiable manifolds. For example, we show a first variation formula
for convex functions on CAT(0) spaces, and give an application in the
geometry of CAT(0) spaces (Theorem 3.2).

I don’t think I can cover all of the materials in this note during my
talk. One of my goals of writing this note is to invite Riemannian
geometers to work on CAT(0) spaces.

There are books I found useful. [BriH] is like an encyclopedia on
CAT(0) geometry, and more. I don’t give all of the precise definitions
in this note, but you can find it in [BriH]. One finds a very readable
account of symmetric spaces in 10, Part II. You may consult [E] for
symmetric spaces as well. Ch I, IT of [B] may serve as a quick introduc-
tion to the subject. [BGSc] is only about Hadamard manifolds, which
can be read as a list of problems on CAT(0) spaces. We found Theorem
3.2 for Hadamard manifolds in this book.
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1. CAT(0) SPACES

1.1. Definitions. Let X be a geodesic space and A(x,y, z) a geodesic
triangle in X, which is a union of three geodesics. Let [z,y] denote
the geodesic side between x,y, etc. A comparison triangle for A is a
triangle A(Z, 7, 2) in E? with the same side lengths as A. The interior
angle of A at Z is called the comparison angle between y and z at z,
and is denoted Z,(y, z). Let p be a point on a side of A, say, [z,y]. A
comparison point in A is a point p € [z, §] with d(x,p) = dg(Z, D).

A satisfies the CAT(0) inequality if for any p,q¢ € A and their com-
parison points p,§ € A,

d(p,q) < dg2(p, ).

X is a CAT(0) space if all geodesic triangles in X satisfy the CAT(0)
inequality.

Smilarly, one defines CAT(1) and CAT(—1) spaces by comparing
geodesic triangles in X with the comparison triangles in the standard
2-sphere S? and the hyperbolic plane H?, respectively. In the case of
CAT(1) we only consider geodesic triangles of total perimeter length
less than 2.

1.2. Examples. Standard examples of CAT(0) spaces.

e Euclidean space, E"
e Hyperbolic spaces, H".
e Symmetric spaces of non-compact type. For example, SL(n,R)/SO(n).
e Hadamard manifolds, i.e., complete, simply connected Riemann-
ian manifolds of non-positive sectional curvature.
e Trees.
e products of CAT(0) spaces.
e Gluing CAT(0) spaces in a certain way.
e Fuclidean buildings.

2. ISOMETRIES

2.1. Classification of isometries. Let’s take the upper plane model
of the hyperbolic plane.

H? = {z +iy|lr,y € R,y > 0}.
The hyperbolic metric is given by

_da? + dy?

2
ds 2
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: b : : .
A matrix (Z 1) € SL(2,R) acts as an orientation preserving isometry
as follows:
T+ 1y

The kernel of the action is £1, so that we take the quotient group
PSL(2,R) = SL(2,R)/+1. It is a fundamental fact of the geometry of
the hyperbolic plane that the group of orientation preserving isometries
of H?, Tsom, (H?), is PSL(2,R).

There is a classification of isometries of the hyperbolic plane. For
an orientation preserving one, it is by linear algebra. Suppose f €
SL(2,R). fis called

1. ellipticiff it is 1 or diagonalizable in SL(2, C), but not in SL(2, R).

2. hyperbolic iff it is not £1 and diagonalizable in SL(2, R).

3. parabolic iff it is not diagonalizable in SL(2,C).

Note that this classification applies to an element in PSL(2,R).

This classification can be given in a geometric language. The advan-
tage is that an isometry does not have to be orientation preserving, and
more importantly, it is applied to an isometry of a complete CAT(0)
space, X.

An isometry of X is

1. elliptic iff there is a fixed point in X.

2. hyperbolic iff there is no fixed point, but there is an invariant

geodesic in X.
3. all others are parabolic.

After this classification, it is natural to introduce the following geo-
metric objects to analyze isometries, f.

1. the set of fixed points, denoted Fix(f).
2. the set of invariant geodesics, denoted Min(f).

Unfortunately, they are useless for parabolic isometries because they
are empty. It’s time to talk about the ideal boundary of X.

2.2. Ideal boundary. It is always a good idea to compactify a non-
compact object. Let’s compactify a complete, locally compact CAT(0)
space, X, putting the ideal boundary.

Two geodesics (), (t) in a complete CAT(0) space X are asymp-
totic if there exists a constant C' such that for all ¢ > 0, d(y(t),v'(t)) <
C. This defines an equivalence relation, ~. We consider only unit
speed geodesics. The ideal boundary of X, X(c0), is the set of equiv-
alence classes of geodesics in X. The equivalence class of a geodesic
7(t) is denoted by y(oc0). The equivalence class of a geodesic y(—t) is
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denoted by 7(—o0). It is a theorem that for any geodesic v(t) and a
point x € X, there exists a unique geodesic +/(¢) such that v ~ +" and
' (0) = x.

There is a natural topology on X (co) which is called the cone topol-
ogy. X U X (00) is compact if X is proper (equivalently, complete and
locally compact for a geodesic space). A metric space is called proper
if its all closed metric balls are compact.

In general a parabolic isometry may not have any fixed point in
X (00), but if X is proper then there is always at least one.

Proposition 2.1 (cf. [BriH], [FSY]). Let X be a proper CAT(0) space.
Suppose f is a parabolic isometry on X. Then there is a point p €
X (00) such that f fizes p and leaves each horosphere centered at p
mvartant.

Any isometry g of X with gf = fg has those two properties about p.

For an isometry, f, of a CAT(0) space X let’s denote the set of fixed
points by f in X (0co0) as X(oco). This is the object we want to study.

3. PARABOLIC ISOMETRIES

To study the geometry of X(00) of a parabolic isometry f, we need
a metric on X (00).

3.1. Tits metric. Let X be a complete CAT(0) space. Let p,p’ €
X(o0) and z € X. Take the geodesics v(t),7'(t) such that v(0) =
7' (0) = z and vy(c0) = p,7'(00) = p/. Define the angle between
p,p at x by Z.(p,p') = limy_o Z.(7y(t),7(t)), where Z.(v(t),' (1))
is the comparison angle. Define the angle between p,p’ by Z(p,p') =
SUD,cx Z(p, p'). This is a metric on X (00). The path metric induced
by Z on X (00) is called Tits metric and denoted by dr. If there is no
path between p, g then define dr(p, ¢) = co. We call the ideal boundary
with the topology by the Tits metric the Tits boundary.
The following is a standard fact.

Theorem 3.1 (cf. [BriH] 9, Chll). Let X be a complete CAT(0) space.
Then, (X (00),dr) is a complete CAT(1) space. Any two points p,q €
X (00) with dr(p,q) < oo is joined by a Tits geodesic in X (c0).

3.2. Radius of X(00). For a bounded set B in a metric space S, the
radius is defined by rad(B) = inf,cp sup,cp d(z,y).

Theorem 3.2 ([FNS]). Let X be a proper CAT(0) space. Suppose f
is a parabolic isometry of X. Then the radius of Xy(co) is at most
/2, so that X;(c0) is contractible in the Tits boundary.
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This result is known for Hadamard manifolds (Schroeder, [BGSc]
App 3. cf. [E]). Although we followed his line of argument, there
are two points we need extra ingredients, as I said in the introduction.

To explain it, I recall that the definition of the displacement function,
df: X — R, of an isometry, f, of a CAT(0) space X is defined by

dy(x) = d(x, f(x)).

This is a convex, f-invariant function.

There is another, equivalent, classification of isometries in terms of
dy: fis hyperbolic if and only if inf dy > 0 and the infimum is attained.
A point x € X is on an invariant geodesic, called azis of f, if and only
if dy attains its infimum at . This explains why we write the union of
invariant geodesics as Min(f). f is parabolic if and only if dy does not
attain its infimum. The infimum may be positive and sometimes f is
called strictly parabolic if inf dy = 0.

Schroeder used the gradient curves of d of the parabolic isometry f.
For this part, we used the theory on gradient curves of convex functions
on CAT(0) spaces developed by Jost and Mayer. We also obtained a
first variation formula for a convex function on a CAT(0) space, and
applied it to dy. It turns out that our formula is not equality as the
manifold case, but an inequality (see [FNS] for detail).

In general, the cone topology and the Tits topology are different.
The identity map from the Tits boundary to the ideal boundary with
the cone topology is continuous, but not for the other way around in
general.

Example 3.1. 1. E"(00) is isometric to the unit (n — 1)-sphere,
S"~! in terms of the cone topology and also the Tits topology.
2. H"(c0) is isometric to S"! in terms of the cone topology. The
Tits boundary is the (n — 1)-sphere, S*~! with discrete topology.
3. H? x R is a CAT(0) space, whose ideal boundary is isometric to
S? with respect to the cone topology. The Tits boundary is the
spherical suspension of the Tits boundary of H2, so that it is an
infinite graph of diameter 7. As a set, it is S?, with the graph
structure of meridians.

I suspect the answer is yes to the following question.

Question 3.1. In Theorem 3.2, is Xf(c0) contractible in terms of the
cone topology ?

X is called wisible if for any two distinct points, p, ¢, in the ideal
boundary, there is a geodesic in X which joins the two points. Clearly,
Z(p,q) = 7, so that T'd(p, q) = oc.
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Corollary 3.1. Let X be a proper CAT(0) space which is visible. Then
X¢(00) is one point for a parabolic isometry, f.

3.3. Centers of X(co). In general, X;(co0) is not a point. So, we
want to find a special point in X(00). A center of a bounded set is a
point where inf is achieved in the definition of the radius. In a CAT(0)
space, a bounded set has a unique center. This is because the distance
function is convex. Since X (0o) is only a CAT(1) space, one can not
expect a unique center for a random bounded subset. However, if it is
so small that the Tits metric is convex, then one gets a unique center.
How small ? Less than 7/2. Therefore, Theorem 3.2 is nearly enough,
but not exactly. There is an example of a parabolic isometry on a
CAT(0) space such that a center of X(oc0) is not unique.

Example 3.2. Let g be a parabolic isometry of H?. Suppose X =
H? x H? x R. Then the product f = g x ¢ x id is a parabolic isometry
of X such that X (co) is the spherical suspension of a segment of
length 7/2. In other words, X (co) is isometric to the region on the
unit sphere which are bounded by 0-meridian and 7/2-meridian. Then
the set of the centers is the segment of length 7/2, which is on the
equator.

Let’s denote the set of the centers of a bounded set, B, as C(B).
C(B) may be an empty set. In Example 3.2, C'(X(00)) is a segment,
so that it has a unique center, i.e., C?(X;(00)) = C(C(X(00))) is one
point. It turns out this is the case in generalities. There is a notion
of the space of directions at each point p in a CAT(0) space X. It is a
generalization of the space of the unit tangent vectors in Riemannian
manifolds.

Theorem 3.3. Let X be a proper CAT(0) space. Suppose dim X < oo,
and %,X is compact for all points p € X. Then C?*(X;(o0)) is one
point for a parabolic isometry, f.

This result is also known for Hadamard manifolds by Schroeder
([BGSc] App. 3). By a clever idea, he reduced the argument to the
geometry of the unit tangent sphere of an Hadamard manifold, which
is isometric to a unit sphere. We had to argue differently.

In Thereom 3.3, it seems the condition dim X < oo is essential,
although we don’t know a counter example. The dimension means the
covering dimension. A warning; there is a subset, S, in some CAT(1)
space of infinite dimension such that C'(S) = S'!

Example 3.3. Let A" be the spherical simplex of dimension n. One
constructs it inductively as a subset in the unit n-sphere, S™. Start with
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two points, n, s, which is the O-sphere, S°. Take the spherical join of two
S¥s. It is isometric to S'. In S, there is the spherical join of two n’s,
which is a segment of length 7/2. This is Al. Take the spherical join of
S% and S!, which is isometric to S?. The spherical join of n and A! is
contained in there, which is A2. In this way, we obtain A™ C S™. Note
that S™ is a CAT(1) space, the diameter of A,, is 7/2, rad(A") < 7/2,
and lim, ., rad(A") = 7/2. Define A>® = U, A", which is a subset in
S*® = U,S™. S is a CAT(1) space of infinite dimension. The diameter
of A*® is w/2, rad(A*) = 7/2, and C'(A>®) = A>.

It is important that the special point p = C?*(X;(c0)) is obtained
geometrically. It follows that if ¢ is an isometry of X which commutes
with f, then ¢ also fixes p. For example, if f is an element of G <
Isom(X) such that G is abelian, then p is a common fixed point of G.

4. SYMMETRIC SPACES

Non-compact symmetric spaces are nice examples of CAT(0) spaces.
They are Riemannian manifolds, and easy enough to do computa-
tion and complicated enough to be interesting. Since I am interested
in CAT(0) spaces which are not hyperbolic or CAT(—1), I choose
SL(3,R)/SO(3).

Let’s denote X = SL(3,R)/SO(3). It is identified with the space,
P(3), of all positive definite, symmetric (3 x 3)-matrices with real co-
efficients, of determinant 1. It is a differential manifold of dimension
5. There is a natural way to put a Riemannian metric on X such that
X is an irreducible symmetric space of non-compact type of rank 2.

Let’s denote the Tits boundary (X (o0),Td) by X (c0) for simplicity.
As a set, X(00) is the 4-sphere, but as a metric/topological space, it
is an infinite, but bounded, graph. X (co) is so called a “thick spher-
ical building” of dimension 1 such that each apartment is isometric
to S' and each Weyl chamber at infinity is an edge of length /3.
diam X (c0) = 7. We have seen something similar, but simpler, in Ex
3.1.3.

The isometry group of X, I(X), has two connected components,
and the one which contains the identity map, Io(X), is SL(3,R). The
action is given by matrix multiplication as follows: for p € P(3) and
f € SL(3,R),

fo)=fr'f,

where 'f is the transpose of f. One notices that the stabilizer of the
identity matrix, id, is SO(3), and this is how we obtain the identifica-
tion X = P(3).
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Let ¢ be the involution of X at id, which is an orientation reversing
isometry. It is given by o(f) = 'f~'. It is known that I(X) = I(X)U
0'[0 (X) .

I want to calculate Xy(oco) for a parabolic element f € SL(3,R).
It’s done mostly by linear algebra. First of all, which f is parabolic ?
Recall the classification by linear algebra in the case of the hyperbolic
plane. An isometry is called semi-simple if it is either hyperbolic or
elliptic. It is known that f € SL(3,R) is semi-simple as an isometry
of X if and only if it is semi-simple as a matrix, i.e., diagonalizable
in GL(3,C). Therefore, f is parabolic iff it is conjugate to one of the
following matrices, g, by an element, h, in SL(3,R); hfh™' = g. Tt is
special about f € SL(n,R),n < 3 that if f has a complex number as
an eigenvalue, then it is diagonalizable, so that not parabolic.

List of parabolic elements.

100
.10 1 1
0 01
1/a> 0 0
2. 0 a 1|, where0,1#acR.
0 0 a
110
3.0 11
0 01

Since h € I(X) and hfh™! = g, we have X;(c0) = hX,(c0). Since
h is an isometry on X (oco) as well, we discuss ¢ instead of f.

Recall that X (c0) is an infinite graph such that each edge is isometric
to a segment of length 7/3. The following result is by linear algebra
and some CAT(0) geometry.

Theorem 4.1 ([FNS]). Let g be one of the matriz in the above list.

1. X,(00) is the union of all edges incident to one edge. X,(00) is
not compact in (X (00), T'd), with uncountably many edges.

2. X,(c0) is isometric to a segment of length w, consisting three
edges.

3. X,(00) is a segment of length w/3, having one edge.

Theorem 4.1 covers only one half of 7(X). We don’t know about the
other half; 0SL(3,R).

Problem 4.1. Compute X;(0o) for a parabolic isometry, f € 0 SL(3,R).

First of all, I even don’t know if there is a parabolic isometry in
there.
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Problem 4.2. Compute Xy(00) for a parabolic isometry, f, when X
is other symmetric space, for example, X = SL(n,R)/SO(n),n > 4.

I am sure one can do it for f € SL(n,R).

5. CAT(0) DIMENSION OF GROUPS

Now I talk about not individual isometries of CAT(0) spaces, but
isometric group actions on CAT(0) spaces. Let G be a discrete group.
Does it act on some CAT(0) space, X, by isometries ? If it does, what
is the minimal dimension of such X 7 I want the actions to be "nice”
such that, for example, the quotient space of the action is Hausdorff.
Therefore, let’s consider proper actions in the sense that for any point
z € X, there exists r > 0 such that {g € G|B(x,7) N gB(z,r) # 0} is
finite. B(z,r) is a metric ball.

If X is a Hadamard manifold, and if we further assume that the quo-
tient space is compact, in other words, X/G is a closed, non-positively
curved, Riemannian manifold, then the following restriction on the
group G is known.

Theorem 5.1 (S.T.Yau. 1971, Ann.Math.). Let M be a closed Rie-
mannian manifold with non-positive sectional curvature. Suppose G =
w1 (M) is solvable, then M is at and G contains a subgroup of finite
index which is a free abelian group of finite rank.

In other words, the theorem says that if a solvable group G is acting
on a Hadamard manifold, X, properly and co-compactly by isometries,
then X is flat and G is "almost” abelian (in the sense that it contains
an abelian subgroup of finite index).

One readily generalizes this to CAT(0) spaces; if G is acting on
a CAT(0) space properly and co-compactly by isometries, then G is
almost abelian. A key result is the following well known fact in CAT(0)
geometry. This is easily shown by a compactness argument.

Proposition 5.1. Suppose a group G is acting on a CAT(0) space by
isometries, properly, and co-compactly. Then each g € G is a semi-
simple isometry.

5.1. Baumslag-Solitar groups. As an example of a solvable group,
let’s consider a solvable Baumslag-Solitar group. It is defined, for each
integer m, as follows;

BS(1,m) = {a,blaba™" = b"}.

Suppose |m| > 2 in the following discussion. Then, BS(1,m) is a
solvable, but not virtually nilpotent group. It is torsion free. There
is a finite CW-complex of dimension 2 which is a K(m, 1) space for
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each BS(1,m). We already know BS(1,m) does not act properly and
co-compactly on a CAT(0) space by isometries. Therefore, only non-
co-compact actions are interesting.

Proposition 5.2 (cf. [FSY]). Let G = BS(1,m) such that |m| > 2.

1. If G acts freely on a CAT(0) space by isometries then the element
b is parabolic. In particular, G does not act freely, hence not
properly, on any CAT(0) space by semi-simple isometries.

2. G acts freely on H? by isometries. But G does not act properly
on H" for any n > 1 by isometries.

3. G does not act on any Hadamard manifold of dimension 2 by
1sometries, properly.

4. G acts properly on H? x T by isometries where T is a reqular tree
of index m+1. H?> x T is a proper CAT(0) space of dimension 3.

If we are interested in the least dimension of a CAT(0) space for each
group G, it is natural to ask the following question.

Question 5.1. Does BS(1,m) act properly on a CAT(0) space X of
dimension 2 7

5.2. Torus bundle over a circle. I discuss another solvable group.
Let S be the group given by the following presentation.

S = {a,b,clab = ba,cac™' = a®b, cbc™* = ab}.

S is solvable (but not virtually nilpotent), torsion free, and of coho-
mological dimension 3 because it is the fundamental group of a closed
three-manifold, M, which is a torus bundle over a circle. M is a K(7,1)
space of S. The subgroup generated by a, b, which is isomorphic to Z2,
is the fundamental group of the torus fiber, and the base circle gives
the element c.

S is an HNN extension as Z**z2 ; such that the self monomorphism

21 ) € SL(2,2).

f of Z? is the linear map given by a matrix A = 11

The other monomorphism to define the HNN extension is the identity.
S is also a semi-direct product with the action of Z on Z? given by
A:
0—-72>—8S—7Z—0.

Proposition 5.3 (cf. [FSY]). 1. S acts properly, hence freely, by
isometries on X = H? x H? such that X/S is homeomorphic
to M x R.
2. S does not act properly on any Hadamard manifold of dimension
3 by isometries.
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In [FSY], we construct an action of S on X concretely. There is a
geodesic v C H? such that the point, p € X (c0), defined by (y X 7)(00)
is fixed by S and each horosphere, H;, centered at p is invariant by S, so
that H;/S is homeomorphic to M. Indeed X/S is foliated by H;/S,t €
R as a product. While we seck for a CAT(0) space of less dimension
for S to act, as a by-product, we have geometrized the manifold M as
Ht/S

The following question is natural.

Question 5.2. Does S act properly on some 3-dimensional CAT(0)
space by isometries 7

By Prop 5.3 (2), the answer is no for Hadamard manifolds of dimen-
sion 3. The reason is if an action did exist, then it would have to be
co-compact, since otherwise, the cohomological dimension of S would
be less than 3. But we know that a solvable group does not have a
co-compact action by Theorem 5.1 unless it’s virtually abelian.
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