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1. Dichotomy among manifolds of non-positive curvature

This talk will be about negative curvature in spaces and groups. To be precise, the
difference between negative curvature and non-positive curvature is important.

I start with the celebrated Rank rigidity theorem proved by Ballmann in 80’s after
a sequence of works by many people. In this note, I usually state theorems for closed
manifolds, but many of the conclusions hold for manifolds of finite volume.

Let X be a simply connected, complete Riemannian manifold of non-positive sec-
tional curvature, of dimension at least two. (From now on, I only say curvature instead
of sectional curvature.) A geodesic γ is rank-1 unless it is the boundary of a flat Eu-
clidean half plane in X. An (hyperbolic) isometry of X is rank-1 if it leaves some
rank-1 geodesic invariant and acts on it by a non-trivial translation. A manifold of
non-positive curvature M is rank-1 if π1(M) contains a rank-1 element when it acts on

M̃ by a Deck transformation.

Theorem 1.1 (Rank-rigidity, Ballmann, cf [Ball]). Let M be a closed Riemannian
manifold of non-positive sectional curvature of dimension at least two. Suppose M is
not a product (as a manifold). Then either M is a locally symmetric space of rank at
least two, or M is a rank-1 manifold.

Notice that if M is a locally symmetric space of rank at least two, then any geodesic
in M̃ is contained in a flat, therefore M is not rank-1. The hard part is the converse. If
we think locally symmetric spaces are something we understand well, the main study
will be on rank-1 manifolds.

The class of rank-1 manifolds contains all locally symmetric space of rank-1 and
one can produce examples by gluing some of them along cusps. Let M1 and M2 be
non-compact, complete hyperbolic 3-manifolds of finite volume. For simplicity assume
that each one has only one cusp, therefore Mi is diffeomorphic to the interior of a
compact manifold Ni with one torus boundary. Glue N1 and N2 along the boundary
tori by a diffeomorphism and obtain a closed manifold M . One can put a Riemannian
metric of non-positive curvature on M then it becomes a rank-1 manifold.

In dimension 3, by the geometrization, this is more or less all the way to obtain
rank-1 manifolds. But in dimension 4 and higher, we do not have a good outlook
toward a classification of rank-1 manifolds. For example, there is a closed 4-manifold
of non-positive curvature which is a homology sphere, of positive “simplicial volume”
([RaTs], [FuMa], [FuMa2]).

So, what kind of questions shall we ask about rank-1 manifolds? Here is a question
I heard from Ballmann.

Question 1.2. Is the fundamental group of a rank-1 manifold simple ?
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The expected answer is no, and Gromov had an idea how to prove it using minimal
surfaces. We soon answer this question.

One can see the rank rigidity theorem as a dichotomy among Riemannian manifolds
of non-positive curvature. We do not try to classify rank-1 manifolds, but we search
for properties shared by rank-1 manifolds, and aim to rephrase the dichotomy using
other terms, say, algebraic properties of the fundamental groups. To this end, we recall
a deep result in Lie groups.

Theorem 1.3 (Normal subgroup theorem, Margulis). Let G be a lattice in a semi-
simple Lie group of rank at least two, and N EG a normal subgroup. Then, either N
is finite or of finite index.

Elementary examples of G are SL(n,Z) < SL(n,R), n ≥ 3. What is important for
us is that it applies to the fundamental group of a closed Riemannian manifold which
is a locally symmetric space of rank at least two. Roughly speaking this result says
that a normal subgroup is nearly trivial or everything, namely G is like a simple group.
Combining it with the following result, which answers the question 1.2, we obtain an
algebraic dichotomy among manifolds of non-positive curvature.

Theorem 1.4. Let M be a closed rank-1 manifold, and G its fundamental group. Then
G contains an infinite normal subgroup N which is of infinite index. In particular, G
is not simple.

I also want to discuss the following theorem of our ancestors, Matsushima [Matsu]
and others. After this D. Kazhdan proved those groups have property (T), which
implies H1(G,R) = 0.

Theorem 1.5 (Vanishing of the first Betti number). Let G be a uniform lattice of a
semi-simple Lie group of rank at least two. Then, H1(G,R) is trivial.

Remark 1.6 (History for H1 = 0). Matsushima proved this theorem (with an ex-
ception) using a result of Borel. His argument is by showing there is no non-trivial
harmonic one-form on the quotient space. Non-compact case is probably due to Borel.
The first cohomology with coefficients is important for the rigidity result. Around 1960,
Selberg was the one who proved that uniform lattice in SL(n,R), n > 2 can not be con-
tinuously deformed in the Lie group except for conjugation. Calabi proved it for other
Lie groups. Weil proved that this is a consequence of the vanishing of the first coho-
mology of the lattice with coefficient in the lie algebra of of the lie group.

In particular if M is a compact, locally symmetric space of rank at least two, then
the first Betti number of the fundamental group is 0, in other words, any homomor-
phism from π1(M)→ R is trivial.

Now, is it true that a lattice of rank-1 Lie group always have a non-trivial homo-
morphism to R ? No, for example SL(2,Z) < SL(2,R) is generated by two torsion
elements, therefore, clearly any homomorphism to R is trivial. But, SL(2,Z) contains
a free group of finite index, which obviously has a non-trivial homomorphism to R. On
the other hand, Matsushima-vanishing applies to any subgroup in G of finite index. So,
is it true that if M is a closed Riemannian manifold of non-positive curvature, then M
is a locally symmetric space of rank at least two if and only if any subgroup G < π1(M)
of finite index has only trivial homomorphism to R ? The answer is No. Lattices in the
Lie groups Sp(n, 1), the quaternionic hyperbolic isometries, have property (T), there-
fore the first Betti number is 0, while they are rank 1. But in this talk, I will mention
a modern modification of the vanishing and then use it to state the dichotomy. We are



still curious if the first Betti number is 0 if we take a finite index subgroup in a lattice
of Isom(Hn). A partial answer is known. If a real hyperbolic manifold is non-compact,
of finite volume and arithmetic, then it is true that it has a finite cover with non-trivial
(as large as you like) first Betti number (Millson [Mill]).

To finish the introduction, I’d like to mention a fascinating progress recently made
for closed hyperbolic 3-manifolds.

Theorem 1.7 (virtual fibration theorem, Agol [Agol]). Let M be a closed hyperbolic
3-manifold. Then it has a finite cover which is a surface bundle over a circle.

In particular the finite index subgroup in π1(M) corresponding to the finite cover has
a non-trivial homomorphism to Z. This theorem has been a conjecture by Thurston. It
is solved last year by Agol using lots of technology from geometric group theory. Certain
singular spaces of non-positive curvature, CAT(0) cube complex, play a central role
in the argument and much of the work has been done by Dani Wise. What is really
interesting is that they have to use higher dimensional spaces in a very essential way
to handle the three dimensional problem.

2. δ-hyperbolic spaces and word-hyperbolic groups
Let ∆ be a geodesic triangle in the hyperbolic plane H2. The three sides a, b, c are
geodesics. Gauss-Bonnet theorem says that the area of ∆ is at most π. It then follows
that there is a constant δ (say, 2), which does not depend on ∆ such that each side is
contained in the δ-neighborhood of the union of the the other two sides: a ⊂ Nδ(b∪ c).
We say that ∆ is δ-thin.

Gromov turned this property into a definition. A geodesic metric space X is (δ-
)hyperbolic if there is a constant δ such that all geodesic triangle are δ-thin. The hy-
perbolic spaces Hn are hyperbolic, and more generally, a complete, simply connected
Riemannian manifold of sectional curvature at most c for some constant c < 0 is hyper-
bolic, which includes all symmetric spaces of rank one. On the other hand Euclidean
spaces of dimension at least two are not hyperbolic (there is no bound on the thinness
of a triangle), and neither are symmetric spaces of rank at least two. The theory of
hyperbolic spaces has been very successful, and useful to study rank-1 manifolds, but
it is not always the case that the universal cover of a rank-1 manifold is hyperbolic
(the 3-dimensional example we gave contains a flat).

Another merit of the theory is that it handles singular spaces. For example, trees
are hyperbolic (a simplicial tree is a connected graph which is simply connected. There
is a more general notion of R-trees), and also one can build a simplicial complex of
higher dimension which are hyperbolic.

The significance of the theory is that it applies to discrete groups. There is more
than one way (they are all equivalent) to define hyperbolic groups, but one definition is
by using action. Let G be a group. If G acts on a δ-hyperbolic space X by isometries
and the action is properly discontinuous and co-compact, then we say G is (word)
-hyperbolic. It is straightforward from the definition that the fundamental group of a
closed Riemannian manifold of negative curvature is hyperbolic since its universal cover
is hyperbolic and the action by the Deck transformations satisfies the assumption. By
the same reason, a free group of finite rank is hyperbolic (use a tree as a space to
act on). On the other hand it may look difficult to conclude some groups are not
hyperbolic. One expects that Z2 is not hyperbolic since it is the fundamental group of
a (flat) torus. In fact that is the case. It is a theorem that if a group G act on a geodesic
space X which is not hyperbolic and the action is by isometries, properly discontinuous



and co-compact, then G is not word-hyperbolic. Therefore, the fundamental group of
a closed Riemannian manifold of non-positive curvature which is not a rank-1 manifold
is not hyperbolic since its universal cover is a symmetric space of rank at least two (by
Rank-rigidity), which are not hyperbolic.

An important idea behind the theory of hyperbolic groups and geometric group
theory is quasi-isometry. Let X, Y be two metric spaces. We denote the distance
between x, y by |x− y|. A map f : X → Y is a (K,L)-quasi-isometric embedding if for
all points x, y ∈ X,

|x− y|
K

− L ≤ |f(x)− f(y)| ≤ K|x− y|+ L.

If additionally it satisfies that for all point y ∈ Y there exists x ∈ X such that
|y− f(x)| ≤ L, then we say f is a quasi-isometry and X and Y are quasi-isometric. In
those definitions, only the existence of constants K,L is important, and we sometimes
omit to indicate them. Quasi-isometry is an equivalence relation among metric spaces,
and it is a non-trivial theorem that the hyperbolicity is invariant under quasi-isometry.

3. Mapping class groups
Let S be a compact orientable surface. Define the group MCG(S), the mapping class
group of S, as the quotient of the group of orientation preserving homeomorphisms
of S divided by isotopies. It is a theorem that MCG(S) is a finite generated, and
more over, a finite presented group. The MCG of a sphere is trivial, and of a torus
is isomorphic to SL(2,Z). There is a long history of the study of the mapping class
groups from various view points. For example see the book [Iva92]. Our view point is
that it looks like a lattice in a Lie group or on its symmetric space. In this analogy,
we may take the Teichmüller space of S for MCG(S) to act on by isometries. The
Teichmüller space is diffeomorphic to the Euclidean space of dimension 6g − 6 where
g is the genus of S (assume g > 0), and there is the Teichmüller metric on it. It is not
a Riemannian metric, but only a Finsler metric. It has been observed that there is a
lot of negative curvature aspects there, but it is not δ-hyperbolic if g > 0. MCG(S)
acts on it by isometries and properly, but not co-compactly. MCG(S) is not word-
hyperbolic if g > 0 since it contains Z2, which is an algebraic obstruction for a group
to be hyperbolic.

Our first question would be if the Teichmüller space is rank-1 in some sense. The
answer is Yes, there is a “rank-1” isometry on the Teichmüller space. Indeed all pseudo-
Anosov elements are rank-1 (Minsky [Min]). That raises a hope that we may be able to
handle MCG in the same way as rank-1 manifolds, and that was one of the motivation
of this project. Another approach to MCG is using the curve complex and Masur-
Minsky succeeded to apply the theory of δ-hyperbolic spaces in this setting [MM99],
[MM00].

4. Quasi-trees
Our method is letting a group G in concern to act on a space by isometries which
is negatively curved. To use the full power of negative curvature, we first try to use
trees. Bass-Serre systematically studied group actions on simplicial trees and built a
theory, the Bass-Serre theory. It gives lots of information on a group once it acts on
a simplicial tree by automorphisms without a common fixed point (then we say the
action is non-trivial). At the same time, Serre observed that SL(3,Z) does not act on
any simplicial tree without a common fixed point, and by now it is known that any



lattice in a semi-simple Lie group of rank at least two does not act non-trivially either.
More importantly for us, MCG(S) does not act on a simplicial tree without a fixed
point either if the genus is at least two (Culler-Vogtmann).

Now we introduce a more flexible objects than trees. We say a graph Γ is a quasi-
tree if it is quasi-isometric to some simplicial tree. We do not assume that Γ is locally
finite. We consider a connected graph as a geodesic metric space by assigning length
one to each edge. An example of a quasi-tree is the Farey graph, F . See the figure.
You will notice that the dual graph to the tessellation is a binary tree, but the graph
is not quasi-isometric to this tree. If you remove any edge from F , then it disconnects
F . This is a result of the property called the bottle neck property, which characterizes
a quasi-tree (J. Manning [Man05]).

The figure is the Farey tessellation of the hy-
perbolic plane by ideal triangles. You tessel-
late it forever toward the boundary. Make
each ideal triangle into a usual triangle keep-
ing the combinatorial structure of the graph.
In this way we obtain a planer graph, which
is called the Farey graph, F .

Clearly quasi-trees are hyperbolic. We will study groups by letting them act on
quasi-trees. The merit is that more groups will act on them than on trees, and the
geometry of quasi-trees is so special that we can say many thing on the groups.

The following is a list of groups G which acts on quasi-trees X non-trivially in the
sense that for some (and any) point x ∈ X, the G-orbit is unbounded.

Theorem 4.1 (Bestvina-Bromberg-F [BBFb]). The following groups act on some
quasi-trees by isometries non-trivially.

1. Infinite hyperbolic groups.

2. MCG(S) of a (closed) orientable surface S of genus at least one.

3. Out(Fn) with n > 1.

4. π1(M) where M is a (closed) rank-1 manifold.

5. A group G which acts on a CAT(0) space by isometries properly and G contains
at least one rank-1 element.

It is known that certain infinite hyperbolic groups do not act on trees non-trivially
(use property (T)). Out(Fn) is the outer automorphisms group of the free group of
rank n. It is a classical theorem that MCG(S) is isomorphic to Out(π1(S)) when S
is a closed orientable surface. In view of that MCG(S) and Out(Fn) are somewhat
similar.

A CAT(0) space is a geodesic space that has “non-positive curvature”, which in-
cludes all simply connected, complete Riemannian manifolds of non-positive curvature.
See the book [BH99]. A rank-1 element is defined in the same way as for manifolds
using a flat half space. So, the last example is a generalization of rank-1 manifolds to
a singular setting.



5. Applications
Now we list applications of group actions on quasi-trees. Some of the arguments are
elaborate but use quasi-trees as a key.

Theorem 5.1 ([BBFb]). The asymptotic dimension of MCG(S) is finite.

We don’t give the definition of asymptotic dimension. It is a dimension defined by
Gromov for metric spaces which is invariant under quasi-isometry. Using a non-trivial
theorem by Yu, the Novikov conjecture for MCG(S) follows, which was known before
by different methods (Kida and Hamenstädt).

We recall the answer to the question 1.2.

Theorem 5.2. The fundamental group of a rank-1 manifold of dimension at least two
is not simple. Moreover, it contains an infinite normal subgroup of infinite index, which
is a free group.

This theorem relies on the following theorem.

Theorem 5.3 (Osin-Dahmani-Guirardel). If a group G acts on a hyperbolic space by
isometries and if g ∈ G is a hyperbolic element which is weakly properly discontinuous,
then the normal closure of gN is a free group for sufficiently large N .

The weak proper discontinuity (WPD) is introduced in [BF02], and I skip the def-
inition. An essential ingredient is that the groups actions on quasi-trees the theorem
4.1 provides satisfy the assumption of the theorem 5.3. Therefore the fundamental
group of a rank-1 manifold M always contains a free normal subgroup and it can not
be of finite index since otherwise M has a finite cover whose fundamental group is a
free group, which is impossible.

We go back to the vanishing of the first Betti number. To state a recent gener-
alization, we need a definition. Let G be a group and f : G → R be a map. f is a
quasi-(homo)morphism if

sup
g,h∈G

|f(gh)− f(g)− f(h)| <∞.

If it additionally satisfies the following, then we say it is homogeneous: for all g ∈ G
and n, f(gn) = nf(g). Clearly a homomorphism is a homogeneous quasi-morphism.
But are there anything other than homomorphisms? We define vector spaces:
QH(G) = { all homogeneous quasi-morphisms on G},
H1(G) = { all homomorphisms on G to R}, and Q̃H(G) = QH(G)/H1(G).

Theorem 5.4 (Burger-Monod [BM99]). Let G be a lattice in a semi-simple Lie group

of rank at least two. Then Q̃H(G) = 0.

Since H1(G) = 0 (this is true for non-uniform lattices), in fact QH(G) = 0.

In contrast, Q̃H(G) 6= 0 for non abelian free groups, [Bro81], and non-elementary
hyperbolic groups, [EF97].

Theorem 5.5. Q̃H 6= 0 for the fundamental group of a rank-1 manifold, [BF09], and
moreover, for all group in the theorem 4.1 if it does not contain Z as a subgroup of
finite index, [BBFa].

Therefore Q̃H(G) = 0 or not is another (way to state the) dichotomy among man-
ifolds of non-positive curvature.



One may think quasi-morphisms are artificial. We discuss a concrete application.
Let G be a group, and G′ = [G,G] its commutator subgroup. For an element g ∈ [G,G],
let cl(g) denote the commutator length of g, the least number of commutators whose
product is equal to g, g = [a1, b1] · · · [an, bn]. We define cl(g) =∞ for an element g not
in [G,G]. For g ∈ G, the stable commutator length, scl(g), is defined by

scl(g) = lim inf
n→∞

cl(gn)

n
≤ ∞.

See the book [Cal09] for more information on scl. What is important for us is that a

theorem by Bavard [Bav91] says that if Q̃H(G) = 0, then scl = 0 on G′.

Now the following is immediate from the theorem 1.5 and the theorem 5.4.

Theorem 5.6 ([BM99]). Let G be a lattice in a semi-simple Lie group of rank at least
two. Then scl ≡ 0 on G.

We contrast this to the following.

Theorem 5.7. 1. Let M be a closed hyperbolic manifold. Then there exists a con-
stant c > 0 such that scl(g) ≥ c for all non-trivial g ∈ π1(M) (Calegari).

2. Let G be a word-hyperbolic group. Then there exists a constant c > 0 such that
scl(g) ≥ c unless there exist n > 0 and h ∈ G such that gn = hg−nh−1 (Calegari-F
[CF10]).

3. Let M be a rank-1 manifold. Then scl(g) > 0 for a rank-1 element g ∈ π1(M).
In particular, scl 6≡ 0 ([BF09]).

Again, we see the dichotomy if scl ≡ 0 or not among manifolds of non-positive
curvature.

We conclude this note by a discussion on scl of MCG(S). First of all, it is known
that H1(MCG(S),R) = 0, and in fact MCG(S)′ = MCG(S) (we say MCG(S) is
perfect) if the genus is at least two. Therefore scl < ∞ on MCG. It is one of the
important questions left if H1(G,R) = 0 for all G < MCG(S) of finite index or not.
Regarding scl, a few partial results have been known:

Theorem 5.8. 1. scl(g) > 0 for all Dehn twists (Endo-Kotschick [EK01])

2. If g is a pesudo-Anosov element, then scl(g) > 0 unless there exists n > 0 and
h ∈MCG such that gn = hg−nh−1 (Calegari-F [CF10]).

Endo-Kotschick uses Seiberg-Witten theory. Using the quasi-tree technology, we
now have

Theorem 5.9 ([BBFc]). We have a precise description on which element g ∈MCG(S)
has scl(g) > 0.

There is a constant c(S) > 0 such that if scl(g) > 0, then scl(g) ≥ c. On the other
hand, if scl(g) = 0 then for each such g, {cl(gn)}n>0 is bounded.

We recover all known cases by a unified approach.



6. What is missing and can be expected
It has been 50 years since the vanishing theorem by Matsushima, and 30 years since
the rank rigidity. It is already 10 years since the geometrization is proved, and the
virtual fibration conjecture for hyperbolic 3-manifolds, which seemed too good to be
true, is finally solved (it is still unbelievable that closed hyperbolic manifolds, which
look most 3-dimensional, are in fact constructed from a circle and surfaces). I briefly
discuss what I expect and hope in the future.

1. A big picture for manifolds of dimension 4 and higher is missing. The geometriza-
tion for 3-manifolds tells that most compact 3-manifolds have Riemannian metrics
of non-positive curvature. Is that the case for dimension 4 and higher ? In view of
the virtual fibration theorem, are there anything really higher dimensional going
on in dimension 4 and higher ?

2. A rank rigidity for singular space of non-positive curvature (CAT(0) spaces) is
missing (it is recently obtained for CAT(0) cube complexes). The notion of rank
already exists (and same as manifolds). Probably it will be similar to the manifold
case, namely, there is a list for the higher rank case, and the rank 1 case is difficult
to classify.

3. We want to understand rank 1 manifolds better. To mention one example, the
iso-spectral problem for marked length spectrum.

4. We are curious about β1 > 0, in particular for π1 of hyperbolic manifolds and
MCG. Naively speaking Q̃H 6= 0 looks like a supporting evidence for virtual
β1 > 0, but as we mentioned lattices in Sp(n, 1) are rank 1 and have property
(T). Maybe such groups are very special.

5. The study on MCG and Out(Fn) from the view point of geometric group theory
looks steady and promising.
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