Home | Program | Abstracts | Access

Paris-Barcelona-Kyoto seminar on Arakelov geometry

Lecture Room 110, Department of Mathematics, Kyoto University

September 18-21, 2012


Program

September 18 (Tuesday)
10:30--11:30    Henri Gillet (Univ. Illinois at Chicago): Some Remarks on Arithmetic Singular Riemann Roch
14:00--15:00    Hideaki Ikoma (Kyoto Univ.): On the existence of strictly effective basis on an arithmetic variety
15:45--16:45    José Burgos (CSIC & ICMAT): The arithmetic Riemann-Roch theorem for projective morphism
17:00--18:00    Huayi Chen (Inst. Math. Jussieu): Degree function on vector subspaces and tensorial semistability
September 19 (Wednesday)
10:30--11:30    Carlo Gasbarri (Univ. Strasbourg): On the Vojta conjecture over function fields
14:00--15:00    Martin Sombra (ICREA & Univ. Barcelona): Arithmetic positivity on toric varieties, Part I
15:45--16:45    Martin Sombra (ICREA & Univ. Barcelona): Arithmetic positivity on toric varieties, Part II
18:00    Dinner
September 20 (Thursday)
Open discussion
September 21 (Friday)
10:30--11:30    Kai Köhler (Univ. Düsseldorf): Laplacians and twistor fibrations
14:00--15:00    Kazuhiko Yamaki (Kyoto Univ.): Strict supports of canonical measures and applications to the geometric Bogomolov conjecture
15:45--16:45    Damian Rössler (Univ. Toulouse III): A direct proof of the equivariant Gauss-Bonnet formula on abelian schemes

Last modified: September 10, 2010