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Notations

G: connected compact Lie group
T : maximal torus of G
l = dim T : rank of G
g, t: Lie algebras of G and T
for X ∈ t, G/P = {Ad(g)X | g ∈ G} ⊂ g:

(generalized) flag variety of type G
P = {g ∈ G | Ad(g)X = X}
G/P is a projective variety

W ,WP : Weyl groups of G and P
α1, . . . , αl : simple roots of G
s1, . . . , sl : simple reflections corresponding to simple roots
W is the finite group generated by s1, . . . , sl

l(w) is the length of w ∈ W

ω1, . . . , ωl : fundamental weights of G
H∗(BT ; Z) ∼= Z[ω1, . . . , ωl ]
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Examples

We can assume that G is simple, 1-connected without losing any generality.

G = SU(n),T = diag(eit1 , . . . ,eitn ),
∑

ti = 0
W = Sn: n-th symmetric group
si = (i , i + 1): simple transposition
take X ∈ t as regular point ( {i | siX = X} = ∅ )

P = T
WP = ∗
G/P is the ordinary flag manifold SU(n)/T :
the space of flags, 0 ⊆ V 1 ⊆ V 2 ⊆ · · · ⊆ V n−1 ⊆ V n = Cn

take X ∈ t with {i | siX 6= X} = {m}
Pm = SU(m)× SU(n −m)
WP = Sm × Sn−m

G/P is a Grassmann manifold SU(n)/SU(m)× SU(n −m):
the space of m-dim linear subspace V m ⊂ Cn
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Goal

General Goal

Determine the cohomology ring H∗(G/P; Z)

Borel answered this question for the rational coefficients as:

Theorem (Borel)

H∗(G/P; Q) ∼= (Q[ω1, . . . , ωl ])
WP/((Q[ω1, . . . , ωl ])

W )

Theorem by Bott-Samelson says:

Theorem (Bott-Samelson)

H∗(G/P; Z) is concentrated in even degrees and torsion free

So the problem reduces to the understanding of the inclusion:

H∗(G/P; Z) ↪→ H∗(G/P; Q) ∼= (Q[w1, . . . ,wl ])
WP/((Q[w1, . . . ,wl ])

W )
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Schubert classes

Let W P = W/WP the left coset.
(There is a canonical set of minimal length left coset representatives:
W P = {w ∈W | ∀w ′ ∈ wWP , l(w ′) = l(w) + 1})

W P = W when P = T
W P is (m,n −m)-partition when
G/P = SU(n)/SU(m)× SU(n −m)

H∗(G/P; Z) has a good basis which consists of Schubert classes.

Theorem (Basis theorem)

H∗(G/P; Z) has a free Z-basis {Zw |w ∈W P}, where |Zw | = 2l(w).

Definition
A product of two classes Zw Zv is a linear sum of Schubert classes:

Zw Zv =
∑

u∈W P

cu
w,v Zu

cu
w,v ∈ Z is called the structure constants.
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Motivation

Why do we consider H∗(G/P; Z) ?
Chow ring A∗(G/P) is isomorphic to H∗(G/P; Z)
and closely related to A∗(GC)

H∗(G/P; Z) is related to H∗(G; Z) and H∗(BG; Z)

structure constants have various interpretations in
enumerative geometry, representation theory, etc ...

Goal in Schubert calculus
Determine the structure constants cu

w,v

More generally, the structure constants for H∗T ,K
∗
T ,Q

∗
T , etc...
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Previous results

Algorithmic formula for structure constant
Littlewood-Richardson rule
Chevalley formula
GKM type descriptions
Duan’s formula

Schubert polynomials (Polynomial representatives for Zw )
Schur function for SU(n)/SU(m)× SU(n −m)
Several definitions for Schubert polynomials
( only for classical type )

Borel presentations for H∗(G/P; Z) using Toda’s method.

We are especially interested in the case of exceptional Lie types
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example in Schubert calculus

G/P = SU(4)/SU(2)× SU(2).
H∗(G/P; Z) = 〈Z[],Z[1],Z[2],Z[1,1],Z[2,1],Z[2,2]〉
H∗(G/P; Z) = Z[x1, x2, y1, y2]/(1 + c1 + c2)(1 + c′1 + c′2),
where c1 = x1 + x2, c2 = x1x2, c′1 = y1 + y2, c′2 = y1y2

Schur polynomials
X[] = 1,X[1] = c1,X[2] = c2

1 − c2, . . . ,X[2,2] = c2
2 − c3c1 = c2

2

We can compute X 4
[1] = 2x[2,2]

From this one can tell that
1 The number of lines which intersects all given 4 lines in CP3 is 2
2 (π×4

[1] )ind has π[2,2] with multiplicity 2 in irreducible decmposition
(Note there is an 1-1 correspondance between irr-rep of sym. gp.
and partitions)



Introduction Cohomology of flag variety Our result Future Work

Borel presentation

Classification Theorem tells that G is one of the following types:

SU(n),Spin(n),Sp(n),G2,F4,E6,E7,E8

An algebraic argument using the fibration sequence

G→ G/P → BP,

H∗(G/P; Z) can be calculated as a quotient of polynomial algebra.
And the following list of calculations has been obtained:

(Bott-Samelson1958) G2/T
(Toda-Watanabe1974) Spin(n)/T ,F4/T ,E6/P1 ∼= E6/P6,E6/T
(Ishitoya-Toda1977) F4/P4

(Ishitoya1977, Watanabe1998) E6/P2

(Watanabe1975) E7/P7

(Nakagawa2001) E7/P1,E7/T
(Nakagawa(preprint)) E8/P8,E8/T
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Comparison of the two presentations

We have two descriptions for H∗(G/P; Z)

Borel presentation Schubert presentation

elements polynomials Schubert classes

geometry no algebraic cycles

ring structure easy hard

Using divided difference operator, we can bridge the two.
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Divided difference operator

Theorem (B-G-G(1973), Demazure(1973))

There are well defined operators called the divided difference
operators:

∆w : H∗(BT ; Z)→ H∗−2l(w)(BT ; Z), (w ∈W )

A map c : H2k (BT ; Z)Wp → H2k (G/P; Z) defined by

c(f ) =
∑

l(w)=k

∆w (f )Zw (Note:∆w (f ) ∈ Z)

“converts” Borel presentation to Schubert presentation
(Giambelli formula)

Zw = c
(

∆w−1w0

(∏
α∈∆+ α

|W |

))
“converts” Schubert presentation to Borel presentation
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Translation

Borel H∗(G/T ; Q) Schubert
||

H∗(G/T ; Z) ⊂ H∗(BT ; Q)/(H+(BT ; Q)W ) ⊃ H∗(G/T ; Z)
|| || ||

Z[ω1, . . .]/(ρ1, . . .) ⊂ Q[ω1, . . . , ωl ]/(φ1, . . .) ⊃
L

w∈W Z{Zw}
↘ ↑ ↗

Q[ω1, . . . , ωl ] = H∗(BT ; Q)

(Note that for P 6= T , the canonical map H∗(G/P; Z) ↪→ H∗(G/T ; Z) maps
Schubert classes to themselves)
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Our result

Take Xi such that {i | siX 6= X} = {i} and let Pi be the corresponding
stabilizer subgroup.

We give a description of H∗(G/P; Z) for the following cases:

G = F4 F4 E6 E6 E7 E7 E8
P = P1 P4 P1 P2 P1 P7 P8,

as a quotient of a polynomial algebra whose generators correspond
to Schubert classes.
(the above list includes all (co)minuscules of exceptional type)

This can be considered as a intermediate step to finding a candidate
for Schubert polynomial
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Borel presentation for H∗(E6/P2; Z)

(Q[ω1, . . . , ωl ])
W = Q[I2, I5, I6, I8, I9, I12], |Ik | = 2k

Z[ω1, . . . , ωl ]
W2 = Z[ω2, c2, c3, c4, c5, c6], |ck | = 2k

Let u =
1
2

c3 − ω3
2 , v =

1
3

(c4 + 2ω4
2)− ω2u,

Theorem (Ishitoya(1977))

H∗(E6/P2; Z) = Z[ω2,u, v , c6]/(ρ6, ρ8, ρ9, ρ12),

r6 = 2ω6
2 − ω3

2u − 3ω2
2v + u2 + 2c6,

r8 = ω8
2 + 3ω2

2c6 − 3v2,

r9 = −ω3
2c6 + 2uc6,

r12 = −ω6
2c6 + 15ω4

2v2 + 15ω2
2vc6 − 26v3 + 3c2

6 .
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Schubert presentation for H∗(E6/P2; Z)

Denote Zw = Zi1 i2··· when w = si1si2 · · · .

Using divided difference operator, we have

ω2 = Z2

u = Z542

v = Z6542 + Z3452 + Z1342

c6 = Z136542

−u + ω2 = Z342

v − ω2u = Z1342

Theorem (c.f. Duan-Zhao)

H∗(E6/P2; Z) = Z[Z2,Z342,Z1342,Z136542]/(r6, r8, r9, r12)

Similarly, we obtained H∗(G/P; Z) for the cases listed above.
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What is Schubert polynomial

“Theorem”

H∗(G/T ; Z) ∼= Z[ω1, . . . , ωl ]⊗ Z[u1, . . .]/(ideal),
where ωi = Zsi , |ωi | = 2 and |ui | > 2.

Schubert polynomial {Xw |w ∈W} can be considered as a family of
representatives of Zw in Z[ω1, . . . , ωl ]⊗ Z[u1, . . .]
Thus,

Xw Xv =
∑
u∈W

cu
w,v Xu mod (ideal)

Desirable properties:
coefficients of Xw are positive
∆iXwsi = Xw if l(wsi ) = l(w) + 1
stable under the inclusion Gn ↪→ Gn+1 for classical types

Bernstein-Gelfand-Gelfand (1982), Lascoux and Schützenberger
(1982), Billey-Haiman (1995), Fomin and Kirillov (1996), etc...
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Future works

1 Give a reasonable characterization of Schubert polynomial
2 Determine a polynomial ring in which Schubert polynomial

resides
3 Characterize indecomposable Schubert classes ( which makes a

set of ring generators )
4 Find a presentation of a given Schubert class Zw as a polynomial

in a fixed set of ring generators.
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Fin

Thank you for listening

a variety of flags

(from left to right)Singapore, China, Korea, Vietnam, Taiwan, India, Mexico,
Spain, UK, Japan
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