An algebraic topological approach toward concrete Schubert calculus

Shizuo Kaji joint with Masaki Nakagawa

The 2nd East Asia Conference on Algebraic Topology at National University of Singapore Dec. 19, 2008

Outline

- Introduction
- Cohomology of flag variety
- Our results
- Future Work

Notations

- G: connected compact Lie group
- T: maximal torus of G
- $I = \dim T$: rank of G
- $\mathfrak{g}, \mathfrak{t}$: Lie algebras of G and T
- for $X \in \mathfrak{t}$, $G/P = \{Ad(g)X \mid g \in G\} \subset \mathfrak{g}$:

(generalized) flag variety of type G

- $P = \{g \in G \mid Ad(g)X = X\}$
- *G*/*P* is a projective variety
- W, W_P: Weyl groups of G and P
 - $\alpha_1, \ldots, \alpha_l$: simple roots of *G*
 - s_1, \ldots, s_l : simple reflections corresponding to simple roots
 - *W* is the finite group generated by s_1, \ldots, s_l
 - I(w) is the length of $w \in W$

• $\omega_1, \ldots, \omega_l$: fundamental weights of *G*

• $H^*(BT;\mathbb{Z})\cong\mathbb{Z}[\omega_1,\ldots,\omega_l]$

Examples

We can assume that G is simple, 1-connected without losing any generality.

- $G = SU(n), T = diag(e^{it_1}, \ldots, e^{it_n}), \sum t_i = 0$
- $W = S_n$: *n*-th symmetric group
- $s_i = (i, i + 1)$: simple transposition
- take $X \in \mathfrak{t}$ as regular point ($\{i \mid s_i X = X\} = \emptyset$)
 - P = T
 - *W*_P = *
 - G/P is the ordinary flag manifold SU(n)/T: the space of flags, 0 ⊆ V¹ ⊆ V² ⊆ · · · ⊆ Vⁿ⁻¹ ⊆ Vⁿ = Cⁿ
- take $X \in \mathfrak{t}$ with $\{i \mid s_i X \neq X\} = \{m\}$
 - $P_m = SU(m) \times SU(n-m)$
 - $W_P = S_m \times S_{n-m}$
 - G/P is a Grassmann manifold SU(n)/SU(m) × SU(n − m): the space of m-dim linear subspace V^m ⊂ Cⁿ

Goal

General Goal

```
Determine the cohomology ring H^*(G/P; \mathbb{Z})
```

Borel answered this question for the rational coefficients as:

Theorem (Borel)

$$H^*(G/P;\mathbb{Q}) \cong (\mathbb{Q}[\omega_1,\ldots,\omega_l])^{W_P}/((\mathbb{Q}[\omega_1,\ldots,\omega_l])^W)$$

Theorem by Bott-Samelson says:

Theorem (Bott-Samelson)

 $H^*(G/P;\mathbb{Z})$ is concentrated in even degrees and torsion free

So the problem reduces to the understanding of the inclusion:

 $H^*(G/P;\mathbb{Z}) \hookrightarrow H^*(G/P;\mathbb{Q}) \cong (\mathbb{Q}[w_1,\ldots,w_l])^{W_P}/((\mathbb{Q}[w_1,\ldots,w_l])^W)$

Schubert classes

Let $W^P = W/W_P$ the left coset. (There is a canonical set of minimal length left coset representatives: $W^P = \{w \in W \mid \forall w' \in wW_P, l(w') = l(w) + 1\})$ • $W^P = W$ when P = T• W^P is (m, n - m)-partition when $G/P = SU(n)/SU(m) \times SU(n - m)$

 $H^*(G/P;\mathbb{Z})$ has a good basis which consists of *Schubert classes*.

Theorem (Basis theorem)

 $H^*(G/P;\mathbb{Z})$ has a free \mathbb{Z} -basis $\{Z_w | w \in W^P\}$, where $|Z_w| = 2I(w)$.

Definition

A product of two classes $Z_w Z_v$ is a linear sum of Schubert classes:

$$Z_w Z_v = \sum_{u \in W^P} c^u_{w,v} Z_u$$

 $c_{w,v}^{u} \in \mathbb{Z}$ is called the *structure constants*.

Motivation

Why do we consider $H^*(G/P; \mathbb{Z})$?

- Chow ring A^{*}(G/P) is isomorphic to H^{*}(G/P; ℤ) and closely related to A^{*}(G^ℂ)
- $H^*(G/P;\mathbb{Z})$ is related to $H^*(G;\mathbb{Z})$ and $H^*(BG;\mathbb{Z})$
- structure constants have various interpretations in enumerative geometry, representation theory, etc ...

Goal in Schubert calculus

Determine the structure constants $c_{w,v}^{u}$

• More generally, the structure constants for H_T^*, K_T^*, Q_T^* , etc...

Previous results

• Algorithmic formula for structure constant

- Littlewood-Richardson rule
- Chevalley formula
- GKM type descriptions
- Duan's formula
- Schubert polynomials (Polynomial representatives for Z_w)
 - Schur function for $SU(n)/SU(m) \times SU(n-m)$
 - Several definitions for Schubert polynomials (only for classical type)
- Borel presentations for $H^*(G/P; \mathbb{Z})$ using Toda's method.

We are especially interested in the case of exceptional Lie types

example in Schubert calculus

- $G/P = SU(4)/SU(2) \times SU(2)$.
- $H^*(G/P; \mathbb{Z}) = \langle Z_{[]}, Z_{[1]}, Z_{[2]}, Z_{[1,1]}, Z_{[2,1]}, Z_{[2,2]} \rangle$
- $H^*(G/P; \mathbb{Z}) = \mathbb{Z}[x_1, x_2, y_1, y_2]/(1 + c_1 + c_2)(1 + c'_1 + c'_2),$ where $c_1 = x_1 + x_2, c_2 = x_1x_2, c'_1 = y_1 + y_2, c'_2 = y_1y_2$
- Schur polynomials $X_{[]} = 1, X_{[1]} = c_1, X_{[2]} = c_1^2 - c_2, \dots, X_{[2,2]} = c_2^2 - c_3 c_1 = c_2^2$
- We can compute $X_{[1]}^4 = 2x_{[2,2]}$
- From this one can tell that
 - The number of lines which intersects all given 4 lines in CP³ is 2
 (π^{×4}_[1])_{ind} has π_[2,2] with multiplicity 2 in irreducible decmposition (Note there is an 1-1 correspondance between irr-rep of sym. gp. and partitions)

Borel presentation

Classification Theorem tells that *G* is one of the following types:

 $SU(n), Spin(n), Sp(n), G_2, F_4, E_6, E_7, E_8$

An algebraic argument using the fibration sequence

 $G \rightarrow G/P \rightarrow BP$,

 $H^*(G/P; \mathbb{Z})$ can be calculated as a quotient of polynomial algebra. And the following list of calculations has been obtained:

- (Bott-Samelson1958) G₂/T
- (Toda-Watanabe1974) $Spin(n)/T, F_4/T, E_6/P_1 \cong E_6/P_6, E_6/T$
- (Ishitoya-Toda1977) F_4/P_4
- (Ishitoya1977, Watanabe1998) *E*₆/*P*₂
- (Watanabe1975) *E*₇/*P*₇
- (Nakagawa2001) *E*₇/*P*₁, *E*₇/*T*
- (Nakagawa(preprint)) E₈/P₈, E₈/T

Future Work

Comparison of the two presentations

We have two descriptions for $H^*(G/P; \mathbb{Z})$

	Borel presentation	Schubert presentation
elements	polynomials	Schubert classes
geometry	no	algebraic cycles
ring structure	easy	hard

Using *divided difference operator*, we can bridge the two.

Divided difference operator

Theorem (B-G-G(1973), Demazure(1973))

• There are well defined operators called the divided difference operators:

$$\Delta_{w}: H^{*}(BT;\mathbb{Z})
ightarrow H^{*-2l(w)}(BT;\mathbb{Z}), (w \in W)$$

• A map $c: H^{2k}(BT;\mathbb{Z})^{W_p}
ightarrow H^{2k}(G/P;\mathbb{Z})$ defined by

$$c(f) = \sum_{l(w)=k} \Delta_w(f) Z_w \quad (\mathsf{Note:} \Delta_w(f) \in \mathbb{Z})$$

"converts" Borel presentation to Schubert presentation

• (Giambelli formula)

$$Z_w = c \left(\Delta_{w^{-1}w_0} \left(\frac{\prod_{\alpha \in \Delta^+} \alpha}{|W|} \right) \right)$$

"converts" Schubert presentation to Borel presentation

Translation

Borel
$$H^*(G/T; \mathbb{Q})$$
Schubert $H^*(G/T; \mathbb{Z})$ \subset $H^*(BT; \mathbb{Q})/(H^+(BT; \mathbb{Q})^W)$ \supset $H^*(G/T; \mathbb{Z})$ $||$ $||$ $||$ $||$ $||$ $\mathbb{Z}[\omega_1, \ldots]/(\rho_1, \ldots)$ \subset $\mathbb{Q}[\omega_1, \ldots, \omega_l]/(\phi_1, \ldots)$ \supset $\bigoplus_{w \in W} \mathbb{Z}\{Z_w\}$ \land \uparrow \checkmark \swarrow $\mathbb{Q}[\omega_1, \ldots, \omega_l] = H^*(BT; \mathbb{Q})$ \checkmark

(Note that for $P \neq T$, the canonical map $H^*(G/P; \mathbb{Z}) \hookrightarrow H^*(G/T; \mathbb{Z})$ maps Schubert classes to themselves)

Take X_i such that $\{i \mid s_i X \neq X\} = \{i\}$ and let P_i be the corresponding stabilizer subgroup.

We give a description of $H^*(G/P; \mathbb{Z})$ for the following cases:

$$G = F_4 \quad F_4 \quad E_6 \quad E_6 \quad E_7 \quad E_7 \quad E_8 \ P = P_1 \quad P_4 \quad P_1 \quad P_2 \quad P_1 \quad P_7 \quad P_8,$$

as a quotient of a polynomial algebra whose generators correspond to Schubert classes.

(the above list includes all (co)minuscules of exceptional type)

This can be considered as a intermediate step to finding a candidate for Schubert polynomial

Borel presentation for $H^*(E_6/P_2;\mathbb{Z})$

$$\begin{aligned} (\mathbb{Q}[\omega_1, \dots, \omega_l])^W &= \mathbb{Q}[l_2, l_5, l_6, l_8, l_9, l_{12}], \quad |l_k| = 2k\\ \mathbb{Z}[\omega_1, \dots, \omega_l]^{W_2} &= \mathbb{Z}[\omega_2, c_2, c_3, c_4, c_5, c_6], \quad |c_k| = 2k\\ \text{Let } u &= \frac{1}{2}c_3 - \omega_2^3, \ v &= \frac{1}{3}(c_4 + 2\omega_2^4) - \omega_2 u, \end{aligned}$$

Theorem (Ishitoya(1977))

$$H^*(E_6/P_2;\mathbb{Z}) = \mathbb{Z}[\omega_2, u, v, c_6]/(\rho_6, \rho_8, \rho_9, \rho_{12}),$$

$$\begin{split} r_6 &= 2\omega_2^6 - \omega_2^3 u - 3\omega_2^2 v + u^2 + 2c_6, \\ r_8 &= \omega_2^8 + 3\omega_2^2 c_6 - 3v^2, \\ r_9 &= -\omega_2^3 c_6 + 2uc_6, \\ r_{12} &= -\omega_2^6 c_6 + 15\omega_2^4 v^2 + 15\omega_2^2 v c_6 - 26v^3 + 3c_6^2 \end{split}$$

Schubert presentation for $H^*(E_6/P_2; \mathbb{Z})$

Denote
$$Z_w = Z_{i_1 i_2 \cdots}$$
 when $w = s_{i_1} s_{i_2} \cdots$.

Using divided difference operator, we have

$$\begin{aligned}
\omega_2 &= Z_2 \\
u &= Z_{542} \\
v &= Z_{6542} + Z_{3452} + Z_{1342} \\
C_6 &= Z_{136542} \\
-u + \omega_2 &= Z_{342} \\
v - \omega_2 u &= Z_{1342}
\end{aligned}$$

Theorem (c.f. Duan-Zhao)

$$H^*(E_6/P_2;\mathbb{Z}) = \mathbb{Z}[Z_2, Z_{342}, Z_{1342}, Z_{136542}]/(r_6, r_8, r_9, r_{12})$$

Similarly, we obtained $H^*(G/P; \mathbb{Z})$ for the cases listed above.

What is Schubert polynomial

"Theorem"

$$H^*(G/T; \mathbb{Z}) \cong \mathbb{Z}[\omega_1, \dots, \omega_l] \otimes \mathbb{Z}[u_1, \dots]/(\text{ideal}),$$

where $\omega_i = Z_{s_i}, |\omega_i| = 2$ and $|u_i| > 2$.

Schubert polynomial $\{X_w | w \in W\}$ can be considered as a family of representatives of Z_w in $\mathbb{Z}[\omega_1, \ldots, \omega_l] \otimes \mathbb{Z}[u_1, \ldots]$ Thus,

$$X_w X_v = \sum_{u \in W} c^u_{w,v} X_u ext{ mod (ideal)}$$

Desirable properties:

- coefficients of X_w are positive
- $\Delta_i X_{ws_i} = X_w$ if $I(ws_i) = I(w) + 1$
- stable under the inclusion $G_n \hookrightarrow G_{n+1}$ for classical types

Bernstein-Gelfand-Gelfand (1982), Lascoux and Schützenberger (1982), Billey-Haiman (1995), Fomin and Kirillov (1996), etc...

Future works

- Give a reasonable characterization of Schubert polynomial
- Oetermine a polynomial ring in which Schubert polynomial resides
- Characterize indecomposable Schubert classes (which makes a set of ring generators)
- Find a presentation of a given Schubert class Z_w as a polynomial in a fixed set of ring generators.

Thank you for listening

a variety of flags

(from left to right)Singapore, China, Korea, Vietnam, Taiwan, India, Mexico, Spain, UK, Japan