A concise proof of

 the interval decomposition of persistent homologyTDA Week, Kyoto, 31 Jul. 2023
Shizuo KAJI (Kyushu Univ.)

Advert／Motivation

We are finishing an introductory book on persistent homology（in Japanese）
池祐一・エスカラ エマソン ガウ・大林一平•鍛冶静雄 著
位相的データ解析から構造発見ヘ パーシステントホモロジーを中心に
サイエンス社AI／データサイエンスシリーズ 近刊

The topic today originates from a question we had during the preparation of the book．

What is the quickest way to introduce the fundamental structure theorem of persistent homology？

Persistent homology as a feature extractor

For $K_{*}=K_{1} \subset K_{2} \subset \cdots \subset K_{M}$: finite sequence of finite cell complexes,
its persistent homology $P H\left(K_{*} ; k\right)$ with coefficients in a field k is represented by a multi-set of points of the form $(b, d) \in\{1,2, \ldots, M, \infty\}^{2}$

This presentation of $P H\left(K_{*} ; k\right)$ as a persistence diagram or barcode makes persistent homology powerful machinery as a feature extractor of data

This example is from "Tutorial on Topological Data Analysis", which introduces TDA packages for Python. Google "shizuo kaji tutorial"

Persistent homology

$$
K_{1} \subset K_{2} \subset \cdots \subset K_{M}
$$

Sequence of "computable" objects

$$
H_{*}\left(K_{1} ; k\right) \rightarrow H_{*}\left(K_{2} ; k\right) \rightarrow \cdots \rightarrow H_{*}\left(K_{M} ; k\right)
$$

The algebraic structure of the latter is more tractable than the combinatorial/topological structure of the former.

If we will focus only on the linear structure on the algebraic side, the persistent diagram provides a complete invariant.

Ex: look at the whole sequence, not slice by slice

Interval

R : a totally ordered set
Vect: the category of vector spaces

Persistence module: a functor $V: R \rightarrow V e c t$

Interval: $I \subset R$ s.t. $x, y \in I \Rightarrow z \in I(x \leq \forall z \leq y)$
Interval module: $k_{I}(x)=\left\{\begin{array}{c}k(x \in I) \\ 0(x \notin I)\end{array}\right.$
(maps are defined in an obvious way)

Interval decomposition theorem

Theorem

Any persistent module can be expressed "uniquely" by a direct sum of interval modules under a "mild condition".

Decomposition: $V \cong \oplus_{I \in \Lambda} V_{I}$
Uniqueness: Λ is unique as a multi-set (factors I's are unique up to permutation)
the multiset of the endpoints of I provide a (almost complete) invariant

- When R is finite => Gabriel's theorem 1972
- When every V_{t} is finite dimensional => Crawley-Boevey 2012
- When V is q-tame (i.e., all maps have finite rank)
=> Chazal-Vin de Silva-Glisse-Oudot 2015
- Uniqueness: Krull-Schmidt-Azumaya's theorem

Today, we focus the simple case: R : finite and $\operatorname{dim}\left(V_{t}\right)<\infty$

The case of finite R and $\operatorname{dim}\left(V_{t}\right)<\infty$

Theorem
A sequence of finite dimensional vector spaces

$$
0=V_{0} \xrightarrow{h_{0}} V_{1} \xrightarrow{h_{1}} \cdots \xrightarrow{h_{M-1}} V_{M} \xrightarrow{h_{M}} V_{M+1}=0
$$

decomposes into a direct sum of intervals of the following form

$$
k_{[a, b)}: 0 \rightarrow \cdots \rightarrow 0 \rightarrow \underset{\substack{\| \\ V_{a}}}{k \rightarrow} k \xrightarrow[\substack{I d \\ V_{b-1} V_{b}}]{k \rightarrow 0} \rightarrow 0 \rightarrow \cdots \rightarrow 0
$$

That is, (existence) $V \cong \oplus_{i=1}^{m} k_{\left[a_{i}, b_{i}\right)}$
(uniqueness) the multiset $\left\{\left[a_{i}, b_{i}\right) \mid i=1 \ldots m\right\}$ is unique.

A standard proof: existence

$$
0=V_{0} \xrightarrow{h_{0}} V_{1} \xrightarrow{h_{1}} \cdots \xrightarrow{h_{M-1}} V_{M} \xrightarrow{h_{M}} V_{M+1}=0
$$

View h_{i} as an action of an indeterminant t and consider the sequence as a $k[t]$-module.
Then invoke the structure theorem of a finitely-generated module over PID:

Theorem

M : A finitely generated, graded module over $k[t]$

$$
M \cong \bigoplus_{i=1}^{m} \Sigma^{\mathrm{n}_{\mathrm{i}}} k[t] /\left(t^{d_{i}}\right)
$$

A standard proof is given essentially by the matrix reduction algorithm.

Note: R : non-negatively graded PID $=>R=R_{0}$ or $R \cong k[t]$ A graded variant of the structure theorem does not hold when $R=R_{0}$!

A standard proof: uniqueness

Note that morphisms between intervals are very restricted:
if there exists $k_{[a, b)} \rightarrow k_{\left[a^{\prime}, b^{\prime}\right)}$ injective $=>b=b^{\prime}$ (surjective $=>a=a^{\prime}$)
Let $V \cong \bigoplus_{i=1}^{m} k_{I_{i}} \cong \bigoplus_{i=1}^{m \prime} k_{I_{i}}$
Consider the composition

$$
q_{j}: k_{I_{1}} \stackrel{i_{1}}{\longrightarrow} \bigoplus_{i=1}^{m} k_{I_{i}} \rightarrow \bigoplus_{i=1}^{f} k_{I_{i}^{\prime}} \rightarrow k_{I_{j}^{\prime}}^{m_{j}^{\prime}} \stackrel{\square_{i=1}}{\rightarrow} k_{I_{i}^{\prime}} \xrightarrow{m^{\prime-1}} \bigoplus_{i=1}^{m} k_{I_{i}} \xrightarrow{\pi_{1}} k_{I_{1}}
$$

Then, $\Sigma q_{j}=I d$ so some q_{j} is an isomorphism.

For an induction argument on m to work, we need a "cancellation" lemma.

Lemma

If there exists an isomorphism $f: V \oplus V^{\prime} \rightarrow W \oplus W^{\prime}$ whose restriction gives an isomorphism $V \rightarrow W$, there exists an isomorphism $g: V^{\prime} \rightarrow W^{\prime}$

A proof is given essentially by a block diagonalisation.

Easier proof?

Notation

$$
0=V_{0} \xrightarrow{h_{0}} V_{1} \xrightarrow{h_{1}} \cdots \xrightarrow{h_{M-1}} V_{M} \xrightarrow{h_{M}} V_{M+1}=0
$$

- For $v \in V_{r}$
- Write $|v|=r$
- Write $h^{j} v=h_{r+j-1} \circ h_{r+j-2} \circ \cdots \circ h_{r} v$ $e(v)$:"life expectancy"
- Define $e(v)$ is the minimum j s.t. $h^{j} v=0$
- For $v_{1}, \ldots, v_{m} \in \mathrm{U}_{r=0} V_{r} \quad\left(v_{i}\right.$ are homogeneous)
- Let $\left\langle v_{1}, \ldots, v_{m}\right\rangle$ be the submodule generated by $\left\{h^{j} v_{i}\right\}$
- In particular, $\langle v\rangle=k_{[|v|,|v|+e(v))}$

Note that the following are equivalent

"No non-trivial relation"

1. $\left\langle v_{1}, \ldots, v_{m}\right\rangle=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}\right\rangle \oplus \cdots \oplus\left\langle v_{m}\right\rangle$
2. $\exists r, \exists J \subset\left\{i \| v_{i} \mid \leq r\right\}, \exists\left\{c_{i} \in k \mid i \in J\right\}$ s.t. $\sum_{i \in J} c_{i} h^{r-\left|v_{i}\right|} v_{i}=0$

$$
\Rightarrow \forall i \in J, c_{i} h^{r-\left|v_{i}\right|} v_{i}=0
$$

An elementary and concise proof: existence

Lemma: Let $S=\left\{v_{1}, \ldots, v_{m}\right\}$ s.t. $V=\langle S\rangle$.
If $V \nsubseteq\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}\right\rangle \oplus \cdots \oplus\left\langle v_{m}\right\rangle$, there exists another generating set S^{\prime} with $\sum_{v \in S} e(v)<\sum_{v \in S} e(v)$

Proof of Theorem: Since $\sum_{v \in S} e(v)$ is a non-negative integer, the process terminates after finite iterations.
Proof of Lemma: Assume $\exists r, \exists J \subset\left\{i \|\left|v_{i}\right| \leq r\right\}, \exists\left\{c_{i} \in k \mid i \in J\right\}$ s.t. $\sum_{i \in J} c_{i} h^{r-\left|v_{i}\right|} v_{i}=0$ and $\exists i \in J, c_{i} h^{r-\left|v_{i}\right|} v_{i} \neq 0$.
Let v_{j} be one with $c_{i} h^{r-\left|v_{i}\right|} v_{i} \neq 0$ having the largest $\left|v_{j}\right|$.
Put $\bar{v}_{j}=\sum_{i \in J} c_{i} h^{\left|v_{j}\right|-\left|v_{i}\right|} v_{i}=c_{j} v_{j}+\sum_{i \in J \backslash j\}} c_{i} h^{\left|v_{j}\right|-\left|v_{i}\right|} v_{i}$
Since $c_{j} \neq 0$, we see $S \cup\left\{\bar{v}_{j}\right\} \backslash\left\{v_{j}\right\}$ generates V.
v_{j} is the youngest among those who constitute a non-trivial relation

Since $c_{j} h^{r-\left|v_{j}\right|} v_{j} \neq 0$, we have $e\left(v_{j}\right)>r-\left|v_{i}\right|$.
Since $h^{r-\left|v_{j}\right|} v_{j}=\sum_{i \in J} c_{i} h^{r-\left|v_{i}\right|} v_{i}=0$, we have $e\left(\bar{v}_{j}\right) \leq r-\left|v_{i}\right|$. So $e\left(\bar{v}_{j}\right)<e\left(v_{j}\right)$.
Generators with the minimum total life expectancy give the decomposition! (cover the barcodes efficiently with no overlaps)

An elementary and concise proof: uniqueness

Assume $V \cong \oplus_{i=1}^{m} k_{\left[a_{i}, b_{i}\right)}$. We prove the uniqueness of the multiset $\left\{\left(a_{i}, b_{i}\right)\right\}$ by counting the multiplicity of $\left(a_{i}, b_{i}\right)$ in terms of invariants of V.

$$
\text { Let } V_{r}^{i}=\left\{v \in V_{r} \mid e(v) \leq i\right\}
$$

Idea: Count the number of intervals in terms of $\operatorname{dim}\left(V_{r}^{i}\right)$
Since $\#\left\{\left(a_{i}, b_{i}\right) \mid a_{i} \leq r, b_{i} \leq r+i\right\}=\operatorname{dim}\left(V_{r}^{i}\right)$
we have \#\{($\left.\left.a_{i}, b_{i}\right) \mid a_{i} \leq r, b_{i}=r+i\right\}=\operatorname{dim}\left(V_{r}^{i}\right)-\operatorname{dim}\left(V_{r}^{i-1}\right)$

$$
\text { And \#\{(} \begin{aligned}
\left.\left.i, b_{i}\right) \mid a_{i}=r, b_{i}=r+i\right\} & =\left(\operatorname{dim}\left(V_{r}^{i}\right)-\operatorname{dim}\left(V_{r}^{i-1}\right)\right) \\
& -\left(\operatorname{dim}\left(V_{r-1}^{i+1}\right)-\operatorname{dim}\left(V_{r-1}^{i}\right)\right)
\end{aligned}
$$

Elder rule revisited

Proposition:

Let $v \in V$ s.t. $e(v)$ is the largest.
Then, $\langle v\rangle$ splits off from V.
That is, there exists V^{\prime} such that $V=\langle v\rangle \oplus V^{\prime}$

Proof: extend $\{v\}$ to a generating set.
Recall that in the proof of Lemma, the youngest v_{j}
(the one with the largest $\left|v_{j}\right|$) in the relation is replaced or removed to form a new generating set.
So v is kept intact in the iterative process.

"Youngest rule"

A similar argument shows

Proposition:

Let $v \in V$ s.t. $e(v)$ is the smallest among those which constitutes a minimal generating set of V.

Then, $\langle v\rangle$ splits off from V.
That is, there exists V^{\prime} such that $V=\langle v\rangle \oplus V^{\prime}$

Iterative applications of this Lemma yields the interval decomposition as well.

Remarks

- The proof is not fully constructive unlike the matrix reduction.

Can we make it into an algorithm?

- How far can we extend the argument to more general cases?

Many thanks to
E. Escolar, Y. Hiraoka, Y. Ike, I. Obayashi, and H. Ochiai

