A concise proof of the interval decomposition of persistent homology

TDA Week, Kyoto, 31 Jul. 2023 Shizuo KAJI (Kyushu Univ.)

Advert / Motivation

We are finishing an introductory book on persistent homology (in Japanese) 池祐一・エスカラ エマソン ガウ・大林一平・鍛冶静雄 著 **位相的データ解析から構造発見へ パーシステントホモロジーを中心に** サイエンス社AI/データサイエンスシリーズ 近刊

The topic today originates from a question we had during the preparation of the book.

What is the quickest way to introduce the fundamental structure theorem of persistent homology?

Persistent homology as a feature extractor

For $K_* = K_1 \subset K_2 \subset \cdots \subset K_M$: finite sequence of finite cell complexes,

its persistent homology $PH(K_*; k)$ with coefficients in a field k is *represented* by a multi-set of points of the form $(b, d) \in \{1, 2, ..., M, \infty\}^2$

This presentation of $PH(K_*; k)$ as a persistence diagram or barcode makes persistent homology powerful machinery as a feature extractor of data

This example is from "Tutorial on Topological Data Analysis", which introduces TDA packages for Python. Google "shizuo kaji tutorial"

Persistent homology

$$K_1 \subset K_2 \subset \cdots \subset K_M$$

$$H_*(\ ;k) \longrightarrow H_*(K_2;k) \longrightarrow \cdots \longrightarrow H_*(K_M;k)$$

Sequence of "computable" objects

 $(K_1; k) \rightarrow H_*(K_2; k) \rightarrow \cdots \rightarrow H_*(K_M; k)$

The algebraic structure of the latter is more tractable than the combinatorial/topological structure of the former.

If we will focus only on the linear structure on the algebraic side, the persistent diagram provides a complete invariant.

Ex: look at the whole sequence, not slice by slice

Interval

R : a totally ordered set *Vect*: the category of vector spaces

Persistence module: a functor $V: R \rightarrow Vect$

Interval: $I \subset R$ s.t. $x, y \in I \Rightarrow z \in I \ (x \leq \forall z \leq y)$

Interval module: $k_I(x) = \begin{cases} k \ (x \in I) \\ 0 \ (x \notin I) \end{cases}$ (maps are defined in an obvious way)

Interval decomposition theorem

Theorem

Any persistent module can be expressed "uniquely" by a direct sum of interval modules under a "mild condition".

Decomposition: $V \cong \bigoplus_{I \in \Lambda} V_I$

Uniqueness: Λ is unique as a multi-set (factors I's are unique up to permutation)

the multiset of the endpoints of *I* provide a (almost complete) invariant

- When *R* is finite => Gabriel's theorem 1972
- When every V_t is finite dimensional => Crawley-Boevey 2012
- When V is q-tame (i.e., all maps have finite rank)
 => Chazal-Vin de Silva-Glisse-Oudot 2015
- Uniqueness: Krull–Schmidt–Azumaya's theorem

Today, we focus the simple case: *R*: finite and $\dim(V_t) < \infty$

The case of finite *R* and $\dim(V_t) < \infty$

Theorem

A sequence of finite dimensional vector spaces

$$0 = V_0 \xrightarrow{h_0} V_1 \xrightarrow{h_1} \cdots \xrightarrow{h_{M-1}} V_M \xrightarrow{h_M} V_{M+1} = 0$$

decomposes into a direct sum of intervals of the following form

$$k_{[a,b)}: 0 \to \cdots \to 0 \xrightarrow{k} \stackrel{Id}{\to} \stackrel{Id}{k} \stackrel{Id}{\to} \cdots \stackrel{Id}{\to} \underset{V_{b-1}}{\overset{Id}{\to}} \stackrel{Id}{v_b} \to 0 \to \cdots \to 0$$

That is, (existence) $V \cong \bigoplus_{i=1}^{m} k_{[a_i,b_i)}$

(uniqueness) the multiset $\{[a_i, b_i)|i = 1 \dots m\}$ is unique.

A standard proof: existence

$$0 = V_0 \xrightarrow{h_0} V_1 \xrightarrow{h_1} \cdots \xrightarrow{h_{M-1}} V_M \xrightarrow{h_M} V_{M+1} = 0$$

View h_i as an action of an indeterminant t and consider the sequence as a k[t]-module.

Then invoke the structure theorem of a finitely-generated module over PID:

Theorem *M*: A finitely generated, graded module over k[t] (we allow $(t^{d_i})=0$ for some i) $M \cong \bigoplus_{i=1}^{m} \Sigma^{n_i} k[t]/(t^{d_i})$

A standard proof is given essentially by the matrix reduction algorithm.

Note: *R*: non-negatively graded PID => $R = R_0$ or $R \cong k[t]$ A graded variant of the structure theorem does not hold when $R = R_0!$

(a good exposition: Loeh, 2023)

A standard proof: uniqueness

Note that morphisms between intervals are very restricted: if there exists $k_{[a,b]} \rightarrow k_{[a',b']}$ injective => b = b' (surjective => a = a')

Let $V \cong \bigoplus_{i=1}^{m} k_{I_i} \cong \bigoplus_{i=1}^{m'} k_{I'_i}$

Consider the composition

$$q_j: k_{I_1} \xrightarrow{i_1} \bigoplus_{i=1}^m k_{I_i} \xrightarrow{f} \bigoplus_{i=1}^{m'} k_{I'_i} \xrightarrow{\pi_j} k_{I'_j} \xrightarrow{i_j} \bigoplus_{i=1}^{m'} k_{I'_i} \xrightarrow{f^{-1}} \bigoplus_{i=1}^m k_{I_i} \xrightarrow{\pi_1} k_{I_1}.$$

Then, $\sum q_j = Id$ so some q_j is an isomorphism.

For an induction argument on *m* to work, we need a "cancellation" lemma.

Lemma

If there exists an isomorphism $f: V \oplus V' \to W \oplus W'$ whose restriction gives an isomorphism $V \to W$, there exists an isomorphism $g: V' \to W'$

A proof is given essentially by a block diagonalisation.

Easier proof?

Notation

$$0 = V_0 \xrightarrow{h_0} V_1 \xrightarrow{h_1} \cdots \xrightarrow{h_{M-1}} V_M \xrightarrow{h_M} V_{M+1} = 0$$

- For $v \in V_r$
 - Write |v| = r
 - Write $h^j v = h_{r+j-1} \circ h_{r+j-2} \circ \cdots \circ h_r v$
 - Define e(v) is the minimum j s.t. $h^j v = 0$

For
$$v_1, \ldots, v_m \in \bigcup_{r=0} V_r$$
 (v_i are homogeneous)

$$e(v)$$
: "life expectancy"

In the view of k[t]-module $Ann(v) = (t^{e(v)})$

• Let $\langle v_1, \dots, v_m \rangle$ be the submodule generated by $\{h^j v_i\}$

• In particular,
$$\langle v \rangle = k_{[|v|,|v|+e(v))}$$

Note that the following are equivalent 1. $\langle v_1, ..., v_m \rangle = \langle v_1 \rangle \bigoplus \langle v_2 \rangle \bigoplus \cdots \bigoplus \langle v_m \rangle$ 2. $\exists r, \exists J \subset \{i | | v_i | \leq r\}, \exists \{c_i \in k | i \in J\} \text{ s.t. } \sum_{i \in J} c_i h^{r-|v_i|} v_i = 0$ $\Rightarrow \forall i \in J, c_i h^{r-|v_i|} v_i = 0$

An elementary and concise proof: existence

Lemma: Let
$$S = \{v_1, \dots, v_m\}$$
 s.t. $V = \langle S \rangle$.

Let v_i be one with $c_i h^{r-|v_i|} v_i \neq 0$ having the largest $|v_i|$.

Put $\overline{v_i} = \sum_{i \in I} c_i h^{|v_j| - |v_i|} v_i = c_i v_j + \sum_{i \in I \setminus \{i\}} c_i h^{|v_j| - |v_i|} v_i$

Since $c_i \neq 0$, we see $S \cup \{\overline{v_i}\} \setminus \{v_i\}$ generates V.

If $V \ncong \langle v_1 \rangle \oplus \langle v_2 \rangle \oplus \cdots \oplus \langle v_m \rangle$, there exists another generating set *S'* with $\sum_{v \in S'} e(v) < \sum_{v \in S} e(v)$

Proof of Theorem: Since $\sum_{v \in S} e(v)$ is a non-negative integer, the process terminates after finite iterations. Proof of Lemma: Assume $\exists r, \exists J \subset \{i | | v_i | \leq r\}, \exists \{c_i \in k | i \in J\}$ s.t. $\sum_{i \in J} c_i h^{r-|v_i|} v_i = 0$ and $\exists i \in J, c_i h^{r-|v_i|} v_i \neq 0$.

 v_j is the youngest among those who constitute a non-trivial relation

 $\overline{v_i}$ =0 may happen

Since
$$c_j h^{r-|v_j|} v_j \neq 0$$
, we have $e(v_j) > r - |v_i|$.
Since $h^{r-|v_j|} v_j = \sum_{i \in J} c_i h^{r-|v_i|} v_i = 0$, we have $e(\overline{v_j}) \leq r - |v_i|$. So $e(\overline{v_j}) < e(v_j)$.

due the the uniqueness

Generators with the minimum total life expectancy give the decomposition! (cover the barcodes efficiently with no overlaps)

Essentially the same as one of the well-known proofs

An elementary and concise proof: uniqueness

Assume $V \cong \bigoplus_{i=1}^{m} k_{[a_i,b_i)}$. We prove the uniqueness of the multiset $\{(a_i, b_i)\}$ by counting the multiplicity of (a_i, b_i) in terms of invariants of *V*.

Let $V_r^i = \{v \in V_r | e(v) \le i\}$

Idea: Count the number of intervals in terms of $\dim(V_r^i)$

Since
$$\#\{(a_i, b_i) | a_i \le r, b_i \le r+i\} = \dim(V_r^i)$$

we have $\#\{(a_i, b_i) | a_i \le r, b_i = r+i\} = \dim(V_r^i) - \dim(V_r^{i-1})$
And $\#\{(a_i, b_i) | a_i = r, b_i = r+i\} = \left(\dim(V_r^i) - \dim(V_r^{i-1})\right)$
 $-\left(\dim(V_{r-1}^{i+1}) - \dim(V_{r-1}^i)\right)$

Elder rule revisited

Proposition:

```
Let v \in V s.t. e(v) is the largest.
```

Then, $\langle v \rangle$ splits off from *V*.

That is, there exists V' such that $V = \langle v \rangle \oplus V'$

Proof: extend {v} to a generating set. Recall that in the proof of Lemma, the youngest v_j (the one with the largest $|v_j|$) in the relation is replaced or removed to form a new generating set. So v is kept intact in the iterative process.

"Youngest rule"

A similar argument shows

Proposition:

Let $v \in V$ s.t. e(v) is the smallest among those which constitutes a minimal generating set of V.

Then, $\langle v \rangle$ splits off from *V*.

That is, there exists V' such that $V = \langle v \rangle \oplus V'$

Iterative applications of this Lemma yields the interval decomposition as well.

Remarks

- The proof is not fully constructive unlike the matrix reduction. Can we make it into an algorithm?
- How far can we extend the argument to more general cases?

Many thanks to E. Escolar, Y. Hiraoka, Y. Ike, I. Obayashi, and H. Ochiai