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STANDARD KALEIDOCYCLE

« RECREATIONAL MATHS
E.G., ROUSE BALL, W. W. 1939
“MATHEMATIC AL RECREATIONS AND ESSAYS™

PURE MATHS

A FLEXIBLE POLYHEDRAL OBJECT,

WHICH CAN BE MADE FROM A SHEET OF PAPER
(C.F. CAUCHY'S RIGIDITY THEOREM)

KINEMATICS/ROBROTICS
ITIS A BRICARD 6R LINKAGE, WHICH VIOLATES
MAXWELL'S MOBILITY FORMULA

https://www.youtube.com/watch2v=V_fdN3HiIisI




HOW IS KALEIDOCYCLE RELEVANT
TO CRYSTAL DISLOCATION ¢




COMMON KEYWORDS (excusg)

« REPRESENTATION BY GRAPH OF LOCAL FRAMES
« MONODROMY ON GRAPH
« ENERGY EQUILIBRIUM

» CONFIGURATION SPACE
(REAL ALGEBRAIC GEOMETRY)




GRAPHICAL MODEL OF KALEIDOCYCLE

We model Kaleidocycles using graphs:

« vertices: shared edges of tetrahedra (“hinge")
» directed edges: tetrahedra

« each edge labelled by an element of

the group SE(3) of Euclidean motion in R3
(this accounts for the shape of the tetrahedron)

the change in local frame is recorded by A,; €SE(3)

More generally, we call the pair of
the graph G=(V,E) and
Underlying graph of é-Kleidocycle the edge labelling E = SE(3)

Notice the directed : . .
(doubled headed) edges a kinematic chain




STATE SPACE OF A KINEMATIC CHAIN
Fix a kinematic chain: G=(V,E), A: E=> SE(3)

A STATE IS A MAP 0O : V = R SATISFYING THE CLOSING CONDITION

Ai iRy, Aigiy -+ Ro, Aiiy {ip™} = {p™}

for any CYC'G (1112 1913, "+ " , Ikll)
where  p* = (0,0, +¢,1)T (e > 0 small)

Ry € SE(3) is the rotation around z-axis by magnitude 6

We say the state is oriented when + always goes + in the closing condition




BASIC QUESTIONS

e WHAT IS THE TOPOLOGY OF THE STATE SPACE?
- WHEN DOES IT HAVE NON-TRIVIAL TOPOLOGY?
o = KALEIDOCYCLES HAVE INTERESTING STATE SPACES

o« WHAT STATES ARE STABLE WITH RESPECT TO A CERTAIN ENERGY<
e =»SOME KALEIDOCYCLES HAVE A CONSTANT ENERGY




KEY OBSERVATION

The state space (the configuration space) is
the space of the real solutions to a system of
polynomials defined by the closing condition.




AN INTERESTING FAMILY OF
KINEMATIC CHAINS




SETTING

FROM NOW ON, WE FOCUS ON THE CASE WHEN THE UNDERLYING
GRAPH G=(V,E) IS A CYCLE:

V={1,23,...,N}, WHERE WE REGARD N+1=]
E={0G:1+1)]|i=1,2...,N}

This means all tetrahedra are congruent

Sin @ COS & 0

0 0 1

0 0 Sin @ —
cos¢ —sing 0 ) Edge label is same everywhere

We call this type of kinematic chain and its states Kaleidocycles and denote it by KN




DENAVIT-HARTENBERG FORMULATION
" For this special system, there is a classical and a neat parametrisation

Let B, € $? be hinge direction vectors.
We define the local frames similar to Frenet-Sermret

Bi X B.,i+1
|Bi X Bit1|’

A; = (T;,N;,B;), T;=
e |
Aiiv1=A; A

The congruency and the closing conditions are given by

o, Pite—gl © " 8 B

* <B,’, Bi—+—l> = COS @, E Bi X B.,j_._l — 1 wesetBN,,-+B,

according to orientability




BREAK: HANDICRAFT SESSION

Try gluing the ends in different ways by twisting




EXTREME KALEIDOCYCLES

* THE SOLUTION TO THE POLYNOMIAL SYSTEM k" PROJECTED ON THE ® AXIS GIVES
A (UNION OF) INTERVALS

* BY NUMERICAL EXPERIMENTS, WE FOUND THEY ARE OF THE FOLLOWING FORM:

« WHEN N:ODD
FOR ORIENTED SYSTEM: ® N [0,T1-Cy]
FOR NON-ORIENTED SYSTEM: @ IN [C\. TT] + There is no solution for N<é
* N C,, converges monotonously

to a constant
« WHEN N:EVEN

FOR ORIENTED SYSTEM: ® N[O, TT]
FOR NON-ORIENTED SYSTEM: ® IN [Cy. TT-Cy]

Kaleidocycles with the non-trivial extreme twist angles exhibit
iInteresting properties, which we call extreme Kaleidocycles




HOW TO FIND?

- REAL ALGEBRAIC GEOMEIRY --
STUDY OF THE REAL SOLUTIONS OF A SYSTEM OF POLYNOMIAL EQUATIONS

REAL SOLUTIONS ARE HARD: E.G.

2z + bx + ¢ = 0 has a solution < b* —4¢ > 0
APPLIED IN: ROBOTICS, COMPUTER VISION, CONFIGURATION SPACE

MILNOR'S RESULT ON THE BETTI NUMBERS
« SOFTWARE
* MAPLE, MATHEMATICA, MATLAB (NON LINEAR PROGRAMING)
« BERTINI, PHCPACK (NUMERICAL)
« REGULAR CHAINS, QEPCAD (EXACT)




INTERESTING PROPERTIES OF EXTREME KN

* SINGLE DOF
e CONSTANT TORSIONAL ENERGY (MINIMUM FOR K7)

CONSTANT DIPOLE ENERGY (FOR ORIENTED KN)
e FALLING CAT MOTION
« MOBIUS STRIP

e DUALITY




MOBILITY ANALYSIS

* Maxwell’s law counts the number of constraints and freedom,
giving a rough estimation of the dimension of the configuration space
of the system(dimension counting)
* In our case,
Each hinge has one DOF
Closing condition kills five DOF
So the system's DOF "=" (N-1)-5
( -1 comes from global orientation )

Only numerically confirmed

The state space of any extreme Kaleidocycle is the circle (everting motion)
thus violate Maxwell's law! (except for K=7)




ENERGY EQUILIBRIUM

ONE OF THE MAIN TOPICS IN MATERIALS SCIENCE IS TO FIND EQUILIBRIUM
STATES OF THE MODEL WITH RESPECT TO A CERTAIN ENERGY

The shape of a Mébius strip, E. L. Starostin & G. H. M. van der Heijden, 2007




TORSIONAL ENERGY

* IMAGINE THAT EACH HINGE IS EQUIPPED WITH A WINDING SPRING
« THE ENERGY OF THE STATE IS DEFINED BY

:Z@Q
)

+ Any exireme Kaleidocycle takes a constant energy for all state 6.
When N=7, the value is minimum among all K7.
» Also, any exireme onem‘ed KN iokes a (almost) constant dipole energy
ST E 5{Bil0: — 0;))(B;(0; - 05))
|0 OJP |0; — O;°

Only numerically confirmed

1<




FALLING CAT

* NON-RIGID OBJECT CAN CHANGE ORIENTATION WHILE PRESERVING MOMENTUM
* THE EVERTING MOTION OF KN EXHIBITS THE PHENOMENON




LINKING NUMBER AND MOBIUS STRIP

* WE ARE INTERESTED IN HOW MANY TIMES THE STRIP IS TWISTED

« THIS IS MADE PRECISE BY LOOKING AT THE LINKING NUMBER OF THE FOLLOWING POLYLINES]

ONE CONNECTING THE ORIGINS OF HINGES

THE OTHER CONNECTING THE HEAD OF HINGES

Calugareanu's theorem
Total twisting = 2(Twist + Writhe)

Twist = N® /21T (so it depends only on the shape of the tetrahedron)
Writhe depends only on the center curve (it is related to the torsion)

Observation: Extreme ones have Total Twisting = 3 or N-3

Question: What
happens if we look at
the components of the
solution space

consisting of KN's with @
fixed TT2




CONTINUOUS LIMIT

WE CAN CONSIDER THE CONTINUOUS LIMIT OF
EXTREME KN (N=>).

WITH THE FRENET-SERRET FRAME, HINGE DIRECTION
CORRESPONDS TO THE BINORMAL.

THE CORE CURVE SEEMS TO CONVERGE TO
NT-CURVATURE AND-CONSTANT TORSION

OPEN PROBLEM: WHAT IS THE LIMIT BAND?




DUALITY

o EXTREME KN'S HAVE AN ACTION OF Z/2Z BY INVERTING THE DIRECTION OF EVERY OTHER HINGE

. O T-0
TOTAL TWISTING < N = TOTAL TWISTING

IN PARTICULAR
ORIENTED ¢ NON ORIENTED
WHEN N: ODD h -

A2 AR




THREE INCARNATIONS OF KN

Twisted Torus




POSSIBLE APPLICATIONS

TOY, ORNAMENT: USE A MOTORED GIMBAL TO FIXTURE ONE HINGE AND HANG IT.
PRINT INTERESTING THINGS ON THE SURFACE
FOR EXAMPLE, MUSICBOX WITH TRANSCRIPTION PRINTED ON IT (C.F. BACH'S CRAB CANON)

ESCHER-LIKE MAZE, WHERE CONNECTION OF PATHS CHANGES DURING THE EVERTING MOTION
""DEVELOPABLE" CHAIN/ARM/CURTAIN BY ALLOWING FREE SLIDES AT HINGES (C.F. FOLDING UMBRELLA)
MUSICAL INSTRUMENT: HIT AND ROTATE TO MAKE SOUND WITH DOPPLER'S EFFECT (ROTARY SPEAKER)
SCREW, MIXER, VALVE, PASTA MAKER (WHICH MAKES PATTERNS ON NOODLE AND DOUGH)

ROBOT ARM, SNAKE-LIKE SELF-PROPULSION ROBOT (C.F. ORIGAMI ROTOR)

CHEMISTRY: MICRO MOLECULE STRUCTURE (C.F. BOERDIJK—COXETER HELIX AND ALPHA HELIX)




OPEN QUESTIONS

« THE CONTINUOUS LIMIT OF KN (N=> )
« EXTREME KN'S WITHIN A SPECIFIED TOTAL TWISTING

« PROVE PROPERTIES OF KN RIGOROUSLY
(CURRENTLY, EVERYTHING IS NUMERICAL)

e MORE GENERALLY, DEVELOP METHODS TO ANALYSE KINEMATIC
CHAINS AND THEIR STATE SPACES

» FIND INTERESTING EXAMPLES AND APPLICATIONS




