GEOMETRY OF CLOSED KINEMATIC CHAIN

Mathematics in Interface, Dislocation and Structure of Crystals 29 Aug. 2017, Nishijin-plaza, Fukuoka

> SHIZUO KAJI YAMAGUCHI UNIV. / JST PRESTO

> > **JOINT WITH**

ELIOT FRIED, MICHAEL GRUNWALD, AND JOHANNES SCHOENKE

OKINAWA INST. SCIENCES AND TECHNOLOGY

STANDARD KALEIDOCYCLE

- RECREATIONAL MATHS
 E.G., ROUSE BALL, W. W. 1939
 "MATHEMATICAL RECREATIONS AND ESSAYS"
- Pure Maths
 A FLEXIBLE POLYHEDRAL OBJECT,
 WHICH CAN BE MADE FROM A SHEET OF PAPER
 (C.F. CAUCHY'S RIGIDITY THEOREM)
- KINEMATICS/ROBOTICS
 IT IS A BRICARD 6R LINKAGE, WHICH VIOLATES
 MAXWELL'S MOBILITY FORMULA

https://www.youtube.com/watch?v=V_fdN3Hllsl

HOW IS KALEIDOCYCLE RELEVANT TO CRYSTAL DISLOCATION?

COMMON KEYWORDS (EXCUSE)

- REPRESENTATION BY GRAPH OF LOCAL FRAMES
- MONODROMY ON GRAPH
- ENERGY EQUILIBRIUM
- CONFIGURATION SPACE (REAL ALGEBRAIC GEOMETRY)

GRAPHICAL MODEL OF KALEIDOCYCLE

Underlying graph of 6-Kleidocycle Notice the directed (doubled headed) edges

We model Kaleidocycles using graphs:

- vertices: shared edges of tetrahedra ("hinge")
- directed edges: tetrahedra
- each edge labelled by an element of the group SE(3) of Euclidean motion in R³ (this accounts for the shape of the tetrahedron)

the change in local frame is recorded by $A_{kj} \in SE(3)$

More generally, we call the pair of the graph G=(V,E) and the edge labelling E → SE(3) a kinematic chain

STATE SPACE OF A KINEMATIC CHAIN

Fix a kinematic chain: G=(V,E), A: $E \rightarrow SE(3)$

A STATE IS A MAP Ø: V → R SATISFYING THE CLOSING CONDITION

$$A_{i_1 i_2} R_{\theta_{i_2}} A_{i_2 i_3} \cdots R_{\theta_{i_k}} A_{i_k i_1} \{ p^{\pm} \} = \{ p^{\pm} \}$$

for any cycle $(i_1i_2, i_2i_3, \cdots, i_ki_1)$

where
$$p^{\pm} = (0, 0, \pm \epsilon, 1)^T$$
 $(\epsilon > 0 \text{ small})$

 $R_{\theta} \in SE(3)$ is the rotation around z-axis by magnitude θ

We say the state is oriented when + always goes + in the closing condition

BASIC QUESTIONS

- What is the topology of the state space?
 - WHEN DOES IT HAVE NON-TRIVIAL TOPOLOGY?
 - →KALEIDOCYCLES HAVE INTERESTING STATE SPACES
- WHAT STATES ARE STABLE WITH RESPECT TO A CERTAIN ENERGY?
 - →SOME KALEIDOCYCLES HAVE A CONSTANT ENERGY

KEY OBSERVATION

The state space (the configuration space) is the space of the real solutions to a system of polynomials defined by the closing condition.

AN INTERESTING FAMILY OF KINEMATIC CHAINS

SETTING

From now on, we focus on the case when the underlying graph G=(V,E) is a cycle:

$$V = \{1,2,3,...,N\}$$
, WHERE WE REGARD $N+1=1$

$$E = \{(i, i+1) \mid i = 1, 2 \dots, N\}$$

$$A_{i,i+1} = \begin{pmatrix} 1 & 0 & 0 & \sin \phi \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Edge label is same everywhere This means all tetrahedra are congruent

We call this type of kinematic chain and its states Kaleidocycles and denote it by KN

DENAVIT-HARTENBERG FORMULATION

For this special system, there is a classical and a neat parametrisation

Let B_i ∈ S² be hinge direction vectors. We define the local frames similar to Frenet-Serret

$$A_i = \langle T_i, N_i, B_i \rangle, \quad T_i = \frac{B_i \times B_{i+1}}{|B_i \times B_{i+1}|}, \quad N_i = B_i \times T_i.$$

 $A_{i,i+1} = A_i^{-1} A_{i+1}$

The congruency and the closing conditions are given by

we set $B_{N+1}=\pm B_1$ according to orientability

BREAK: HANDICRAFT SESSION

Try gluing the ends in different ways by twisting

EXTREME KALEIDOCYCLES

- The solution to the polynomial system $ightharpoonup PROJECTED ON THE <math>\Phi$ axis gives A (UNION OF) INTERVALS
- . BY NUMERICAL EXPERIMENTS, WE FOUND THEY ARE OF THE FOLLOWING FORM:
 - WHEN N:ODD

FOR ORIENTED SYSTEM: Φ IN $[0, \Pi - C_N]$

FOR NON-ORIENTED SYSTEM:

Φ IN [CN, II]

WHEN N:EVEN

FOR ORIENTED SYSTEM:

Ф ін [0, П]

FOR NON-ORIENTED SYSTEM:

Φ IN [CN, II-CN]

There is no solution for N<6

to a constant

N C_N converges monotonously

Kaleidocycles with the non-trivial extreme twist angles exhibit interesting properties, which we call extreme Kaleidocycles

HOM TO LINDS

- -- REAL ALGEBRAIC GEOMETRY --
- STUDY OF THE REAL SOLUTIONS OF A SYSTEM OF POLYNOMIAL EQUATIONS
- REAL SOLUTIONS ARE HARD: E.G.

$$x^2 + bx + c = 0$$
 has a solution $\Leftrightarrow b^2 - 4c \ge 0$

- APPLIED IN: ROBOTICS, COMPUTER VISION, CONFIGURATION SPACE
- MILNOR'S RESULT ON THE BETTI NUMBERS
- SOFTWARE
 - MAPLE, MATHEMATICA, MATLAB (NON LINEAR PROGRAMING)
 - BERTINI, PHCPACK (NUMERICAL)
 - REGULAR CHAINS, QEPCAD (EXACT)

INTERESTING PROPERTIES OF EXTREME KN

- SINGLE DOF
- Constant torsional energy (minimum for K7)
 Constant dipole energy (for oriented Kn)
- FALLING CAT MOTION
- MOBIUS STRIP
- DUALITY

MOBILITY ANALYSIS

 Maxwell's law counts the number of constraints and freedom, giving a rough estimation of the dimension of the configuration space

of the system(dimension counting)

In our case,
 Each hinge has one DOF
 Closing condition kills five DOF
 So the system's DOF "=" (N-1)-5
 (-1 comes from global orientation)

Only numerically confirmed

The state space of any extreme Kaleidocycle is the circle (everting motion) thus violate Maxwell's law! (except for K=7)

ENERGY EQUILIBRIUM

ONE OF THE MAIN TOPICS IN MATERIALS SCIENCE IS TO FIND EQUILIBRIUM STATES OF THE MODEL WITH RESPECT TO A CERTAIN ENERGY

The shape of a Möbius strip, E. L. Starostin & G. H. M. van der Heijden, 2007

TORSIONAL ENERGY

- IMAGINE THAT EACH HINGE IS EQUIPPED WITH A WINDING SPRING
- THE ENERGY OF THE STATE IS DEFINED BY

$$E(\theta) = \sum_{i} \phi^2$$

Only numerically confirmed

- Any extreme Kaleidocycle takes a constant energy for all state $\, heta$. When N=7, the value is minimum among all K7.
- Also, any extreme oriented KN takes a (almost) constant dipole energy

$$\sum_{i < j} \frac{B_i B_j}{|O_i - O_j|^3} - 3 \frac{(B_i (O_i - O_j))(B_j (O_i - O_j))}{|O_i - O_j|^5}$$

FALLING CAT

- . Non-rigid object can change orientation while preserving momentum
- THE EVERTING MOTION OF KN EXHIBITS THE PHENOMENON

LINKING NUMBER AND MOBIUS STRIP

- WE ARE INTERESTED IN HOW MANY TIMES THE STRIP IS TWISTED
- THIS IS MADE PRECISE BY LOOKING AT THE LINKING NUMBER OF THE FOLLOWING POLYLINES.
 - ONE CONNECTING THE ORIGINS OF HINGES
 - THE OTHER CONNECTING THE HEAD OF HINGES

Calugareanu's theorem Total twisting = 2(Twist + Writhe)

Twist = $N\Phi/2\Pi$ (so it depends only on the shape of the tetrahedron) Writhe depends only on the center curve (it is related to the torsion)

Observation: Extreme ones have Total Twisting = 3 or N-3

Question: What happens if we look at the components of the solution space consisting of KN's with a fixed TT?

CONTINUOUS LIMIT

WE CAN CONSIDER THE CONTINUOUS LIMIT OF EXTREME KN $(N \rightarrow \infty)$.

WITH THE FRENET-SERRET FRAME, HINGE DIRECTION CORRESPONDS TO THE BINORMAL.

THE CORE CURVE SEEMS TO CONVERGE TO A CONSTANT CURVATURE AND CONSTANT TORSION CURVE.

OPEN PROBLEM: WHAT IS THE LIMIT BAND?

DUALITY

- . EXTREME KN'S HAVE AN ACTION OF Z/2Z BY INVERTING THE DIRECTION OF EVERY OTHER HINGE
 - Φ → Π-Φ
 - TOTAL TWISTING ⇔ N TOTAL TWISTING
 - In Particular
 ORIENTED ⇔ NON ORIENTED
 WHEN N: ODD

K13 with total twisting = 3

K13 with total twisting = 10

THREE INCARNATIONS OF KN

Mobius strip

Ring of Tetrahedra

Twisted Torus

POSSIBLE APPLICATIONS

- TOY, ORNAMENT: USE A MOTORED GIMBAL TO FIXTURE ONE HINGE AND HANG IT.
 PRINT INTERESTING THINGS ON THE SURFACE
 FOR EXAMPLE, MUSICBOX WITH TRANSCRIPTION PRINTED ON IT (C.F. BACH'S CRAB CANON)
- ESCHER-LIKE MAZE, WHERE CONNECTION OF PATHS CHANGES DURING THE EVERTING MOTION
- "DEVELOPABLE" CHAIN/ARM/CURTAIN BY ALLOWING FREE SLIDES AT HINGES (C.F. FOLDING UMBRELLA)
- MUSICAL INSTRUMENT: HIT AND ROTATE TO MAKE SOUND WITH DOPPLER'S EFFECT (ROTARY SPEAKER)
- SCREW, MIXER, VALVE, PASTA MAKER (WHICH MAKES PATTERNS ON NOODLE AND DOUGH)
- ROBOT ARM, SNAKE-LIKE SELF-PROPULSION ROBOT (C.F. ORIGAMI ROTOR)
- CHEMISTRY: MICRO MOLECULE STRUCTURE (C.F. BOERDIJK—COXETER HELIX AND ALPHA HELIX)

OPEN QUESTIONS

- THE CONTINUOUS LIMIT OF KN (N→∞)
- EXTREME KN'S WITHIN A SPECIFIED TOTAL TWISTING
- PROVE PROPERTIES OF KN RIGOROUSLY (CURRENTLY, EVERYTHING IS NUMERICAL)
- MORE GENERALLY, DEVELOP METHODS TO ANALYSE KINEMATIC CHAINS AND THEIR STATE SPACES
- FIND INTERESTING EXAMPLES AND APPLICATIONS