Mod p decompositions of gauge groups

Daisuke Kishimoto (Kyoto U) joint with A. Kono and M. Tsutaya

November 4, 2012; Yamaguchi University

Mod *p* decompositions of Lie groups

Decompositions of Lie groups start with the rational case; for a (p-local) finite H-space X, $\exists \text{rational decomposition}$

$$X \simeq_{(0)} S^{2n_1+1} \times \cdots \times S^{2n_\ell+1}$$

• $\mathfrak{t}(X) = \{n_1, \ldots, n_\ell\}$ is called the type of X.

▶ Put $\mathfrak{t}_i(X) = \{k \in \mathfrak{t}(X) \mid k \equiv i \mod (p-1)\}$ for a prime p.

Mod *p* decompositions of Lie groups

Decompositions of Lie groups start with the rational case; for a (p-local) finite H-space X, $\exists \text{rational decomposition}$

$$X \simeq_{(0)} S^{2n_1+1} \times \cdots \times S^{2n_\ell+1}$$

• $\mathfrak{t}(X) = \{n_1, \ldots, n_\ell\}$ is called the type of X.

▶ Put $\mathfrak{t}_i(X) = \{k \in \mathfrak{t}(X) \mid k \equiv i \mod (p-1)\}$ for a prime p.

Theorem (Mimura, Nishida & Toda '77, Wilkerson '74) Let G be a compact, simply connected, simple Lie group such that $H_*(G;\mathbb{Z})$ is p-torsion free. Then $\exists B_1, \ldots, B_{p-1}$ satisfying

$$G_{(p)} \simeq B_1 \times \cdots \times B_{p-1}$$

where the type of B_i is $t_i(G)$. Moreover, if $G \neq \text{Spin}(2n)$, each B_i is irreducible.

Let G be a topological group and let P be a principal G-bundle over K. Our object is the gauge group $\mathcal{G}(P)$ which is the topological group of automorphisms of P.

Let G be a topological group and let P be a principal G-bundle over K. Our object is the gauge group $\mathcal{G}(P)$ which is the topological group of automorphisms of P.

Our aim is to give mod p decompositions of gauge groups corresponding to Lie groups. Two applications are given.

Let G be a topological group and let P be a principal G-bundle over K. Our object is the gauge group $\mathcal{G}(P)$ which is the topological group of automorphisms of P.

Our aim is to give mod p decompositions of gauge groups corresponding to Lie groups. Two applications are given.

 \exists two approaches to gauge groups; one uses mapping spaces via classifying spaces and the other is fiberwise homotopy theory via adjoint bundles.

Let G be a topological group and let P be a principal G-bundle over K. Our object is the gauge group $\mathcal{G}(P)$ which is the topological group of automorphisms of P.

Our aim is to give mod p decompositions of gauge groups corresponding to Lie groups. Two applications are given.

 \exists two approaches to gauge groups; one uses mapping spaces via classifying spaces and the other is fiberwise homotopy theory via adjoint bundles.

 \exists two preceding works; one is due to K & Kono using adjoint bundles and the other is due to Theriault using mapping spaces. This time, we take the mapping space approach and the result of Theriault is actually a special case of ours.

Main result

Theorem

Let G be a compact, simply connected, simple Lie group such that $H_*(G; \mathbb{Z})$ is p-torsion free and $G \neq \text{Spin}(2n)$. Let P be a principal G-bundle over S^{2d+2} with $d \in \mathfrak{t}(G)$. Then $\exists \mathcal{B}_1^P, \ldots, \mathcal{B}_{p-1}^P$ satisfying

$$\mathcal{G}(P)_{(p)} \simeq \mathcal{B}_1^P \times \cdots \times \mathcal{B}_{p-1}^P$$

and a homotopy fiber sequence

$$\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$$

for each $i \in \mathbb{Z}/(p-1)$.

Main result

Theorem

Let G be a compact, simply connected, simple Lie group such that $H_*(G; \mathbb{Z})$ is p-torsion free and $G \neq \text{Spin}(2n)$. Let P be a principal G-bundle over S^{2d+2} with $d \in \mathfrak{t}(G)$. Then $\exists \mathcal{B}_1^P, \ldots, \mathcal{B}_{p-1}^P$ satisfying

$$\mathcal{G}(P)_{(p)} \simeq \mathcal{B}_1^P \times \cdots \times \mathcal{B}_{p-1}^P$$

and a homotopy fiber sequence

$$\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$$

for each $i \in \mathbb{Z}/(p-1)$.

Remark

For convenience, we put $\mathcal{G}(P)_{(p)} = \Omega(B\mathcal{G}(P)_{(p)}).$

Remark

By the preceding result of K & Kono, the Spin(2n) case can be deduced from the Spin(2n - 1) case for most bundles.

Let $\phi^u : BG_{(p)} \to BG_{(p)}$ be the unstable Adams operation of degree u with $p \nmid u$. The mod p decompositions of Lie groups are obtained by the homotopy colimit of the composite of

$$\Omega \phi^u - u^k : G_{(p)} \to G_{(p)}$$

for some u, k. Apply this construction to gauge groups.

Let $\phi^u : BG_{(p)} \to BG_{(p)}$ be the unstable Adams operation of degree u with $p \nmid u$. The mod p decompositions of Lie groups are obtained by the homotopy colimit of the composite of

$$\Omega \phi^u - u^k : G_{(p)} \to G_{(p)}$$

for some u, k. Apply this construction to gauge groups.

Let $\alpha \in \pi_{2d+2}(BG)$ be the classifying map of P. Then we have

$$B\mathcal{G}(P) \simeq \max(S^{2d+2}, BG; \alpha).$$

Let $\phi^u : BG_{(p)} \to BG_{(p)}$ be the unstable Adams operation of degree u with $p \nmid u$. The mod p decompositions of Lie groups are obtained by the homotopy colimit of the composite of

$$\Omega \phi^u - u^k : G_{(p)} \to G_{(p)}$$

for some u, k. Apply this construction to gauge groups.

Let $\alpha \in \pi_{2d+2}(BG)$ be the classifying map of P. Then we have

$$B\mathcal{G}(P) \simeq \max(S^{2d+2}, BG; \alpha).$$

Lemma

For $d \in \mathfrak{t}(G)$, $\pi_{2d+2}(BG_{(p)}) \cong \mathbb{Z}_{(p)}$ and $\phi^u_* = u^{d+1}$ in π_{2d+2} .

Let $\phi^u : BG_{(p)} \to BG_{(p)}$ be the unstable Adams operation of degree u with $p \nmid u$. The mod p decompositions of Lie groups are obtained by the homotopy colimit of the composite of

$$\Omega \phi^u - u^k : G_{(p)} \to G_{(p)}$$

for some u, k. Apply this construction to gauge groups.

Let $\alpha \in \pi_{2d+2}(BG)$ be the classifying map of *P*. Then we have

$$B\mathcal{G}(P) \simeq \max(S^{2d+2}, BG; \alpha).$$

Lemma

For $d \in \mathfrak{t}(G)$, $\pi_{2d+2}(BG_{(p)}) \cong \mathbb{Z}_{(p)}$ and $\phi_*^u = u^{d+1}$ in π_{2d+2} . \Rightarrow We get

$$\phi^{u}_{*}: \operatorname{map}(S^{2d+2}, BG; \alpha)_{(p)} \to \operatorname{map}(S^{2d+2}, BG; \alpha \circ \underline{u^{d+1}})_{(p)}$$

where $q: S^{n} \to S^{n}$ is the degree q map.

 $\Rightarrow \exists \mathsf{self-map} \\ (\underline{u^{-d-1}})^* \circ \phi^u_* : \mathsf{map}(S^{2d+2}, BG; \alpha)_{(p)} \to \mathsf{map}(S^{2d+2}, BG; \alpha)_{(p)}$

satisfying a commutative diagram

 $\Rightarrow \exists \mathsf{self}\mathsf{-map}$ $(\underline{u^{-d-1}})^* \circ \phi^u_* : \mathsf{map}(S^{2d+2}, BG; \alpha)_{(p)} \to \mathsf{map}(S^{2d+2}, BG; \alpha)_{(p)}$

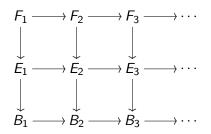
satisfying a commutative diagram

Taking the homotopy colimit of each row, we get a homotopy fiber sequence

$$\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$$

by the following lemma.

Lemma Suppose ∃commutative diagram



in which each column is a homotopy fiber sequence. Then

hocolim $F_n \rightarrow$ hocolim $E_n \rightarrow$ hocolim B_n

is also a homotopy fiber sequence.

Principality

We investigate $\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$ by proving its principality for (G, p) in the following table, a condition for each B_i being of rank $\leq p - 2$.

SU(n)	$(p-1)(p-2) \ge n-1$
Sp(n), Spin(2n+1)	$(p-1)(p-2) \ge n-1 \ (p-1)(p-2) \ge 2n-1$
G_2, F_4, E_6	$p \ge 5$
E_{7}, E_{8}	$p \ge 7$

Principality

We investigate $\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$ by proving its principality for (G, p) in the following table, a condition for each B_i being of rank $\leq p-2$.

SU(n)	$(p-1)(p-2) \ge n-1$
Sp(n), Spin(2n+1)	$(p-1)(p-2) \ge n-1 \ (p-1)(p-2) \ge 2n-1$
G_2, F_4, E_6	$p \ge 5$
E_{7}, E_{8}	$p \ge 7$

The following result of Theriault is a special case of our result. Let $\ell(G) = \max\{d \in \mathfrak{t}(G)\}$ and let δ_i^{α} be the composite

$$B_{i-d-1} \xrightarrow{\text{incl}} G_{(p)} \xrightarrow{\delta^{\alpha}_{(p)}} \Omega_0^{2d+1} G_{(p)} \xrightarrow{\text{proj}} \Omega_0^{2d+1} B_i$$

where δ^{α} : $G \to \Omega_0^{2d+1}G$ is the connecting map of the evaluation fibration map $(S^{2d+2}, BG; \alpha) \to BG$.

Principality

Theorem (Theriault '10)

Let (G, p) be as in the table and let P be a principal G-bundle over S^4 classified by $\alpha \in \pi_4(BG)$.

1. If
$$\ell(G) + 2 < p$$
,
 $\mathcal{G}(P) \simeq_{(p)} \prod_{i \in \mathfrak{t}(G)} (S^{2i+1} \times \Omega_0^4 S^{2i+1}).$

2. Let G = SU(n) and let Z_i^P be the homotopy fiber of δ_i^{α} for i = n, n + 1. Then

$$\mathcal{G}(P)_{(p)} \simeq Z_n^P \times Z_{n+1}^P \times \prod_{\substack{i \neq n-2, n-1 \\ \text{mod } (p-1)}} B_i \times \prod_{\substack{i \neq n, n+1 \\ \text{mod } (p-1)}} \Omega_0^4 B_i.$$

Remark

Theriault's description of the second decomposition is more complicated. Our result simplifies it as above.

Let X be a homotopy commutative and homotopy associative H-space. X is called universal for $A \subset X$ if for $\forall f : A \to Y$ with a homotopy associative and homotopy commutative H-space Y, \exists !H-map $\overline{f} : X \to Y$ extending f, up to homotopy.

Let X be a homotopy commutative and homotopy associative H-space. X is called universal for $A \subset X$ if for $\forall f : A \to Y$ with a homotopy associative and homotopy commutative H-space Y, \exists !H-map $\overline{f} : X \to Y$ extending f, up to homotopy.

Lemma

If homotopy associative and homotopy commutative H-spaces X_i are universal for A_i (i = 1, 2), then so is $X_1 \times X_2$ for $A_1 \vee A_2$.

Let X be a homotopy commutative and homotopy associative H-space. X is called universal for $A \subset X$ if for $\forall f : A \to Y$ with a homotopy associative and homotopy commutative H-space Y, \exists !H-map $\overline{f} : X \to Y$ extending f, up to homotopy.

Lemma

If homotopy associative and homotopy commutative H-spaces X_i are universal for A_i (i = 1, 2), then so is $X_1 \times X_2$ for $A_1 \vee A_2$.

Theorem (Theriault '07)

Let (G, p) be as in the table. Then \exists homotopy commutative and homotopy associative H-structure μ_i of B_i and $A_i \subset B_i$ satisfying:

- 1. B_i is universal for A_i by μ_i .
- 2. With μ_i , the inclusion $A_i \rightarrow B_i$ induces an isomorphism

$$\Lambda(\overline{H}_*(A_i;\mathbb{Z}/p))\xrightarrow{\cong} H_*(B_i;\mathbb{Z}/p).$$

Let (G, p) be as in the table and let $\alpha \in \pi_{2d+2}(BG)$ with $d \in \mathfrak{t}(G)$. Lemma $\delta^{\alpha}_{(p)} : G_{(p)} \to \Omega_0^{2d+1}G_{(p)}$ is an H-map with respect to $\mu_1 \times \cdots \times \mu_{p-1}$ on $G_{(p)}$ and the loop structure on $\Omega_0^{2d+1}G_{(p)}$.

Let (G, p) be as in the table and let $\alpha \in \pi_{2d+2}(BG)$ with $d \in \mathfrak{t}(G)$. Lemma $\delta^{\alpha}_{(p)} : G_{(p)} \to \Omega_0^{2d+1}G_{(p)}$ is an H-map with respect to $\mu_1 \times \cdots \times \mu_{p-1}$ on $G_{(p)}$ and the loop structure on $\Omega_0^{2d+1}G_{(p)}$. Proposition

If $d + \ell(G) + 1 \leq p(p-1)$, $\delta^{\alpha}_{(p)} \simeq \delta^{\alpha}_1 \times \cdots \times \delta^{\alpha}_{p-1}$.

Let (G, p) be as in the table and let $\alpha \in \pi_{2d+2}(BG)$ with $d \in \mathfrak{t}(G)$. Lemma $\delta^{\alpha}_{(p)} : G_{(p)} \to \Omega_0^{2d+1}G_{(p)}$ is an H-map with respect to $\mu_1 \times \cdots \times \mu_{p-1}$ on $G_{(p)}$ and the loop structure on $\Omega_0^{2d+1}G_{(p)}$.

Proposition

If
$$d + \ell(G) + 1 \leq p(p-1)$$
, $\delta^{\alpha}_{(p)} \simeq \delta^{\alpha}_1 \times \cdots \times \delta^{\alpha}_{p-1}$.

Proof.

$$\delta^{\alpha}_{(p)}|_{A_{1}\vee\cdots\vee A_{p-1}}\simeq \delta^{\alpha}_{1}|_{A_{1}}\vee\cdots\vee\delta^{\alpha}_{p-1}|_{A_{p-1}}$$
$$=(\delta^{\alpha}_{1}\times\cdots\times\delta^{\alpha}_{p-1})|_{A_{1}\vee\cdots\vee A_{p-1}},$$

implying the result by the universality of $\mu_1 \times \cdots \times \mu_{p-1}$.

Let P be as in the main theorem with the classifying map α .

Theorem

If $d + \ell(G) + 1 \le p(p-1)$, the homotopy fiber sequence

$$\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$$

is principal and is classified by $\delta_i^{\alpha}: B_{i-d-1} \to \Omega_0^{2d+1}B_i$.

Let P be as in the main theorem with the classifying map α .

Theorem

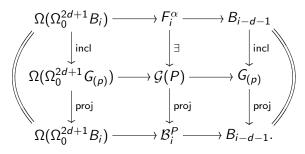
If $d + \ell(G) + 1 \le p(p-1)$, the homotopy fiber sequence

$$\Omega(\Omega_0^{2d+1}B_i) \to \mathcal{B}_i^P \to B_{i-d-1}$$

is principal and is classified by $\delta_i^{\alpha}: B_{i-d-1} \to \Omega_0^{2d+1}B_i$.

Proof.

If F_i^{α} is the homotopy fiber of δ_i^{α} , \exists commutative diagram



The index $I_p(G, d)$ Put $I_p(G, d) = \{1 \le i \le p - 1 \mid [A_{i-d-1}, \Omega_0^{2d+1}B_i] = 0\}.$ Corollary If $d + \ell(G) + 1 \le p(p-1)$, $C(R) = 2i = \prod_{i=1}^{n} R^P \times \prod_{i=1}^{n} (R_{i-d-1} \times O(O^{2d+1}R_{i-d-1})))$

$$\mathcal{G}(P)_{(p)} \simeq \prod_{i \notin I_p(G,d)} \mathcal{B}_i^P \times \prod_{i \in I_p(G,d)} (B_{i-d-1} \times \Omega(\Omega_0^{2d+1}B_i)).$$

The index $I_p(G, d)$ Put $I_p(G, d) = \{1 \le i \le p - 1 \mid [A_{i-d-1}, \Omega_0^{2d+1}B_i] = 0\}$. Corollary If $d + \ell(G) + 1 \le p(p-1)$,

$$\mathcal{G}(P)_{(p)}\simeq \prod_{i
ot\in I_p(G,d)}\mathcal{B}^P_i imes \prod_{i\in I_p(G,d)}(B_{i-d-1} imes \Omega(\Omega_0^{2d+1}B_i)).$$

Proof.
If
$$i \in I_p(G, d)$$
, $\delta_i^{\alpha}|_{A_{i-d-1}} \simeq *$, implying $\delta_i^{\alpha} \simeq *$.

The index $I_p(G, d)$ Put $I_p(G, d) = \{1 \le i \le p - 1 \mid [A_{i-d-1}, \Omega_0^{2d+1}B_i] = 0\}$. Corollary If $d + \ell(G) + 1 \le p(p-1)$,

$$\mathcal{G}(\mathcal{P})_{(\mathcal{P})}\simeq \prod_{i
ot\in I_{\mathcal{P}}(G,d)}\mathcal{B}_{i}^{\mathcal{P}} imes \prod_{i\in I_{\mathcal{P}}(G,d)}(B_{i-d-1} imes \Omega(\Omega_{0}^{2d+1}B_{i})).$$

Proof.
If
$$i \in I_p(G, d)$$
, $\delta_i^{\alpha}|_{A_{i-d-1}} \simeq *$, implying $\delta_i^{\alpha} \simeq *$.

Proposition

- 1. If $\ell(G) + d + 1 < p$, $I_p(G, d) = \mathfrak{t}(G)$.
- 2. If d + 1 < p, $I_p(SU(n), p)$ includes $1 \le i \le p 1$ with $i \ne n, n + 1, \ldots, n + d \mod (p 1)$.

The index $I_p(G, d)$ Put $I_p(G, d) = \{1 \le i \le p - 1 \mid [A_{i-d-1}, \Omega_0^{2d+1}B_i] = 0\}$. Corollary If $d + \ell(G) + 1 \le p(p-1)$,

$$\mathcal{G}(\mathcal{P})_{(\mathcal{P})}\simeq \prod_{i
ot\in I_{\mathcal{P}}(G,d)}\mathcal{B}_{i}^{\mathcal{P}} imes \prod_{i\in I_{\mathcal{P}}(G,d)}(B_{i-d-1} imes \Omega(\Omega_{0}^{2d+1}B_{i})).$$

Proof.
If
$$i \in I_p(G, d)$$
, $\delta_i^{\alpha}|_{A_{i-d-1}} \simeq *$, implying $\delta_i^{\alpha} \simeq *$.

Proposition

1. If
$$\ell(G) + d + 1 < p$$
, $I_p(G, d) = \mathfrak{t}(G)$.
2. If $d + 1 < p$, $I_p(SU(n), p)$ includes $1 \le i \le p - 1$ with $i \ne n, n + 1, ..., n + d \mod (p - 1)$.

 \Rightarrow The result of Theriault is the special case d = 1.

Let P_k be a principal SU(*n*)-bundle over S^4 classified by $k \in \mathbb{Z} \cong \pi_4(BSU(n))$.

Theorem (Sutherland '92, Hamanaka & Kono '06) If $\mathcal{G}(P_k) \simeq \mathcal{G}(P_\ell)$, then $(n(n^2 - 1), k) = (n(n^2 - 1), \ell)$.

Let P_k be a principal SU(*n*)-bundle over S^4 classified by $k \in \mathbb{Z} \cong \pi_4(BSU(n))$.

Theorem (Sutherland '92, Hamanaka & Kono '06) If $\mathcal{G}(P_k) \simeq \mathcal{G}(P_\ell)$, then $(n(n^2 - 1), k) = (n(n^2 - 1), \ell)$. We prove the converse when localized at p.

Proposition (Whitehead '46)

For $\alpha \in \pi_d(X)$, δ^{α} corresponds to the Samelson product $\langle \bar{\alpha}, 1_{\Omega X} \rangle$ through

$$[\Omega X, \Omega_0^d X] \cong [S^{d-1} \wedge \Omega X, \Omega X]$$

where $\bar{\alpha} \in \pi_{d-1}(\Omega X)$ is the adjoint of α .

Proposition

Let G = SU(n) and $n - 1 \le (p - 1)(p - 2)$. For i = n, n + 1, the order of δ_i^k is min $\{\nu_p(i(i - 1)), \nu_p(k)\}$.

Proposition

Let G = SU(n) and $n - 1 \le (p - 1)(p - 2)$. For i = n, n + 1, the order of δ_i^k is min $\{\nu_p(i(i - 1)), \nu_p(k)\}$.

Proof.

Comparing $[A_{i-2}, \Omega_0^3 SU(n)_{(p)}]$ with $K^{-1}(A_{i-2})_{(p)}$, we can calculate that the order of δ_i^1 is $\nu_p(i(i-1))$ for i = n, n+1. By linearity of Samelson products, $\delta_i^k = k \cdot \delta_i^1$.

Proposition

Let G = SU(n) and $n - 1 \le (p - 1)(p - 2)$. For i = n, n + 1, the order of δ_i^k is min $\{\nu_p(i(i - 1)), \nu_p(k)\}$.

Proof.

Comparing $[A_{i-2}, \Omega_0^3 SU(n)_{(p)}]$ with $K^{-1}(A_{i-2})_{(p)}$, we can calculate that the order of δ_i^1 is $\nu_p(i(i-1))$ for i = n, n+1. By linearity of Samelson products, $\delta_i^k = k \cdot \delta_i^1$.

Theorem

Let $n-1 \le (p-1)(p-2)$. Then $\mathcal{G}(P_k)_{(p)} \simeq \mathcal{G}(P_\ell)_{(p)}$ if and only if $\min\{\nu_p(n(n^2-1)), \nu_p(k)\} = \min\{\nu_p(n(n^2-1)), \nu_p(\ell)\}.$

p-local homotopy types of gauge groups

Proposition

Let G = SU(n) and $n - 1 \le (p - 1)(p - 2)$. For i = n, n + 1, the order of δ_i^k is min $\{\nu_p(i(i - 1)), \nu_p(k)\}$.

Proof.

Comparing $[A_{i-2}, \Omega_0^3 SU(n)_{(p)}]$ with $K^{-1}(A_{i-2})_{(p)}$, we can calculate that the order of δ_i^1 is $\nu_p(i(i-1))$ for i = n, n+1. By linearity of Samelson products, $\delta_i^k = k \cdot \delta_i^1$.

Theorem

Let
$$n-1 \le (p-1)(p-2)$$
. Then $\mathcal{G}(P_k)_{(p)} \simeq \mathcal{G}(P_\ell)_{(p)}$ if and only if
 $\min\{\nu_p(n(n^2-1)), \nu_p(k)\} = \min\{\nu_p(n(n^2-1)), \nu_p(\ell)\}.$

Proof.

 $\mathcal{G}(P_k)_{(p)}\simeq \mathcal{G}(P_\ell)_{(p)} \Leftrightarrow |\delta_i^k|=|\delta_i^\ell| \text{ for } i=n,n+1$

 $\Leftrightarrow \min\{\nu_p(i(i-1)),\nu_p(k)\} = \min\{\nu_p(i(i-1)),\nu_p(\ell)\} \text{ for } i=n,n+1.$

Adjoint bundles

Let G be a topological group and let P be a principal G-bundle over K. The adjoint bundle ad P is defined as

ad
$$P = (P \times G)/(x,g) \sim (x \cdot h, h^{-1}gh).$$

 \Rightarrow ad *P* is a fiberwise topological group over *K*.

 \Rightarrow The set of sections $\Gamma(ad P)$ is a topological group.

 \exists isomorphism of topological groups

 $\mathcal{G}(P) \cong \Gamma(\operatorname{ad} P).$

Adjoint bundles

Let G be a topological group and let P be a principal G-bundle over K. The adjoint bundle ad P is defined as

ad
$$P = (P \times G)/(x,g) \sim (x \cdot h, h^{-1}gh).$$

 \Rightarrow ad P is a fiberwise topological group over K.

 \Rightarrow The set of sections $\Gamma(ad P)$ is a topological group.

 \exists isomorphism of topological groups

 $\mathcal{G}(P) \cong \Gamma(\operatorname{ad} P).$

For fiberwise spaces X_1, \ldots, X_n over K,

$$\Gamma(X_1 \times_K \cdots \times_K X_n) = \Gamma(X_1) \times \cdots \times \Gamma(X_n).$$

 \Rightarrow A fiberwise mod *p* decomposition of ad *P* induces a mod *p* decomposition of $\mathcal{G}(P)$.

Adjoint bundles

Let G be a topological group and let P be a principal G-bundle over K. The adjoint bundle ad P is defined as

ad
$$P = (P \times G)/(x,g) \sim (x \cdot h, h^{-1}gh).$$

 \Rightarrow ad *P* is a fiberwise topological group over *K*.

 \Rightarrow The set of sections $\Gamma(ad P)$ is a topological group.

 \exists isomorphism of topological groups

 $\mathcal{G}(P) \cong \Gamma(\operatorname{ad} P).$

For fiberwise spaces X_1, \ldots, X_n over K,

$$\Gamma(X_1 \times_K \cdots \times_K X_n) = \Gamma(X_1) \times \cdots \times \Gamma(X_n).$$

 \Rightarrow A fiberwise mod *p* decomposition of ad *P* induces a mod *p* decomposition of $\mathcal{G}(P)$.

Question

Is every mod p decomposition of $\mathcal{G}(P)$ induced from a fiberwise mod p decomposition of ad P?

Uniqueness of mod *p* decompositions of Lie groups

Theorem (Wilkerson '75)

Let X be a simply connected, finite H-space. If

$$X_{(p)}\simeq X_1\times\cdots\times X_n,$$

where each X_i is irreducible, then the homotopy types of X_1, \ldots, X_n are unique up to permutations.

Uniqueness of mod p decompositions of Lie groups

Theorem (Wilkerson '75)

Let X be a simply connected, finite H-space. If

$$X_{(p)}\simeq X_1\times\cdots\times X_n,$$

where each X_i is irreducible, then the homotopy types of X_1, \ldots, X_n are unique up to permutations.

Corollary

Let G be as in the main theorem. For any decomposition

$$G_{(p)}\simeq X_1\times\cdots\times X_n,$$

there is a partition $I_1 \sqcup \cdots \sqcup I_n = \{1, \dots, p-1\}$ such that

$$X_k \simeq \prod_{i \in I_k} B_i$$

for k = 1, ..., n.

Cohomology of free loop spaces

K & Kono constructed the following map in cohomology.

Theorem (K & Kono '10)

 $\exists homomorphism$

$$\hat{\sigma}: H^*(X; R) \to H^{*-1}(\mathcal{L}X; R)$$

satisfying:

- 1. $\hat{\sigma}$ restricts to σ : $H^*(X; R) \rightarrow H^{*-1}(\Omega X; R)$.
- 2. $\hat{\sigma}$ is a derivation.
- 3. $\hat{\sigma}$ commutes with cohomology operations.

Cohomology of free loop spaces

K & Kono constructed the following map in cohomology.

Theorem (K & Kono '10)

 $\exists homomorphism$

$$\hat{\sigma}: H^*(X; R) \to H^{*-1}(\mathcal{L}X; R)$$

satisfying:

- 1. $\hat{\sigma}$ restricts to $\sigma: H^*(X; R) \to H^{*-1}(\Omega X; R)$.
- 2. $\hat{\sigma}$ is a derivation.

3. $\hat{\sigma}$ commutes with cohomology operations.

Corollary

Let X be a simply connected space. If $H^*(X; R) = R[x_1, ..., x_\ell]$,

 $H^*(\mathcal{L}X; R) = R[x_1, \ldots, x_\ell] \otimes \varDelta(\hat{\sigma}(x_1), \ldots, \hat{\sigma}(x_\ell)).$

Cohomology of free loop spaces

K & Kono constructed the following map in cohomology.

Theorem (K & Kono '10)

 $\exists homomorphism$

$$\hat{\sigma}: H^*(X; R) \to H^{*-1}(\mathcal{L}X; R)$$

satisfying:

- 1. $\hat{\sigma}$ restricts to $\sigma: H^*(X; R) \to H^{*-1}(\Omega X; R)$.
- 2. $\hat{\sigma}$ is a derivation.

3. $\hat{\sigma}$ commutes with cohomology operations.

Corollary

Proof.

Let X be a simply connected space. If $H^*(X; R) = R[x_1, ..., x_\ell]$,

$$H^*(\mathcal{L}X; R) = R[x_1, \ldots, x_\ell] \otimes \varDelta(\hat{\sigma}(x_1), \ldots, \hat{\sigma}(x_\ell)).$$

 $H^*(\Omega X; R) = \Delta(\sigma(x_1), \dots, \sigma(x_\ell))$ by the Borel transgression theorem. Then we apply the Leray-Hirsch theorem to the fiber sequence $\Omega X \to \mathcal{L}X \to X$.

Cohomology of adjoint bundles

For the universal bundle $EG \rightarrow BG$,

ad $EG \simeq_{BG} \mathcal{L}BG$.

 \Rightarrow For the classifying map $\alpha: \mathcal{K} \rightarrow \mathcal{BG}$ of \mathcal{P} ,

ad $P \simeq_{\mathcal{K}} \alpha^{-1} \mathcal{L}BG$.

Cohomology of adjoint bundles

For the universal bundle $EG \rightarrow BG$,

ad
$$EG \simeq_{BG} \mathcal{L}BG$$
.

 \Rightarrow For the classifying map $\alpha: K \rightarrow BG$ of P,

ad
$$P \simeq_{\kappa} \alpha^{-1} \mathcal{L}BG$$
.

Lemma

Let P be a principal G-bundle over S⁴ classified by the inclusion $j: S^4 \to BG$. If $H^*(BG; \mathbb{Z}/p) = \mathbb{Z}/p[x_1, \dots, x_\ell]$,

$$H^*(\operatorname{\mathsf{ad}} P; \mathbb{Z}/p) = \Lambda(u_4, \hat{x}_1, \dots, \hat{x}_\ell)$$

where $\hat{x}_i = \overline{j}^*(\hat{\sigma}(x_i))$ for the lift \overline{j} : ad $P \to \mathcal{L}BG$ of j.

Cohomology of adjoint bundles

For the universal bundle $EG \rightarrow BG$,

ad
$$EG \simeq_{BG} \mathcal{L}BG$$
.

 \Rightarrow For the classifying map $\alpha: K \rightarrow BG$ of P,

ad
$$P \simeq_{\kappa} \alpha^{-1} \mathcal{L}BG$$
.

Lemma

Let P be a principal G-bundle over S⁴ classified by the inclusion $j: S^4 \to BG$. If $H^*(BG; \mathbb{Z}/p) = \mathbb{Z}/p[x_1, \dots, x_\ell]$,

$$H^*(\operatorname{\mathsf{ad}} P; \mathbb{Z}/p) = \Lambda(u_4, \hat{x}_1, \dots, \hat{x}_\ell)$$

where $\hat{x}_i = \overline{j}^*(\hat{\sigma}(x_i))$ for the lift \overline{j} : ad $P \to \mathcal{L}BG$ of j.

Proof.

 $\hat{x}_1, \ldots, \hat{x}_\ell$ restricts to generators of the cohomology of the fiber G of ad $P \to S^4$. Apply the Leray-Hirsch theorem.

Let $r_p(G)$ be the number of $i \in \mathbb{Z}/(p-1)$ such that $t_i(G) \neq \emptyset$. Recall that if $H_*(G;\mathbb{Z})$ is *p*-torsion free,

 $H^*(BG; \mathbb{Z}/p) = \mathbb{Z}/p[x_{2i+2} \mid i \in \mathfrak{t}(G)].$

Let $r_p(G)$ be the number of $i \in \mathbb{Z}/(p-1)$ such that $\mathfrak{t}_i(G) \neq \emptyset$. Recall that if $H_*(G; \mathbb{Z})$ is *p*-torsion free,

$$H^*(BG; \mathbb{Z}/p) = \mathbb{Z}/p[x_{2i+2} \mid i \in \mathfrak{t}(G)].$$

Theorem

7

Let G be as in the main theorem. Let P be a principal G-bundle over S^4 classified by $1 \in \mathbb{Z} \cong \pi_4(BG)$. Suppose the following conditions.

1.
$$p > 3$$
 and $p - 2 \in \mathfrak{t}(G)$.
2. $\mathcal{P}^{1}x_{4} = ax_{4}x_{2p-2} + \cdots$ for $a \in (\mathbb{Z}/p)^{\times}$.
Then if

$$(\operatorname{ad} P)_{(p)}^{\operatorname{fib}} \simeq_{S^4} X_1 \times_{S^4} \cdots \times_{S^4} X_{r_p(G)},$$

 X_i is trivial for some *i*.

Proof.

If none of X_i is trivial, we may assume the fiber of $X_i \to S^4$ is B_i . But since

$$\mathcal{P}^1 \hat{x}_3 = a u_4 \hat{x}_{2p-3} + \cdots$$

in $H^*(\text{ad } P; \mathbb{Z}/p)$, $B_1 \times B_{p-2}$ is included in the fiber of $X_1 \to S^4$, a contradiction.

Proof.

If none of X_i is trivial, we may assume the fiber of $X_i \to S^4$ is B_i . But since

$$\mathcal{P}^1 \hat{x}_3 = a u_4 \hat{x}_{2p-3} + \cdots$$

in $H^*(\text{ad } P; \mathbb{Z}/p)$, $B_1 \times B_{p-2}$ is included in the fiber of $X_1 \to S^4$, a contradiction.

Corollary

Let G be as in the main theorem and $G \neq SU(2), SU(3)$. Let P be a principal G-bundle over S⁴ classified by $1 \in \mathbb{Z} \cong \pi_4(BG)$. Then $\exists p$ such that if

$$(\operatorname{ad} P)_{(\rho)}^{\operatorname{fib}} \simeq_{S^4} X_1 \times_{S^4} \cdots \times_{S^4} X_{r_{\rho}(G)},$$

 X_i is trivial for some *i*.

Corollary

Let G, P be as above. Then for some p, the mod p decomposition of $\mathcal{G}(P)$ is not induced from that of ad P.