
Mod p decompositions of gauge groups

Daisuke Kishimoto (Kyoto U)

joint with A. Kono and M. Tsutaya

November 4, 2012; Yamaguchi University

1 / 21



Mod p decompositions of Lie groups

Decompositions of Lie groups start with the rational case; for a
(p-local) finite H-space X , ∃rational decomposition

X '(0) S2n1+1 × · · · × S2n`+1

I t(X ) = {n1, . . . , n`} is called the type of X .

I Put ti (X ) = {k ∈ t(X ) | k ≡ i mod (p − 1)} for a prime p.

Theorem (Mimura, Nishida & Toda ’77, Wilkerson ’74)

Let G be a compact, simply connected, simple Lie group such that
H∗(G ; Z) is p-torsion free. Then ∃B1, . . . , Bp−1 satisfying

G(p) ' B1 × · · · × Bp−1

where the type of Bi is ti (G ). Moreover, if G 6= Spin(2n), each Bi

is irreducible.
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Our object and aim

Let G be a topological group and let P be a principal G -bundle
over K . Our object is the gauge group G(P) which is the
topological group of automorphisms of P.

Our aim is to give mod p decompositions of gauge groups
corresponding to Lie groups. Two applications are given.

∃two approaches to gauge groups; one uses mapping spaces via
classifying spaces and the other is fiberwise homotopy theory via
adjoint bundles.

∃two preceding works; one is due to K & Kono using adjoint
bundles and the other is due to Theriault using mapping spaces.
This time, we take the mapping space approach and the result of
Theriault is actually a special case of ours.
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Main result

Theorem
Let G be a compact, simply connected, simple Lie group such that
H∗(G ; Z) is p-torsion free and G 6= Spin(2n). Let P be a principal
G-bundle over S2d+2 with d ∈ t(G ). Then ∃BP

1 , . . . ,BP
p−1

satisfying
G(P)(p) ' BP

1 × · · · × BP
p−1

and a homotopy fiber sequence

Ω(Ω2d+1
0 Bi ) → BP

i → Bi−d−1

for each i ∈ Z/(p − 1).

Remark
For convenience, we put G(P)(p) = Ω(BG(P)(p)).

Remark
By the preceding result of K & Kono, the Spin(2n) case can be
deduced from the Spin(2n − 1) case for most bundles.
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Outline of the proof
Let φu : BG(p) → BG(p) be the unstable Adams operation of
degree u with p - u. The mod p decompositions of Lie groups are
obtained by the homotopy colimit of the composite of

Ωφu − uk : G(p) → G(p)

for some u, k . Apply this construction to gauge groups.

Let α ∈ π2d+2(BG ) be the classifying map of P. Then we have

BG(P) ' map(S2d+2, BG ; α).

Lemma
For d ∈ t(G ), π2d+2(BG(p)) ∼= Z(p) and φu

∗ = ud+1 in π2d+2.

⇒ We get

φu
∗ : map(S2d+2, BG ; α)(p) → map(S2d+2, BG ;α ◦ ud+1)(p)

where q : Sn → Sn is the degree q map.
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Outline of the proof
⇒ ∃self-map

(u−d−1)∗ ◦ φu
∗ : map(S2d+2, BG ; α)(p) → map(S2d+2, BG ; α)(p)

satisfying a commutative diagram

Ω(Ω2d+1
0 G(p))

²²

u−d−1◦Ω2d+2φu−uk

;u−d−1◦(Ω2d+2φu−uk+d+1)
// Ω(Ω2d+1

0 G(p))

²²

Ωmap(S2d+2, BG ; α)(p)

²²

(u−d−1)∗◦Ωφu
∗−uk

// Ωmap(S2d+2, BG ; α)(p)

²²

G(p)
Ωφu

∗−uk

// G(p).

Taking the homotopy colimit of each row, we get a homotopy fiber
sequence

Ω(Ω2d+1
0 Bi ) → BP

i → Bi−d−1

by the following lemma.
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Outline of the proof

Lemma
Suppose ∃commutative diagram

F1
//

²²

F2
//

²²

F3
//

²²

· · ·

E1
//

²²

E2
//

²²

E3
//

²²

· · ·

B1
// B2

// B3
// · · ·

in which each column is a homotopy fiber sequence. Then

hocolim Fn → hocolim En → hocolimBn

is also a homotopy fiber sequence.
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Principality
We investigate Ω(Ω2d+1

0 Bi ) → BP
i → Bi−d−1 by proving its

principality for (G , p) in the following table, a condition for each
Bi being of rank ≤ p − 2.

SU(n) (p − 1)(p − 2) ≥ n − 1

Sp(n), Spin(2n + 1) (p − 1)(p − 2) ≥ 2n − 1

G2, F4, E6 p ≥ 5

E7, E8 p ≥ 7

The following result of Theriault is a special case of our result.

Let `(G ) = max{d ∈ t(G )} and let δα
i be the composite

Bi−d−1
incl−−→ G(p)

δα
(p)−−→ Ω2d+1

0 G(p)
proj−−→ Ω2d+1

0 Bi

where δα : G → Ω2d+1
0 G is the connecting map of the evaluation

fibration map(S2d+2, BG ; α) → BG .
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Principality

Theorem (Theriault ’10)

Let (G , p) be as in the table and let P be a principal G-bundle
over S4 classified by α ∈ π4(BG ).

1. If `(G ) + 2 < p,

G(P) '(p)

∏
i∈t(G)

(S2i+1 × Ω4
0S

2i+1).

2. Let G = SU(n) and let ZP
i be the homotopy fiber of δα

i for
i = n, n + 1. Then

G(P)(p) ' ZP
n × ZP

n+1 ×
∏

i 6≡n−2,n−1
mod (p−1)

Bi ×
∏

i 6≡n,n+1
mod (p−1)

Ω4
0Bi .

Remark
Theriault’s description of the second decomposition is more
complicated. Our result simplifies it as above.
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Decomposing δα

Let X be a homotopy commutative and homotopy associative
H-space. X is called universal for A ⊂ X if for ∀f : A → Y with a
homotopy associative and homotopy commutative H-space Y ,
∃!H-map f̄ : X → Y extending f , up to homotopy.

Lemma
If homotopy associative and homotopy commutative H-spaces Xi

are universal for Ai (i = 1, 2), then so is X1 × X2 for A1 ∨ A2.

Theorem (Theriault ’07)

Let (G , p) be as in the table. Then ∃homotopy commutative and
homotopy associative H-structure µi of Bi and Ai ⊂ Bi satisfying:

1. Bi is universal for Ai by µi .

2. With µi , the inclusion Ai → Bi induces an isomorphism

Λ(H∗(Ai ; Z/p))
∼=−→ H∗(Bi ; Z/p).
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Decomposing δα

Let (G , p) be as in the table and let α ∈ π2d+2(BG ) with d ∈ t(G ).

Lemma
δα
(p) : G(p) → Ω2d+1

0 G(p) is an H-map with respect to

µ1 × · · · × µp−1 on G(p) and the loop structure on Ω2d+1
0 G(p).

Proposition

If d + `(G ) + 1 ≤ p(p − 1), δα
(p) ' δα

1 × · · · × δα
p−1.

Proof.

δα
(p)|A1∨···∨Ap−1 ' δα

1 |A1 ∨ · · · ∨ δα
p−1|Ap−1

= (δα
1 × · · · × δα

p−1)|A1∨···∨Ap−1 ,

implying the result by the universality of µ1 × · · · × µp−1.
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Decomposing δα

Let P be as in the main theorem with the classifying map α.

Theorem
If d + `(G ) + 1 ≤ p(p − 1), the homotopy fiber sequence

Ω(Ω2d+1
0 Bi ) → BP

i → Bi−d−1

is principal and is classified by δα
i : Bi−d−1 → Ω2d+1

0 Bi .

Proof.
If Fα

i is the homotopy fiber of δα
i , ∃commutative diagram

Ω(Ω2d+1
0 Bi ) //

incl
²²

Fα
i

∃
²²

// Bi−d−1

incl

²²

Ω(Ω2d+1
0 G(p)) //

proj

²²

G(P) //

proj

²²

G(p)

proj

²²

Ω(Ω2d+1
0 Bi ) // BP

i
// Bi−d−1.
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The index Ip(G , d)

Put Ip(G , d) = {1 ≤ i ≤ p − 1 | [Ai−d−1, Ω
2d+1
0 Bi ] = 0}.

Corollary

If d + `(G ) + 1 ≤ p(p − 1),

G(P)(p) '
∏

i 6∈Ip(G ,d)

BP
i ×

∏
i∈Ip(G ,d)

(Bi−d−1 × Ω(Ω2d+1
0 Bi )).

Proof.
If i ∈ Ip(G , d), δα

i |Ai−d−1
' ∗, implying δα

i ' ∗.

Proposition

1. If `(G ) + d + 1 < p, Ip(G , d) = t(G ).

2. If d + 1 < p, Ip(SU(n), p) includes 1 ≤ i ≤ p − 1 with
i 6≡ n, n + 1, . . . , n + d mod (p − 1).

⇒ The result of Theriault is the special case d = 1.
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p-local homotopy types of gauge groups

Let Pk be a principal SU(n)-bundle over S4 classified by
k ∈ Z ∼= π4(BSU(n)).

Theorem (Sutherland ’92, Hamanaka & Kono ’06)

If G(Pk) ' G(P`), then (n(n2 − 1), k) = (n(n2 − 1), `).

We prove the converse when localized at p.

Proposition (Whitehead ’46)

For α ∈ πd(X ), δα corresponds to the Samelson product 〈ᾱ, 1ΩX 〉
through

[ΩX , Ωd
0X ] ∼= [Sd−1 ∧ ΩX , ΩX ]

where ᾱ ∈ πd−1(ΩX ) is the adjoint of α.
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p-local homotopy types of gauge groups

Proposition

Let G = SU(n) and n − 1 ≤ (p − 1)(p − 2). For i = n, n + 1, the
order of δk

i is min{νp(i(i − 1)), νp(k)}.

Proof.
Comparing [Ai−2, Ω

3
0SU(n)(p)] with K−1(Ai−2)(p), we can

calculate that the order of δ1
i is νp(i(i − 1)) for i = n, n + 1. By

linearity of Samelson products, δk
i = k · δ1

i .
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Adjoint bundles
Let G be a topological group and let P be a principal G -bundle
over K . The adjoint bundle adP is defined as

adP = (P × G )/(x , g) ∼ (x · h, h−1gh).

⇒ adP is a fiberwise topological group over K .
⇒ The set of sections Γ(ad P) is a topological group.

∃isomorphism of topological groups

G(P) ∼= Γ(adP).

For fiberwise spaces X1, . . . , Xn over K ,

Γ(X1 ×K · · · ×K Xn) = Γ(X1) × · · · × Γ(Xn).

⇒ A fiberwise mod p decomposition of ad P induces a mod p
decomposition of G(P).

Question
Is every mod p decomposition of G(P) induced from a fiberwise
mod p decomposition of ad P?
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Uniqueness of mod p decompositions of Lie groups

Theorem (Wilkerson ’75)

Let X be a simply connected, finite H-space. If

X(p) ' X1 × · · · × Xn,

where each Xi is irreducible, then the homotopy types of
X1, . . . , Xn are unique up to permutations.

Corollary

Let G be as in the main theorem. For any decomposition

G(p) ' X1 × · · · × Xn,

there is a partition I1 t · · · t In = {1, . . . , p − 1} such that

Xk '
∏
i∈Ik

Bi

for k = 1, . . . , n.
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Cohomology of free loop spaces
K & Kono constructed the following map in cohomology.

Theorem (K & Kono ’10)

∃homomorphism

σ̂ : H∗(X ; R) → H∗−1(LX ; R)
satisfying:

1. σ̂ restricts to σ : H∗(X ;R) → H∗−1(ΩX ; R).

2. σ̂ is a derivation.

3. σ̂ commutes with cohomology operations.

Corollary

Let X be a simply connected space. If H∗(X ; R) = R[x1, . . . , x`],

H∗(LX ;R) = R[x1, . . . , x`] ⊗ ∆(σ̂(x1), . . . , σ̂(x`)).

Proof.
H∗(ΩX ; R) = ∆(σ(x1), . . . , σ(x`)) by the Borel transgression
theorem. Then we apply the Leray-Hirsch theorem to the fiber
sequence ΩX → LX → X .
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Cohomology of adjoint bundles
For the universal bundle EG → BG ,

adEG 'BG LBG .

⇒ For the classifying map α : K → BG of P,

adP 'K α−1LBG .

Lemma
Let P be a principal G-bundle over S4 classified by the inclusion
j : S4 → BG. If H∗(BG ; Z/p) = Z/p[x1, . . . , x`],

H∗(adP; Z/p) = Λ(u4, x̂1, . . . , x̂`)

where x̂i = j̄∗(σ̂(xi )) for the lift j̄ : adP → LBG of j.

Proof.
x̂1, . . . , x̂` restricts to generators of the cohomology of the fiber G
of adP → S4. Apply the Leray-Hirsch theorem.
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Indecomposability of adjoint bundles

Let rp(G ) be the number of i ∈ Z/(p − 1) such that ti (G ) 6= ∅.

Recall that if H∗(G ; Z) is p-torsion free,

H∗(BG ; Z/p) = Z/p[x2i+2 | i ∈ t(G )].

Theorem
Let G be as in the main theorem. Let P be a principal G-bundle
over S4 classified by 1 ∈ Z ∼= π4(BG ). Suppose the following
conditions.

1. p > 3 and p − 2 ∈ t(G ).

2. P1x4 = ax4x2p−2 + · · · for a ∈ (Z/p)×.

Then if
(adP)fib

(p) 'S4 X1 ×S4 · · · ×S4 Xrp(G),

Xi is trivial for some i.
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Indecomposability of adjoint bundles

Proof.
If none of Xi is trivial, we may assume the fiber of Xi → S4 is Bi .
But since

P1x̂3 = au4x̂2p−3 + · · ·

in H∗(adP; Z/p), B1 × Bp−2 is included in the fiber of X1 → S4, a
contradiction.

Corollary

Let G be as in the main theorem and G 6= SU(2), SU(3). Let P be
a principal G-bundle over S4 classified by 1 ∈ Z ∼= π4(BG ). Then
∃p such that if

(adP)fib
(p) 'S4 X1 ×S4 · · · ×S4 Xrp(G),

Xi is trivial for some i.

Corollary

Let G , P be as above. Then for some p, the mod p decomposition
of G(P) is not induced from that of adP.
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