
QUANTUM D-MODULES OF TORIC VARIETIES AND
OSCILLATORY INTEGRALS

HIROSHI IRITANI

Abstract. We review mirror symmetry for the quantum cohomology D-module
of a compact weak-Fano toric manifold. We also discuss the relationship to the

GKZ system, the Stanley-Reisner ring, the Mellin-Barnes integrals, and the Γ̂-
integral structure.

1. Introduction

The purpose of the present notes is to give a concise review on mirror symmetry
for the quantum D-modules of toric varieties, as proposed by Givental [26]. Our goal
will be very modest: we restrict to weak-Fano compact toric manifolds and describe

their mirror symmetry concretely and explicitly. We will also discuss the Γ̂-integral
structure of the quantum D-modules and its role in mirror symmetry.

A mirror of a Fano manifold X is given by a Landau-Ginzburg model, that is, a
complex manifold Y equipped with a holomorphic function (potential) W : Y → C
(see [3, 12, 26, 28, 39]). Under mirror symmetry, it is expected that the quantum
cohomology of X is isomorphic to the Jacobi ring of W , and that the quantum
cohomology D-module of X is isomorphic to the mirror D-module whose solutions
are oscillatory integrals associated with W (see Table 1). For a (weak-)Fano toric
manifold X, the mirror W is given by a family of Laurent polynomials whose Newton
polytopes are given by the fan diagram of X, and the mirror correspondence as in
Table 1 is by now well-established. We will explain the relationship between the
mirror D-module and the Gelfand-Kapranov-Zelevinsky (GKZ) system and how the
(quantum) Stanley-Reisner ring arises as a limit of the mirror D-module. The GKZ
system or the Stanley-Reisner rings can be regarded as intermediate objects between
quantum cohomology of toric varieties and their mirrors.

Table 1. Mirror correspondence.

Fano manifold Landau-Ginzburg toric case

X model W : Y → C

quantum cohomology Jacobi ring quantum Stanley-

ring (or H(Y, (Ω•Y , dW ))) Reisner ring

quantum D-module D-module of oscillatory GKZ system

zQ ∂
∂Q

+ p? integrals
∫
eW/zΩ �dI = 0

Even for Fano manifolds other than toric varieties, the mirror space Y is often
given by (a partial compactification of) the algebraic torus (C×)n and the potential
W is given by a Laurent polynomial on it; however, the coefficients of the mirror
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Laurent polynomial W are very special (see e.g. [13,48]). Many people have observed
(see [6]) that, when a Fano manifold X admits a flat degeneration to a (possibly
singular) toric variety X ′, the mirror of X is often given as a special subfamily of the
Laurent polynomials that are mirror to a crepant resolution of X ′. Such a subfamily
corresponds to a certain stratum in the discriminant loci of the GKZ system for X ′.
Therefore, toric mirror symmetry can be viewed as a generic phenomenon whereas
mirror symmetry for more general Fano manifolds can be viewed as its specialization.
In this article, we do not delve into mirror symmetry for non-toric Fano manifolds; we
refer the reader to the article of Golyshev [29] in the same volume for the differential
equations aspects of the story1.

In the last two sections, we will discuss the Γ̂-integral structure [36, 38] in the

context of toric mirror symmetry. The Γ̂-integral structure is a certain integral

local system underlying the quantum D-module, which is defined by the Γ̂-class
and the topological K-group. Conjecturally this corresponds to the natural inte-

gral structure on the mirror. The Γ̂-class involves transcendental numbers such as
the Riemann ζ-values and its origin is quite mysterious from a viewpoint of curve
counting or symplectic topology. On the other hand, the existence of such a struc-
ture had been suggested since the beginning of mirror symmetry. Candelas-de la
Ossa-Green-Parkes [8] already observed that χ(X)ζ(3) appears in the asymptotics
of periods of mirror Calabi-Yau threefolds near the large complex structure limit
(LCSL). Hosono-Klemm-Theisen-Yau [35] observed “remarkable identities” that re-
late certain characteristic numbers of complete intersection Calabi-Yau manifolds
with hypergeometric solutions of the Picard-Fuchs equation of the mirror family.

This observation led Libgober [42] to introduce the (inverse) Γ̂-class of a complex
manifold. Later, Hosono [34] made this connection more precise in terms of central
charges and homological mirror symmetry.

When a Fano manifold X is mirror to the Landau-Ginzburg model W : Y → C,

the compatibility of the Γ̂-integral structure and mirror symmetry would imply the
following “mirror symmetric Gamma conjecture” (cf. [23, 24], see §7)∫

Γ⊂Y
e−tWΩ ∼

∫
X

t−c1(X) · Γ̂X as t→ 0.

This says that the asymptotics of the mirror oscillatory integral is described in terms

of the Γ̂-class of X. The integration cycle Γ here should be a Lagrangian section of
the Strominger-Yau-Zaslow fibration [53] (i.e. mirror to the structure sheaf of X).
In the last section, we will introduce Mellin-Barnes integral representations for the

mirror oscillatory integrals (in the toric case) and explain these Γ̂-phenomena for
toric varieties.
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2. Preliminaries on toric varieties

A toric variety is a GIT quotient of a vector space Cm by a torus K ∼= (C×)k,
where the torus K acts on Cm via an injective group homomorphism K → (C×)m.
Let D1, . . . , Dm ∈ Hom(K,C×) denote the characters defining the homomorphism
K → (C×)m. A GIT quotient is given by choosing a stability condition ω ∈ k∗R,
where kR denotes the Lie algebra of the maximally compact subgroup KR of K. We
assume that

(a) ω lies in the cone
∑m

i=1 R≥0Di;
(b) if ω lies in

∑
i∈I R>0Di for a subset I ⊂ {1, . . . ,m}, then {Di}i∈I spans k∗R

over R;
(c) the cone

∑m
i=1 R≥0Di is strictly convex.

Then the toric variety corresponding to ω is defined by

Xω := Uω/K

where Uω := Cm \
⋃
I CI with I ranging over subsets of {1, . . . ,m} such that ω /∈∑

i∈I R>0Di. The conditions (a), (b), (c) respectively ensure that Xω is non-empty,
that Xω has at worst orbifold singularities, and that Xω is compact. The space k∗R
of stability conditions has a fan structure, called the GKZ fan. A maximal cone of
the GKZ fan is given by the closure of a connected component of the set of ω ∈ k∗R
satisfying the conditions (a)–(c). The toric variety Xω depends only on the maximal
cone Aω to which ω belongs.

We assume that Xω is weak-Fano, or equivalently, that c1(Xω) is nef. For sim-
plicity of notation and exposition, we will also assume that Xω is a smooth man-
ifold (without orbifold singularities) and that {zi = 0} ∩ Uω is non-empty for all
i = 1, . . . ,m, where zi is the ith co-ordinate on Cm. With these assumptions, we
have k∗R

∼= H2(Xω,R) and the closure of the ample cone of Xω corresponds to the
maximal cone Aω of the GKZ fan. Under this isomorphism, the character Di corre-
sponds to the class of the toric divisor {zi = 0} in Xω.

Remark 1. Although we restrict to smooth toric manifolds in this article, all the
results discussed in this paper can be extended to toric orbifolds [10, 11, 14, 36, 44].
In the orbifold case, it is important to allow {zi = 0} ∩ Uω = ∅ for some i as such
indices correspond to twisted sectors.

A toric variety can be also described in terms of a fan. Let kZ = Hom(C×, K)
denote the cocharacter lattice of K. Consider the natural map kZ → Zm induced by
the inclusion K → (C×)m and complete it to a short exact sequence

0→ kZ → Zm → N → 0

where N := Zm/kZ is a free abelian group of rank n = m − k. The fan Σω of Xω

is defined on the vector space NR = N ⊗ R: the image bi ∈ N of ei ∈ Zm gives a
generator of a 1-dimensional cone of Σω, and the cone

∑
i∈I R≥0bi belongs to Σω if

and only if ω ∈
∑

i/∈I R>0Di.



4 HIROSHI IRITANI

3. Quantum D-modules

The cocharacter lattice kZ = Hom(C×, K) is identified with H2(Xω,Z) and the
dual cone A∨ω ⊂ kR of Aω is identified with the cone of curves. The (small) quantum
product ? is a commutative and associative product on the spaceH∗(Xω)⊗C[[A∨ω∩kZ]]
defined by

(α ? β, γ) =
∑

d∈A∨ω∩kZ

〈α, β, γ〉0,3,dQ
d for all α, β, γ ∈ H∗(Xω),

where 〈α, β, γ〉0,3,d is the genus-zero, three-points, degree-d Gromov-Witten invari-

ant and Qd denotes the element of C[[A∨ω ∩ kZ]] corresponding to d. The Dubrovin
connection is a flat connection on the trivial H∗(Xω)-bundle over SpecC[[A∨ω ∩ kZ]]
given by

(1) ∇ξQ ∂
∂Q

= ξQ
∂

∂Q
+

1

z
(ξ?), ξ ∈ H2(Xω)

where z is a formal parameter and ξQ ∂
∂Q

is a derivation of C[[A∨ω ∩ kZ]] defined by

(ξQ ∂
∂Q

)Qd = 〈ξ, d〉Qd. This is a flat connection with logarithmic singularities. The

Dubrovin connection z∇ (multiplied by z) acts on the space

QDM(Xω) = H∗(Xω)⊗ C[z][[A∨ω ∩ kZ]]

which we call the quantum D-module. It is not known in general whether the quan-
tum product ? converges or not. For toric varieties, it is known that the quantum
product converges and hence the quantum D-module extends to an actual analytic
neighbourhood of the origin “Q = 0” in SpecC[A∨ω ∩ kZ]. The point Q = 0 is called
the large radius limit point.

Remark 2. The Dubrovin connection can be also extended in the z-direction. The
connection in the z-direction is given by

∇z∂z = z
∂

∂z
− 1

z
c1(Xω) ?+µ

where µ ∈ End(H∗(Xω)) is defined by µ(α) = (p − n
2
)α for α ∈ H2p(Xω) with

n = dimCXω.

4. Mirror D-modules

We have the exact sequence of tori 1 → K → (C×)m → T → 1 where T :=
(C×)m/K ∼= N ⊗ C× is a torus acting on Xω with an open dense orbit. Consider
the exact sequence 1 → Ť → (C×)m → Ǩ → 1 of dual tori. The mirror Landau-
Ginzburg model of a toric variety Xω is given by the family of tori pr : (C×)m → Ǩ
together with a potential function W : (C×)m → C defined by W = u1 + · · · + um,
where ui denotes the ith co-ordinate on (C×)m.

(C×)m
W=u1+···+um //

pr
��

C

Ǩ

Choosing a splitting of the sequence, we can also write Wq = W |pr−1(q) as

Wq = ql1xb1 + · · ·+ qlmxbm



QUANTUM D-MODULES OF TORIC VARIETIES AND OSCILLATORY INTEGRALS 5

where q ∈ Ǩ, x ∈ Ť and recall that bi are generators of 1-dimensional cones of the
fan Σω. By varying q ∈ Ǩ, Wq can represent any Laurent polynomial in x ∈ Ť
having b1, . . . , bm as exponents. Hence the mirror of a toric variety can be thought
of as generic Laurent polynomials.

Remark 3. We denote the B-model co-ordinates by q and the A-model co-ordinates
by Q. These co-ordinates are related by the mirror map ψ below.

Using the GKZ fan on k∗R and its ‘preimage fan’ on Rm (whose maximal cones
are (R≥0)m ∩ π−1(A), where A is a maximal cone the GKZ fan and π : Rm → k∗R
is the natural map given by D1, . . . , Dm), we can partially compactify the family
pr : (C×)m → Ǩ to a map between toric varieties pr : Y →M and W extends to a
regular function Y → C.

(C×)m

��

� � // Y W //

pr

��

C

Ǩ �
� //M

The maximal cone Aω defines a torus-fixed point 0ω ∈ M which is mirror to the
large-radius limit point Q = 0 of the quantum cohomology of Xω. Let Yq denote
the fibre of q ∈M and write Wq = W |Yq . Givental introduced oscillatory integrals

(2)

∫
Γ⊂Yq

eWq/zΩ

as mirrors of the quantum D-module, where Γ is a non-compact Morse cycle for
<(Wq/z) and Ω is a holomorphic volume form on the fibre Yq. Introduce the log
structures on Y and M given by their toric boundaries and let Ω•Y/M denote the

relative logarithmic de Rham complex. The integrands Ω of (2) can be naturally
viewed as elements of the twisted de Rham cohomology:

GM(W ) = pr∗H
top(Ω•Y/M[z], zd+ dW∧).

This is equipped with the (logarithmic) Gauss-Manin connection and the higher
residue pairing; such structures were introduced by K. Saito [50] in singularity the-
ory. The Gauss-Manin connection is a map

∇ : GM(W )→ 1

z
GM(W )⊗OM Ω1

M ⊕GM(W )
dz

z2

which has the same pole structure along z = 0 as the Dubrovin connection (here
Ω1
M denotes the sheaf of logarithmic 1-forms). When we choose a splitting of the

sequence 1 → Ť → (C×)m → Ǩ → 1 and choose co-ordinates x = (x1, . . . , xn) on
Ť ∼= (C×)n and q = (q1, . . . , qk) on Ǩ ∼= (C×)k, the connection ∇ is given by2

∇[fΩ0] =
k∑
a=1

[(
∂af +

∂aW

z
f

)
Ω0

]
dqa
qa

+

[(
z∂zf −

W

z
f − n

2
f

)
Ω0

]
dz

z

2Here we twist the Gauss-Manin connection by −n
2
dz
z so that it is compatible with the Dubrovin

connection.
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where ∂a = qa
∂
∂qa

, f = f(x, q, z) ∈ OY [z] and Ω0 is the standard relative volume

form of the family pr : Y →M:

(3) Ω0 =
dx1

x1

∧ · · · ∧ dxn
xn

.

The higher residue pairing is a map

(−)∗GM(W )⊗OM[z] GM(W )→ OM[[z]]

which coincides with the residue pairing when restricted to z = 0, where (−) denotes
the automorphism of OM[z] sending f(q, z) to f(q,−z). For a concrete description
of the higher residue pairing, we refer the reader to [11, §6]. There exists a Zariski
open subset U of M containing 0ω such that GM(W ) is locally free and coherent
(as an O-module) over U × Cz [36, 44,47].

Theorem 4 ([11, 16,26, 27,36,37,44, 46, 47]). Over an analytic open neighbourhood
of 0ω, the mirror D-module GM(W ) is isomorphic to the pull-back of the quantum
D-module QDM(Xω) by a map ψ ∈ Aut(C[[A∨ω ∩ kZ]]), called the mirror map. Under
this isomorphism, the higher residue pairing corresponds to the Poincaré pairing.

The mirror map ψ above extends to a local isomorphism between analytic neigh-
bourhoods of 0ω, and therefore the pull-back by ψ makes sense over an analytic
neighbourhood. If M contains two different large radius limit points 0ω1 , 0ω2 such
that Xω1 , Xω2 are weak Fano, the theorem implies that the quantum D-modules of
Xω1 and Xω2 are isomorphic under analytic continuation; this is an example where
the crepant transformation conjecture holds [9, 15].

Remark 5. The above theorem is essentially due to Givental [26, 27]. Givental
introduced the mirror potential function W (see also Hori-Vafa [33]) and expressed
solutions of the quantum D-module in terms of oscillatory integrals. Givental’s mir-
ror theorem [27] (see also Lian-Liu-Yau [40,41]) is stated as the equality between the
J-function and the I-function, where the J-function is a solution to the quantum
D-module and the I-function is a solution to the mirror D-module (see the next sec-
tion). Mirror symmetry as an isomorphism of D-modules has been studied in details
by [36, Proposition 4.8], [47, Theorem 4.11], [16, Theorem 5.1.1], [46, Theorem 7.43],
[37, Theorem 4.2], [44, Theorem 6.4], [11, Theorem 1.1]. The logarithmic extension
across the boundary divisors of M has been studied by [16, 44, 46, 47] in terms of
(GKZ) D-modules; the logarithmic extension of the mirror Landau-Ginzburg model
itself was discussed in [11, 37, 43]. In this paper, we restrict to the small quantum
cohomology, but we also have mirror symmetry for the big quantum cohomology,
see [4, 11,17,18,37].

Example 6. The mirror family of Pn is given by the diagram

Cn+1

pr

��

W=u0+···+un // C

C

with q = pr(u0, . . . , un) = u0u1 · · ·un, where Y = Cn+1 and M = C. We can write
Wq = W |pr−1(q) as Wq = x1 + · · ·+ xn + q

x1···xn by setting xi := ui for 1 ≤ i ≤ n.
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5. The GKZ system and hypergeometric solutions

The mirror D-module GM(W ) can be described in terms of the Gelfand-Kapranov-
Zelevinsky (GKZ) system [25]. To describe the GKZ system explicitly, we introduce

a basis p1, . . . , pk of k∗Z
∼= H2(Xω,Z) and write Di =

∑k
a=1miapa. The elements

p1, . . . , pk define co-ordinates q1, . . . , qk on Ǩ ∼= (C×)k. We write qd =
∏k

a=1 q
pa·d
a

for d ∈ kZ and set ∂a = qa
∂
∂qa

. Over the open torus Ǩ ⊂ M, the mirror D-module

GM(W ) is generated by the standard relative volume form Ω0 (see (3)) as a D-
module, or more precisely, as a module over the ring OǨ [z]〈z∂1, . . . , z∂k〉, where z∂a
acts by the Gauss-Manin connection z∇∂a . All the D-module relations of Ω0 are
generated by �d[Ω0] = 0 with d ∈ kZ, where

(4) �d :=
∏

i:Di·d>0

Di·d−1∏
j=0

(
k∑
a=1

miaz∂a − jz

)
− qd

∏
i:Di·d<0

−Di·d−1∏
j=0

(
k∑
a=1

miaz∂a − jz

)
.

This system of differential equations is called the GKZ system. Givental’s I-function
[27] is a cohomology-valued function annihilated by �d:

I(q, z) =
∑

d∈A∨ω∩kZ

qd+p/z

m∏
i=1

∏0
j=−∞(Di + jz)∏Di·d
j=−∞(Di + jz)

where qp/z =
∏k

a=1 e
pa log qa/z. The components of the I-function form a basis of

solutions to the GKZ system near 0ω [36, 44, 47]. The mirror map ψ is determined
by the z−1-expansion of the I-function

I(q, z) = 1 +
1

z

k∑
a=1

pa logψa(q) +O(z−2)

where we write the mirror map in the form Qa = ψa(q), a = 1, . . . , k us-
ing the A-model co-ordinates Q1, . . . , Qk dual to p1, . . . , pk. We have ψa(q) =
qa + higher order terms; in the Fano case the mirror map is trivial ψa(q) = qa.

Remark 7 ([2, 25, 36]). The rank of the GKZ system (at a generic point in Ǩ)
is equal to the normalized volume of the fan polytope, that is, the convex hull of
b1, . . . , bm in NR; this is also equal to dimH∗(Xω).

Example 8 (continuation of Example 6). In the case of Pn, the mirror oscillatory
integral satisfies the differential equation:(

(zq∂q)
n+1 − q

) ∫
Γ

e

(
x1+···+xn+ q

x1···xn

)
/z dx1 · · · dxn

x1 · · ·xn
= 0.

The I-function is given by

I(q, z) =
∞∑
d=0

qp/z+d∏d
j=1(p+ jz)n+1

(with p = c1(O(1))) and the mirror map is trivial: Q = q. The relationship between
these two solutions will be discussed in §7-8, see Remark 11 and Example 14.
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6. The Jacobi ring and the Stanley-Reisner ring

A ring structure arises from these D-modules in the z → 0 limit. The z → 0 limit
of the Dubrovin connection z∇ξQ ∂

∂Q
is the quantum product by ξ ∈ H2(Xω) (see

(1)), and the quantum multiplication by divisors generate the quantum cohomology
ring. On the other hand, the z → 0 limit of the mirror D-module is given by the
(logarithmic) Jacobi ring of W :

Jac(W ) = pr∗

(
OY
/〈

x1
∂W
∂x1
, . . . , xn

∂W
∂xn

〉)
where we choose C×-co-ordinates (x1, . . . , xn) of Ť ∼= (C×)n and xi

∂
∂xi

defines a rela-
tive tangent vector field of the family Y →M. Theorem 4 induces an isomorphism

ψ∗QH∗(Xω) ∼= Jac(W )

between the quantum cohomology ring and the Jacobi ring. This isomorphism has
been studied by many people, see [5,20–22,31,45,49,52] together with the references
in Remark 5.

Over the affine open chart Mω := Spec(C[A∨ω ∩ kZ]) of M, the Jacobi ring is a
quotient of the quantum Stanley-Reisner ring associated with the fan Σω. For v ∈ N ,
choose a cone

∑
i∈I R≥0bi of the fan Σω containing v and write v =

∑
i∈I vibi. We

set vi = 0 for i /∈ I. Set wv :=
∏m

i=1 u
vi
i . Then H0(Mω, pr∗OY) is a free C[A∨ω ∩ kZ]-

module generated by wv with v ∈ N . The product structure is given by

(5) wvwv′ = q`(v,v
′)wv+v′

where `(v, v′) ∈ A∨ω ∩ kZ is the element given by the linear relation (vi + v′i − (v +
v′)i)

m
i=1 among bi’s via the exact sequence 0 → kZ → Zm → N → 0. This ring

H0(Mω, pr∗OY) is called the quantum Stanley-Reisner ring. The Jacobian ideal
gives additional linear relations among u1, . . . , um given by:

(6)
m∑
i=1

uibi = 0.

The relations (5), (6) define the Jacobi ring Jac(W ); they are also known as the
relations of Batyrev’s quantum ring [5]. At the large-radius limit q → 0ω, the
quantum Stanley-Reisner relations (5) reduce to

wvwv′ =

{
wv+v′ if v and v′ lie in a common cone of Σω;

0 otherwise.

These relations define the Stanley-Reisner ring. As is well-known in toric geometry,
the Stanley-Reisner ring modulo the linear relations (6) is isomorphic to H∗(Xω).

Remark 9. Over an analytic neighbourhood of 0ω, pr∗OY is isomorphic to the
T -equivariant quantum cohomology of Xω and the left-hand side of the linear rela-
tions (6) correspond to the T -equivariant parameters. Moreover, the multiplication
by the co-ordinates x1, . . . , xn of Ť corresponds to the Seidel representation [51] on
the equivariant quantum cohomology. McDuff-Tolman [45] used the Seidel repre-
sentation to determine a presentation of the quantum cohomology ring of a toric
manifold. In [37], we showed how equivariant mirror symmetry for toric manifolds
follows almost tautologically from the Seidel representation and shift operators [7].
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7. Γ̂-integral structure

The Γ̂-class [42] of an almost complex manifold X is defined to be the character-
istic class

Γ̂X =
n∏
i=1

Γ(1 + δi)

where δ1, . . . , δn are the Chern roots of the tangent bundle (so that c(TX) =∏n
i=1(1 + δi)) and Γ(x) is Euler’s Γ-function. The Γ-function Γ(1 + δ) here should

be expanded in Taylor series at δ = 0. For a toric variety X = Xω, it is given by

Γ̂Xω =
m∏
j=1

Γ(1 +Dj) =
m∏
j=1

exp

(
−γDj +

∞∑
k=2

(−1)k
ζ(k)

k
Dk
j

)
where γ is the Euler constant, ζ(s) is the Riemann ζ-function and recall that Dj is
the class of a prime toric divisor.

The Γ̂-integral structure [36,38] is an integral lattice in the space of (multi-valued)
flat sections of the Dubrovin connection. For an element E ∈ K0(Xω) of the topolog-
ical K-group, there exists a unique flat section sE(Q, z) of the Dubrovin connection
(which is flat also in the z-direction, see Remark 2) such that

sE(Q, z) ∼ 1

(2π)n/2
Q−p/zz−µzc1(Xω)

(
Γ̂Xω ∪ (2π

√
−1)deg /2 ch(E)

)
as Q→ 0, where Q−p/z =

∏k
a=1 e

−pa logQa/z (we choose co-ordinates Q1, . . . , Qk dual
to p1, . . . , pk as in §5) and µ is as in Remark 2. These flat sections sE(Q, z) span

the Γ̂-integral structure. Its important properties are as follows:

(i) this lattice is invariant under local monodromy around the large radius
limit point; therefore it defines a Z-local system underlying the quantum
D-module;

(ii) the Poincaré pairing of these flat sections coincide with the Euler pairing on

the derived category: (sE(Q, e−π
√
−1z), sF (Q, z)) = χ(E,F ).

The second property follows from the identity Γ(1+x)Γ(1−x) = πx/ sin(πx) (which

implies that the Γ̂X is the “half” of the Todd class) and the Hirzebruch-Riemann-
Roch formula.

The mirror D-module GM(W ) from §4 has a natural integral structure3 dual to
the relative homology Hn(Yq, {<(Wq/z) � 0};Z) via the oscillatory integral (2).
Here note that an element of the relative homology gives an integration cycle in (2).
These two integral structures coincide under mirror symmetry.

Theorem 10 ([36]). The Γ̂-integral structure coincides with the natural integral
structure on the mirror D-module under the mirror isomorphism in Theorem 4.

This theorem follows from the following identity of periods of both sides:

(7)

∫
Xω

sE(ψ(q), z) =
1

(2πz)n/2

∫
Γ(E)

e−Wq/zΩ0

where E 7→ Γ(E) is an isomorphism between K0(Xω) and Hn(Yq, {<(Wq/z) �
0};Z); this correspondence should be a shadow of homological mirror symmetry,

3To be more precise, we twist the local system of relative cohomology by (−2πz)−n/2 so that it
is compatible with the Dubrovin connection.
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i.e. an equivalence between the derived category of coherent sheaves on Xω and the
Fukaya-Seidel category of Wq (see [19]):

Db
coh(Xω) ∼= FS(Y,Wq).

When E is the structure sheaf O on Xω, the corresponding cycle Γ(O) is given by
the positive real locus (R>0)n in Yq ∼= Ť ∼= (C×)n (when q lies in the positive real
locus Hom(kZ,R>0) of Ǩ = Hom(kZ,C×) and z > 0). In this case, (7) yields the
following asymptotics:∫

(R>0)n
e−Wq/zΩ0 ∼

∫
Xω

q−pzc1(Xω) ∪ Γ̂Xω(8)

as q → 0ω in the positive real locus and for z > 0. Namely, the Γ̂-class appears in
the q → 0ω asymptotics of the exponential period of the mirror. It would be very
interesting to study if such asymptotics hold for more general Fano manifolds and
their mirrors.

Remark 11. The equality (7) can be restated in terms of the I-function as follows:∫
Xω

(
zc1(Xω)z

deg
2 I(q,−z)

)
∪ Γ̂Xω(2π

√
−1)

deg
2 ch(E) =

∫
Γ(E)

e−Wq/zΩ0.

This formula expresses the oscillatory integral as an explicit linear combination of
components of the I-function.

Remark 12. There is another version of “Gamma conjecture” for quantum co-
homology of Fano manifolds formulated by Galkin, Golyshev and the author [23],
which does not involve mirror symmetry. The quantum D-module of a Fano mani-
fold has irregular singularities at “Q =∞”, and the conjecture is about the Stokes
structure at Q = ∞ and the connection of solutions between Q = 0 and Q = ∞.

This version of the conjecture, if true, implies that the Γ̂-class can be recovered from
the quantum cohomology of a Fano manifold. See also [24,30].

Remark 13. Abouzaid, Ganatra, Sheridan and the author [1] recently proposed
an approach to proving the asymptotics (8) (for Calabi-Yau mirror pairs) using
Strominger-Yau-Zaslow picture [53] and tropical geometry.

8. Mellin-Barnes integral representation

The oscillatory integrals (2) give an integral representation of solutions to the GKZ
system. There is another integral representation, Mellin-Barnes integral representa-
tion, which is “Gale dual” to (2). We shall regard p1, . . . , pk ∈ k∗Z as co-ordinates on
kC = Lie(K) which are Mellin-dual to q1, . . . , qk. Under the Mellin transformation

I(q) 7→ Î(p) =
∫
I(q)qp dq

q
, the differential operator ∂a = qa

∂
∂qa

corresponds to the

multiplication by −pa and the multiplication by qa corresponds to the shift operator
Ta : pb 7→ pb + δa,b. Thus the GKZ equations �dI(q, z) = 0 (see (4)) with d ∈ kZ are
transformed into the difference equations:( ∏

i:Di·d>0

Di·d−1∏
j=0

(−Di − j)z − T d
∏

i:Di·d<0

Di·d−1∏
j=0

(−Di − j)z

)
Î(p, z) = 0
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where Di =
∑k

a=1miapa ∈ k∗Z is regarded as the pull-back of the standard co-

ordinates on Cm via the inclusion kC ↪→ Cm and T d =
∏k

a=1 T
pa·d
a . It is easy to check

that this system has the following simple solution:

Î(p, z) =
m∏
i=1

(−z)DiΓ(Di).

In fact, Î is (the restriction of) the Mellin transform of eW/z =
∏m

i=1 e
ui/z; here we

recall
∫∞

0
eu/zuD du

u
= (−z)DΓ(D) with z < 0 and D > 0. By the inverse Mellin

transformation, we get a solution to the GKZ system:

(9)
1

(2π
√
−1)k

∫
C⊂kC

q−p

(
m∏
i=1

(−z)DiΓ(Di)

)
dp1 · · · dpk

where C ⊂ kC is a suitable (non-compact) k-cycle so that the integral converges. For
a suitable choice of C, (9) should coincide with an oscillatory integral

∫
Γ
eWq/zΩ0 (see

Figure 1 below), but the author does not know a precise choice of cycles in general.

Via the residue calculation, such a formula would explain the Γ̂-class appearing in
the leading asymptotics (8), see Example 14 below.

eW/z =
∏m

i=1 e
ui/z on (C×)m

pr∗ //
OO

Mellin
��

∫
eW/zΩ on Ǩ

OO

Mellin
��∏m

i=1(−z)DiΓ(Di) on Cm restriction // Î(p, z) on kC

Figure 1. Oscillatory integral and its Mellin transform

Example 14 (continuation of Example 8). We consider the mirror oscillatory inte-
gral of Pn again. The following method is borrowed from [38]. The Mellin transform

of the oscillatory integral I(q) =
∫

(R>0)n
e
−(x1+···+xn+ q

x1···xn
)/z dq

q
(with q, z > 0) gives

Î(p) =

∫ ∞
0

qpI(q)
dq

q

=

∫
(R>0)n+1

(u0 · · ·un)pe−(u0+···+un)/z du0

u0

∧ · · · ∧ dun
un

= z(n+1)pΓ(p)n+1.

This coincides with Î(p,−z) as expected. Then the Mellin inversion formula gives

I(q) =
1

2π
√
−1

∫ c+
√
−1∞

c−
√
−1∞

q−pÎ(p)dp

with c > 0. By closing the integration contour to the left, we can express the right-
hand side as the sum over residues at p = 0,−1,−2, . . . , arriving at the asymptotics
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in (8).

I(q) =
∞∑
d=0

Resp=−d
(
q−pz(n+1)pΓ(p)n+1dp

)
∼ Resp=0

(
q−pz(n+1)pΓ(1 + p)n+1 dp

pn+1

)
=

∫
Pn

q−pzc1(Pn) ∪ Γ̂Pn .

Remark 15. The Mellin-Barnes integral representations (9) appear in physics lit-
erature as hemisphere partition functions (studied for more general gauged linear
sigma models), see, e.g. [32].
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Boston, Boston, MA, 1998, pp. 141–175.

[28] Vasily V. Golyshev, Classification problems and mirror duality, Surveys in geometry and
number theory: reports on contemporary Russian mathematics, London Math. Soc. Lec-
ture Note Ser., vol. 338, Cambridge Univ. Press, Cambridge, 2007, pp. 88–121, DOI
10.1017/CBO9780511721472.004.

[29] Vasily Golyshev, Techniques to compute monodromy of differential equations of mirror sym-
metry. to appear in the same volume.

[30] V. V. Golyshev and D. Zagier, Proof of the gamma conjecture for Fano 3-folds with a Pi-
card lattice of rank one, Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016), no. 1, 27–54, DOI
10.4213/im8343 (Russian, with Russian summary); English transl., Izv. Math. 80 (2016),
no. 1, 24–49.
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