幾何学 II レポート問題 2019年12月25日

以下の問題 $1 \cdot 2$ を全て解き,理学部 3 号館数学教室事務室に 2020 年 1 月 17 日 (金)17:00 までに提出してください.提出されたレポートは返却しません.

問題 $1-S^{2n+1}$ を以下のように \mathbb{C}^{n+1} の中の単位球面とみなし, $j\colon S^{2n+1}\to\mathbb{C}^{n+1}$ を包含写像とする.

$$S^{2n+1} = \{ (z_1, \dots, z_{n+1}) \in \mathbb{C}^{n+1} : |z_1|^2 + \dots + |z_{n+1}|^2 = 1 \}.$$

また $\pi: S^{2n+1} \to \mathbb{CP}^n$ を自然な射影とする.

$$\pi(z_1,\ldots,z_{n+1})=[z_1,\ldots,z_{n+1}].$$

以下では \mathbb{C}^{n+1} の標準的なエルミート内積 $(z,w)=\sum_{i=1}^{n+1}z_i\overline{w_i}$ を固定する.

$$c_{\varphi}(t) = \{ v + t\varphi(v) : v \in \ell \}$$

と定める.ここで右辺は \mathbb{C}^{n+1} の1次元部分空間である.明らかに $c_{\varphi}(0)=\ell$ である.この曲線のt=0での速度ベクトルを対応させる写像

$$\varphi \longmapsto \frac{d}{dt}c_{\varphi}(t)\bigg|_{t=0}$$

は同型写像 $\mathrm{Hom}_{\mathbb{C}}(\ell,\ell^{\perp}) o T_{\ell}\mathbb{CP}^n$ を定めることを示せ.

(2) ℓ を \mathbb{CP}^n の点, $v\in\ell$ を長さが1 のベクトルとする. $\varphi,\psi\in\mathrm{Hom}_{\mathbb{C}}(\ell,\ell^\perp)$ に対して実数 $\sigma(\varphi,\psi)$ を

$$\sigma(\varphi, \psi) = -\Im(\varphi(v), \psi(v))$$

と定める.ここで右辺の (\cdot,\cdot) はエルミート内積であり, $\Im z$ は複素数 z の虚部を表す.この定義が長さ 1 のベクトル v の取り方によらないことを確かめ, σ が $\mathrm{Hom}_{\mathbb{C}}(\ell,\ell^\perp)$ 上の反対称な \mathbb{R} 双線形形式を定めることを示せ.

(3) (1) の同型 $\operatorname{Hom}_{\mathbb{C}}(\ell,\ell^{\perp})\cong T_{\ell}\mathbb{CP}^n$ により σ は $\bigwedge^2 T_{\ell}^*\mathbb{CP}^n$ の元を定め, \mathbb{CP}^n 上の 2 次微分形式とみなせる. $\bigwedge^{2n}T_{\ell}^*\mathbb{CP}^n$ の元として,次が成り立つことを示せ.

$$\overbrace{\sigma \wedge \cdots \wedge \sigma}^{n \text{ (II)}} \neq 0.$$

(4) \mathbb{C}^{n+1} 上の反対称な \mathbb{R} 双線形形式 ω を $\omega(z,w)=-\Im(z,w)$ で定義する. \mathbb{C}^{n+1} の各点での接空間は自然に \mathbb{C}^{n+1} と同一視されるため, ω は \mathbb{C}^{n+1} 上の 2 次微分形式を定める.このとき, $j^*\omega=\pi^*\sigma$ を示せ.ただし,j と π は問題の最初に与えた写像である.

- (5) \mathbb{CP}^n 上の 2 次微分形式として, σ は閉形式 $(d\sigma=0)$ であることを示せ.また (3) を用いて, σ の de Rham コホモロジー類 $[\sigma]$ はゼロではないことを示せ. (ここで与えた σ は Fubini-Study 計量と呼ばれている.)
- 問題2 整数 n>0 に対して,多様体 X_n を次で定める.

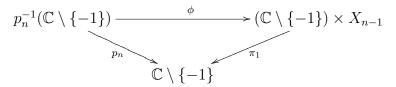
$$X_n = \{(x_1, \dots, x_{n+1}) \in (\mathbb{C}^\times)^{n+1} : x_1 + \dots + x_{n+1} + 1 = 0\}$$

ただし, $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$ とおいた.

(1) $n \geq 1$ とし,写像 $p_n : (\mathbb{C}^{\times})^n \to \mathbb{C}$ を

$$p_n(x_1,\ldots,x_n) = -1 - x_1 - \cdots - x_n$$

と定める.この写像を $p_n^{-1}(\mathbb{C}\setminus\{-1\})$ に制限したものは X_{n-1} をファイバーと する自明ファイバー束であることを示せ.つまり,次の図式を可換にする微分 同相写像 $\phi\colon p_n^{-1}(\mathbb{C}\setminus\{-1\})\cong (\mathbb{C}\setminus\{-1\})\times X_{n-1}$ が存在することを示せ.



ここで π_1 は第一成分への射影である.

(2) X_n の de Rham コホモロジー群 $H^*(X_n)$ を計算せよ.さらに包含写像 $i\colon X_n o (\mathbb{C}^\times)^{n+1}$ に関する引き戻し

$$i^* \colon H^k((\mathbb{C}^\times)^{n+1}) \to H^k(X_n)$$

は任意の k に対して全射で , $0 \le k \le n$ に対して同型 , さらに k > n に対してはゼロ写像であることを示せ .

 $(\mathsf{LUh}:p_n^{-1}(\mathbb{C}^\times)\cong X_n$ に注意する.もし一般の n について解くのが難しければ,n=1,2 の場合を考察してもよい.)

(3) 部分集合 $I \subset \{1,2,\ldots,n+1\}$ に対して $(\mathbb{C}^{\times})^{n+1}$ の閉部分多様体 R_I を

$$R_I = \{(x_1, \dots, x_{n+1}) \in (\mathbb{C}^{\times})^{n+1} : x_i \in \mathbb{R}_{>0} \text{ for all } i \in I\}$$

で定める.ただし $\mathbb{R}_{>0}$ は正の実数全体の集合である.また $I=\emptyset$ のとき, $R_\emptyset=(\mathbb{C}^\times)^{n+1}$ である. $(\mathbb{C}^\times)^{n+1}$, X_n , R_I には適当に向きを定めておくことにする.次の問いに答えよ.

- (3-a) I が $\{1,2,\ldots,n+1\}$ のすべての部分集合にわたって動くとき R_I の Poincaré 双対は $H^*((\mathbb{C}^\times)^{n+1})$ の基底をなすことを示せ .
- (3-b) I が $\{1,2,\ldots,n+1\}$ のすべての真部分集合 (つまり $I\subsetneq \{1,2,\ldots,n+1\}$ なる部分集合) にわたって動くとき, $R_I\cap X_n$ の Poincaré 双対は $H^*(X_n)$ の基底をなすことを示せ.