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Abstract
We compute S1 equivariant cohomology H∗

S1(L̃0M,R) of the universal covering L̃0M of a contracting
free loop space for a connected manifold M with respect to the natural S1 action rotating loops. In
particular, its localization H∗

S1(L̃0M) ⊗R[~] R[~, ~−1] turns out to be freely generated by a basis of two
dimensional cohomology of M̃ , where ~ is a generator of H∗

S1(pt). We use Chen’s iterated integration for
free loop spaces and its equivariant extension by Getzler, Jones and Petrack.

1 Introduction

Our motivation to compute the (equivariant) cohomology of L̃0M lies in Floer theory for symplectic
manifold M . Floer theory is known as the semi-infinite cohomology theory for a space L̃0M and its product
structure is identified with that of quantum cohomology of M . It conjecturally deals with differential forms
of infinite degree. Therefore, we can naively expect that finite dimensional cohomology of L̃0M would act
on Floer cohomology. On the other hand, Givental proposed the equivariant version of Floer theory, and
using a model for L̃0M , showed that it computes quantum cohomology of symplectic toric manifolds [Giv].
In this case, we can also expect that finite dimensional equivaiant cohomology would act on equivariant
Floer cohomology. In fact, Givental’s theory naturally has an action of two dimensional equivariant classes.
We prove that the equivariant cohomology ring of L̃0M is, after the localization, freely generated by two
dimensional equivariant classes which Givental considered in his model. Therefore, it is posible that it
acts on the equivariant Floer cohomology by a quantum multiplication. On the other hand, the ordinary
cohomology of L̃0M does not necessarily act on the Floer cohomology by a quantum multiplication.
Because, non-equivariant two dimensional classes are sometimes nilpotent. In fact, we show in section 4
that a two dimensional class of L̃Pn is nilpotent.

We introduce some notation in order to state the main theorem. In this paper, the free loop space LM
denotes the set of all C∞ maps from S1 to M . It has a structure of a Frechet manifold and we can think
differential forms on it. De Rham theorem holds in this case, therefore one can use de Rham complex
to compute the singular cohomology of LM , see e.g. [Bry]. We assume that M is a compact connected
manifold whose second homotopy group π2(M) is torsion free. Let L0M denote the set of all contracting

loops in M . Then its universal cover L̃0M is equal to L̃M̃ , so consists of all pairs (γ, [g]) of C∞ maps
γ : S1 → M̃ and homotopy types [g] of disks g : D2 → M̃ contracting the loop γ (i.e. g|∂D2 = γ). L̃0M
has the natural S1 action rotating loops, i.e.

(γ(·), [g]) 7→ (γ(·+ t), [g]), for t ∈ S1.

Let H∗(L̃0M,R) and H∗
S1(L̃0M,R) denote the ordinary and equivariant cohomology rings of L̃0M . We

set ~ to be a generator of H∗
S1(pt). Let evt denote the evaluation map at t ∈ S1, i.e. evt : L̃0M → M̃ ,

(γ, [g]) 7→ γ(t). Let (
∧

V, δ0) be the Sullivan’s minimal model for M̃ . V is a graded vector space over R
and is decomposed as

V = H2(M̃,R)⊕ V ′, V ′ is a higher degree part.
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We take a basis {p1, . . . , pr} of H2(M̃,Z), then we have
∧

V =
∧

V ′ ⊗ R[p1, . . . , pr]. Introduce variables
t1, . . . , tr corresponding to p1, . . . , pr. By the isomorphism

∧
V ∼= ∧

V ′ ⊗ R[t1, . . . , tr], pi 7→ −ti, δ0

on
∧

V induces a differential δ′ on
∧

V ′ ⊗ R[t1, . . . , tr]. Let ΩVV ′ denote the differential ring of
∧

V ′,
and d : ΩVV ′ → ΩVV ′ denote the universal derivation. δ′ is uniquely extended to the R[t1, . . . , tr]-linear
differential of ΩVV ′ [t1, . . . , tr] satisfying dδ′ + δ′d = 0. We set

Zi = ker(d : ΩiV
V ′ [t1, . . . , tr] → Ωi+1V

V ′ [t1, . . . , tr]).

Let p̂i be a differential form on M̃ representing the class pi. Then we have the following equivariant
differential forms on L̃0M .

∫

S1
ev∗t (p̂i)dt + ~

∫

D2
g∗(p̂i) (1)

Our main theorem is stated as follows.

Theorem 1.1 The ordinary and equivariant cohomology rings of L̃0M are of the forms,

H∗(L̃0M,R) ∼= H∗(ΩVV ′ [t1, . . . , tr], δ′),

H∗
S1(L̃0M,R) ∼= R[t1, . . . , tr, ~]⊕

⊕

i>0

H∗(Zi, δ′).

Here, the variables ti on the right hand side of the latter isomorphism correspond to the classes in
HS1(L̃0M,R) represented by the forms in the equation (1).

We have the following corollary because ~ acts on H∗
S1(L̃0M) as ~(H∗(Zi)) ⊂ H∗(Zi−1) (i > 1), and

~(H∗(Z1)) ⊂ R[t1, . . . , tr, ~].

Corollary 1.2 The localization of H∗
S1(L̃0M) with respect to ~ becomes

H∗
S1(L̃0M,R)⊗R[~] R[~, ~−1] ∼= R[t1, . . . , tr, ~, ~−1].

Let us explain the main idea of the proof of Theorem 1.1. First, we take a principal T r bundle
π : U → M̃ such that π1(U) = π2(U) = 0. Then, one finds a homotopy equivalence

L̃0M ∼ LU/T r.

Therefore, there are isomorphisms

H∗(L̃0M) ∼= H∗
T r (LU), H∗

S1(L̃0M) ∼= H∗
S1×T r (LU).

Both right hand sides are computed by the method of [GJP].
The above method — take a 2-connected T r bundle U and think LU/T r — enables us to generalize

our theorem to the case of orbifold loop spaces. Orbifold loop space is the set of morphisms from S1 to
orbifolds in the sense of orbifolds which is introduced by Chen and Ruan [CR2, ChW]. When an orbifold
M can be obtained by the quotient of a 2−connected manifold U by a T r action, we prove that our method
also computes the (equivariant) cohomology of L̃Morb, where L̃Morb denotes the universal covering of the
orbifold loop space. For example, we can apply this method when M is a toric orbifold. We obtain the
following theorem.

Theorem 1.3 Let U be a 2-connected manifold with T r action. We assume that each point in U has a
finite stabilizer. Let M = U/T r be a quotient orbifold. Then the universal cover of the orbifold loop space
L̃Morb is homeomorphic to LU/L0T

r, where L0T
r denotes the set of all contracting loops in T r. Moreover

the same conclusion in Theorem 1.1 holds for the (equivariant) cohomology of the space L̃Morb.
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As is well known, S1 equivariant cohomology for a compact finite dimensional manifold satisfies the
following localization property: An equivariant cohomology ring becomes isomorphic to the sum of co-
homology rings of S1 fixed components after the localization with respect to a generator of H∗

S1(pt), see
e.g. [AB, Aud]. This property is very useful when computing the cohomology of symplectic manifolds
with hamiltonian S1 action [Kir]. In an infinite dimensional case, this property does not hold in general.
Jones and Petrack proposed a different version of equivariant cohomology theory which satisfies the above
localization property also in an infinite dimensional setting [JP1, JP2]. This cohomology theory only gives
the information of fixed components. Therefore, if we apply it to the space L̃0M , it only gives the infinite
copy of the ring H∗(M̃) ⊗ R[~, ~−1]] , so it is not very interesting. In this paper, we use the original
S1 equivariant cohomology theory for infinite dimensional spaces. What is surprising about our theorem
is that the S1 equivariant cohomology of L̃0M becomes, after the localization, a rather trivial algebra
generated only by a basis of the second cohomology group of M̃ .

The paper is organized as follows. In section 2, we explain Chen’s iterated integrals [ChK] and its
equivariant extension by Getzler, Jones and Petrack [GJP]. Chen’s iterated integration theory replaces de
Rham complex of LM with Hochschild complex of de Rham complex Ω(M). Getzler, Jones and Petrack
used a variant of the Cartan model of the equivariant cohomology of LM and replaced it with the cyclic
complex of Ω(M). In section 3, we prove the main theorem. We use some techniques in the cyclic homology
theory and reduce the complex to more computable one. In section 4, we explicitly determine the ordinary
and equivariant cohomology of L̃0M when a manifold M is simply connected and has a cohomology ring
of the special type. For example, we can compute the (equivariant) cohomology of L̃Pn. In section 5, we
remark that our method can be applied to study the topology of orbifold loop space. We first explain their
definitions and basic facts briefly and then prove Theorem 1.3.
Acknolegements Thanks are due to Professor Hiraku Nakajima, my advisor, for many helpful comments
and discussions and also to Professor Akira Kono for careful reading of the proof and important comments
on examples in the paper.

2 Iterated Integration Theory

In this section, we explain iterated integration theory following [GJP]. Let M be a simply connected
manifold, and Ω(M) be its de Rham complex. Define cyclic bar complex of Ω(M) as

C(Ω(M)) =
∞⊕

p=0

Ω(M)⊗ Ω(M)⊗p.

All tensor products are over R. We write an element of C(Ω(M)) in the form (ω0, . . . , ωp), ωi ∈ Ω(M).
Degree of elements in C(Ω(M)) is defined to be

deg(ω0, . . . , ωp) = |ω0|+ |ω1|+ · · ·+ |ωp| − p.

Cyclic bar complex C(Ω(M)) has two differentials b0, b1.

b0(ω0, . . . , ωp) = (dω0, ω1, . . . , ωp)−
p∑

i=1

(−1)εi−1(ω0, . . . , dωi, . . . , ωp), (2)

b1(ω0, . . . , ωp) = −
p−1∑

i=0

(−1)εi(ω0, . . . , ωi ∧ ωi+1, . . . , ωp) (3)

+(−1)(|ωp|−1)εp−1(ωp ∧ ω0, ω1, . . . , ωp−1),
where εi = |ω0|+ |ω1|+ · · ·+ |ωi| − i.

These two differentials satisfy relations b2
0 = b2

1 = b0b1 + b1b0 = 0, and make C(Ω(M)) a bicomplex. We
write the total differential as b = b0 + b1.

This complex have negative degree elements. To remove this negative part, we perform a normalization
of the cyclic bar complex, and call resulting complex Chen’s normalized bar complex. Later, we
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introduce a slightly different normalization, so we put a word “Chen’s” on the head to distinguish two
normalizations. We define operators Si(f), Ri(f) acting on C(Ω(M)) for f ∈ C∞(M) to be

Si(f)(ω0, ω1, . . . , ωp) = (ω0, . . . , ωi−1, f, ωi, . . . , ωp) (i >= 1),

and Ri(f) = bSi(f) + Si(f)b. Then we define Chen’s normalized bar complex as follows.

N(Ω(M)) = C(Ω(M))/ { subcomplex generated by images of Ri(f), Si(f)(f ∈ C∞(M))} .

Chen’s normalization does not affect its cohomology.
Cyclic bar complex (and Chen’s normalized bar complex also) has a product structure called shuffle

product. For two elements (α0, . . . , αp), (β0, . . . , βq) ∈ C(Ω(M)) we define

(α0, . . . , αp) · (β0, . . . , βq) = (−1)|β0|(|α0|+···+|αp|−p)
∑

χ

(±)α0 ∧ β0 ⊗ Sχ(sα1, . . . , sαp, sβ1, . . . , sβq),

where χ moves all (p, q) shuffles, i.e. permutations χ of p + q letters satisfying χ(1) < χ(2) < · · · < χ(p),
χ(p+1) < · · · < χ(p+q), and the sign (±) is Koszul sign which arises from the permutation of sα1, . . . , sαp,
sβ1, . . . , sβq, and sα signifies the shift of degree by one, i.e. deg(sα) = deg(α) − 1. This product is also
well-defined on N(Ω(M)). The triple (C(Ω(M)), b, shuffle product) forms a differential graded algebra
(DGA for short).

Next, we define iterated integral map σ : C(Ω(M)) → Ω(LM). For ω ∈ Ω(M), t ∈ S1, we write
ω(t) = ev∗t (ω) ∈ Ω(LM), and define

σ(ω0, ω1, . . . , ωp) = ω0(0) ∧
∫

0<=t1<=t2<=···<=tp<=1

ıω1(t1) ∧ · · · ∧ ıωp(tp)dt1 . . . dtp,

where ı denotes the contraction with fundamental vector field of the natural S1 action. Iterated integral
map σ defines a morphism of DGAs,

σ : (C(Ω(M)), b, shuffle product) → (Ω(LM), d,∧).

σ clearly induces a map σ : N(Ω(M)) → Ω(LM) because ıf(t) vanishes for f ∈ C∞(M). Chen’s theorem
is stated as follows.

Theorem 2.1 (Chen) For a simply connected manifold M , iterated integral map σ : C(Ω(M)) → Ω(LM)
induces an isomorphism on cohomologies. In other words, σ is a quasi-isomorphism.

σ : H∗(C(Ω(M)), b) ∼= H∗(N(Ω(M)), b) ∼= H∗(Ω(LM), d)

Getzler, Jones, Petrack extended Chen’s theory to the equivariant case. To deal with the equivariant
cohomology via differential forms, one can use Cartan model. In case of S1 action, it consists of the
equivariant de Rham complex

ΩS1(LM) = Ω(LM)S1 ⊗ S∗(Lie(S1)∗) = Ω(LM)S1 ⊗ R[~],

and the differential dS1 = d + ~ı, where Ω(LM)S1
denotes the S1 invariant part of Ω(LM) and ı denotes

the contraction with fundamental vector field of S1 action. The triple (ΩS1(M), dS1 ,∧) forms a DGA and
is called Cartan model. The cohomology of (ΩS1(M), dS1 ,∧) is identical with the equivariant cohomology
H∗

S1(LM). However, images of Chen’s iterated integral map σ are not invariant under the natural S1

action. Therefore, they needed to introduce a variant of Cartan model which is chain homotopy equivalent
to the original one. Take a complex Ω(M)[~] = Ω(LM)⊗R[~], and introduce a slightly different differential
d + ~P1 as follows.

P1(ω) =
∫

S1
φ∗t (ıω)dt for ω ∈ Ω(LM),
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where φt(t ∈ S1) denotes a diffeomorphism of LM induced by S1 action. d + ~P1 satisfies (d + ~P1)2 = 0,
so that Ω(LM)[~] becomes a complex.

For the product structure, usual wedge product ∧ does not satisfy Leibnitz rule, but it can be de-
formed to satisfy Leibnitz rule. The deformed product, however, does not satisfy associativity relation.
Getzler, Jones and Petrack discovered the sequence of higher products m3,m4, . . . and that Ω(LM)[~] has
a structure of A∞ algebra. In this paper, we do not use this A∞ structure, so do not mention more about
this.

We extend the iterated integral map linearly over R[~] to the map σ : N(Ω(M))[~] → Ω(LM)[~].
Corresponding to the operator P1 defined on Ω(LM)[~], we define Connes’ operator B on N(Ω(M)) as
follows.

B(ω0, . . . , ωp) =
p∑

i=0

(−1)(εi−1−1)(εp−εi−1)(1, ωi, . . . , ωp, ω0, . . . , ωi−1).

Then, σ : (N(Ω(LM))[~], b + ~B) → (Ω(LM)[~], d + ~P1) is a chain map and the following theorem holds.

Theorem 2.2 (Getzler, Jones, Petrack) For a simply connected manifold M , σ : (N(Ω(LM))[~], b +
~B) → (Ω(LM)[~], d + ~P1) is a quasi isomorphism. Therefore, σ induces an isomorphism

σ : H∗(N(Ω(LM))[~], b + ~B) ∼= H∗(Ω(LM)[~], d + ~P1) = H∗
S1(LM).

[GJP] also considered the case when T r acts on the original manifold M . In this case, one can consider
S1 × T r equivariant cohomology of LM , where T r action on LM comes from the T r action on M . Here,
we use the original Cartan model for the T r action, and use its variant for the S1 action. Let ΩT r be the
T r equivariant cohomology of a point, i.e. ΩT r= S∗(Lie(T r)∗)= R[t1, . . . , tr], and (ΩT r (M), d+

∑r
i=1 tiıi)

be the T r equivariant Cartan model, where

ΩT r (M) = Ω(M)T r ⊗ ΩT r ,

and ıi is the contraction with i-th fundamental vector field of the T r action. Define a new complex
CΩT r (Ω(M)) as

CΩT r (Ω(M)) =
∞⊕

p=0

ΩT r (M)⊗ΩT r

p times︷ ︸︸ ︷
ΩT r (M)⊗ΩT r · · · ⊗ΩT r ΩT r (M),

and its derivation b0, b1 as before. When defining b0, however, we must replace exterior derivation d with
dT r = d +

∑r
i=1 tiıi in the equation (2). Denote the total differential of the complex CΩT r (Ω(M)) by bT r .

Chen’s normalized complex NΩT r (Ω(M)) is defined as

NΩT r (Ω(M)) = CΩT r (Ω(M))/{subcomplex generated by images of Si(f), Ri(f), (f ∈ C∞(M)T r

)}.
Connes’ operator B can also be defined on NΩT r (Ω(M)) similarly. The iterated integral map σ : NΩT r (Ω(M)) →
ΩT r (LM) is also defined linearly over ΩT r . We have the following theorem.

Theorem 2.3 (Getzler, Jones, Petrack) For a simply connected manifold M which has a smooth T r

action, iterated integral maps

σ : (NΩT r (Ω(M)), bT r ) → (ΩT r (LM), dT r ),
σ : (NΩT r (Ω(M))[~], bT r + ~B) → (ΩT r (LM)[~], dT r + ~P1),

are quasi-isomorphisms. Therefore, there exist isomorphisms

σ : H∗(NΩT r (Ω(M)), bT r ) ∼= H∗(ΩT r (LM), dT r ) = H∗
T r (LM),

σ : H∗(NΩT r (Ω(M))[~], bT r + ~B) ∼= H∗(ΩT r (LM)[~], dT r + ~P1) = H∗
T r×S1(LM).

With these ingredients, we proceed to the proof of our main theorem.
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3 Proof of the Main Theorem

The proof of the theorem consists of two parts. The first part uses a geometrical construction and reduce
the problem to the equivariant cohomology of a free loop space. The second part uses homological algebra.
We reduce Chen’s normalized bar complex to more computable one using some techniques in the cyclic
homology theory and the comparison theorem of spectral sequences. The main technical difficulty comes
from the fact that we deal with a cohomological complex (i.e. graded in non-negative negative degree and
the differential increases the degree by one), so that some standard results in cyclic homology do not hold
in general because the relevant spectral sequence may not converge.

Let M be a connected manifold, and M̃ be its universal cover. We assume that π2(M̃) = π2(M) is a
free abelian group. Let p1, . . . , pr be a basis of H2(M̃,Z). Then, there exist C∞ complex line bundles Li

over M̃ such that c1(Li) = pi. We put

π : U =
r∏

i=1

S(Li) → M̃,

where S(Li) is a circle bundle of Li. U is a principal T r bundle over M̃ . The following lemma is clear from
the homotopy exact sequence of the fibration π : U → M̃ and the assumption of the freeness of π2(M̃).

Lemma 3.1 U is 2-connected, i.e.

π1(U) = π2(U) = 0.

The key proposition is the following.

Proposition 3.2 There exists a homeomorphism L̃0M ∼= LU/L0T
r, where L0T

r denotes the set of all
contracting loops in T r, and L0T

r acts on LU by pointwise multiplication, i.e. LU 3 γ(t) 7→ c(t)·γ(t) ∈ LU
for c(·) ∈ L0T

r.

(proof) As stated in the introduction, an element of L̃0M = L̃M̃ is a pair (γ, [g]) where γ : S1 → M̃ ,
and g : D2 → M̃ such that g|∂D2 = γ. If (γ, [g]) ∈ L̃0M is given, we can lift g to g̃ : D2 → U . Then,
g̃|∂D2 : S1 → U gives an element of LU . If we take another lifting g̃′, two maps g̃, g̃′ are related to each
other as

g̃′ = c · g̃ for some c : D2 → T r,

so that g̃|∂D2 and g̃′|∂D2 defines the same element in LU/L0T
r. Independence of the choice of a repre-

sentative g in the homotopy class [g] follows from the covering homotopy property. Hence we obtain a
map L̃0M → LU/L0T

r. Next, we define the inverse map. Because U is 2-connected, for a given element
γ̃ ∈ LU there exits a unique disk g̃ : D2 → U contracting γ̃ (g̃|∂D2 = γ̃) up to homotopy. Therefore, it
defines an element (π ◦ γ̃, [π ◦ g̃]) ∈ L̃0M . Independence of the choice of γ̃ can be easily seen.

Corollary 3.3 There exists an S1 equivariant homotopy equivalence between L̃0M and LU/T r. Therefore,

H∗(L̃0M) ∼= H∗
T r (LU), H∗

S1(L̃0M) ∼= H∗
S1×T r (LU).

(proof) Consider the fibration LU/T r → LU/L0T
r = L̃M . This fibration is principal Ω0T

r bundle, where
Ω0T

r is the set of all contracting based loops in T r. So this fibration is homotopy equivalent because Ω0T
r

is contractible. The homotopy can be taken S1 equivariantly. (For example, we can construct a section
s : LU/L0T

r = L̃0M → LU/T r by a parallel transport by a connection of π : U → M̃ and twisting its
phase factor.)

According to the above corollary and Theorem 2.3, we can compute the (equivariant) cohomology of
L̃0M by the complex NΩT r (ΩT r (U)) (or NΩT r (ΩT r (U))[~]).
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Let k denote a commutative ring and (A, δ, ·) be a unital DGA over k. Define cyclic bar complex for
A by

Ck(A) =
∞⊕

p=0

A⊗k

p times︷ ︸︸ ︷
A⊗k · · · ⊗k A .

Its derivations b0, b1, b = b0 + b1 are defined in the same way as in (2), (3). Three kinds of degree for an
element (a0, . . . , ap) ∈ Ck(A) are defined as follows.





tensor degree = p.

weight = |a0|+ · · ·+ |ap|.
total degree = |a0|+ · · ·+ |ap| − p.

For a general A, we can define normalized bar complex Ck(A) different from Chen’s normalization as
follows.

Ck(A) =
∞⊕

p=0

A⊗k

p times︷ ︸︸ ︷
A⊗k · · · ⊗k A , where A denotes A/k.

Derivation b is well-defined on this normalization, and Connes’ operator B is defined on Ck(A) similarly.
Shuffle product is defined on Ck(A),Ck(A) similarly and makes them DGAs. The following lemma shows
the relation of two complexes (Ck(A), b) and (Ck(A), b) when k is a field.

Lemma 3.4 Let (A, δ, ·) be a unital DGA over a field k such that the differential raises the degree, δ : Ai →
Ai+1, and Ai = 0 if i < 0. Then, the natural projection

(Ck(A), b) → (Ck(A), b)

is a quasi-isomorphism.

(proof) We think the spectral sequence about the tensor degree, more precisely, about the filtrations
F−p = ⊕i<=pA⊗A⊗i, F

−p
p = ⊕i<=pA⊗A

⊗i
. Then the morphism between E1 terms is

f̄ : (C(H(A)), b1) → (C(H(A)), b1),

where b1 is defined in (3). As known in the theory of simplicial modules, the above morphism f̄ is a quasi-
isomorphism [Lod]. The filtrations F , F are bounded above (F 0=F

0
=0), therefore the spectral sequence

converges. The lemma follows from the comparison theorem of spectral sequences [MacL], [McC].
Next lemma is useful in the proof.

Lemma 3.5 Let f : (A, δ, ·) → (A′, δ′, ·) be a morphism of unital DGAs. If f is a quasi-isomorphism,
then the induced morphism f : (Ck(A), b) → (Ck(A′), b′) is also a quasi-isomorphism.

(proof) See [GJP].
We need three lemmata about the comparison of complexes. Let (C, δ0, ·) be a unital DGA over

R. Assume δ0 : Ci → Ci+1, and Ci = 0 if i < 0. Introduce r variables t1, . . . , tr of degree 2 and the
decreasing filtration F of C[t1, . . . , tr] such that F i =

∑
j1+···+jr>=i Ctj11 tj22 . . . tjr

r . We call this kind of
filtration t−filtration. Furthermore we assume that C[t1, . . . , tr] has a R[t1, . . . , tr] linear differential δ
which induces the original differential δ0 on C ∼= F 0/F 1, and that (C[t1, . . . , tr], F, δ) is a filtered DGA
(i.e. δ(F i) ⊂ F i). Clearly the complex ΩT r (M) = Ω(M)T r ⊗ R[t1, . . . , tr] has a t−filtration F , and so
does NΩT r (ΩΩT r (M)).

Lemma 3.6 Let f : (C[t1, . . . , tr], F, δ) → (ΩΩT r (U), F, dT r ) be a morphism of filtered DGAs where F ’s
are t−filtrations. If the morphism induced by f

f̄ : (C, δ0) → (Ω(U)T r

, d)
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is a quasi-isomorphism, then

f : (CR[t](C[t1, . . . , tr]), b) → (NΩT r (ΩΩT r (U)), bT r )

is a quasi-isomorphism.

(proof) Consider the spectral sequence from t−filtration F . This spectral sequence converges because the
t−filtration is bounded above (i.e. for fixed degree d, there exists p such that F p∩{degree d part} = {0}.)
Then the morphism between E0 term is

f0 : (CR(C), b) → (N(Ω(U)T r

), b).

Consider the commutative diagram,

(CR(C), b)
f0−−−−→ (N(Ω(U)T r

), b)
x

x
(CR(C), b) −−−−→ (C(Ω(U)T r

), b).

Two vertical arrows are quasi-isomorphisms by Lemma 3.4 and the fact that Chen’s normalization does
not change its cohomology. The bottom arrow is also a quasi-isomorphism by the assumption and Lemma
3.5. Therefore the top arrow f0 is a quasi-isomorphism, and the Lemma follows from the comparison
theorem of spectral sequences.

Let (C ′[t1, . . . , tr], F ′, δ′) be a filtered DGA which satisfies the same conditions as (C[t1, . . . , tr], F, δ)
does. Following lemma gives a sufficient condition for two normalized bar complexes over R[t1, . . . , tr] to
define the same cohomology.

Lemma 3.7 Let f : (C[t1, . . . , tr], F, δ) → (C ′[t1, . . . , tr], F ′, δ′) be a morphism of filtered DGAs. If the
induced morphism

f̄ : (C, δ0) → (C ′, δ′0)

is a quasi-isomorphism, then

f : (CR[t](C[t1, . . . , tr]), b) → (CR[t](C ′[t1, . . . , tr]), b′)

is a quasi-isomorphism.

(proof) Take the spectral sequence with respect to t−filtration, and discuss in the same way as in Lemma
3.6

For a commutative algebra A over k, let Ω1
A|k denote the module of relative differential form of A over

k and d : A → Ω1
A|k denote the universal derivation. For p > 0 we define

Ωp
A|k =

p∧
Ω1

A|k.

When A is graded commutative, we define the commutation relation of two elements by

da ∧ db = (−1)(|a|−1)(|b|−1)db ∧ da, deg(da) = deg(a)− 1, for a, b ∈ A.

In this case, we must interpret
∧p Ω1

A|k to be equal to

⊕

i+j=p

Si(Ω1
A|k)even ⊗

j∧
(Ω1

A|k)odd.

8



We put Ω0
A|k = A and ΩA|k = ⊕∞p=0Ω

p
A|k, then ΩA|k becomes an associative algebra and d is extended to

the map d : ΩA|k → ΩA|k satisfying (graded) Leibnitz rule, i.e. d(ab) = da · b + (−1)|a|a · db. If A has a
differential δ and is a DGA, we can define δ : ΩA|k → ΩA|k as follows.

δ(a0da1 ∧ · · · ∧ dap) = δa0da1 ∧ · · · ∧ dap −
p∑

i=1

(−1)εi−1a0da1 ∧ · · · ∧ d(δai) ∧ · · · ∧ dap

where εi = |a0|+ · · ·+ |ai| − i, ai ∈ A.

One can easily check that δd + dδ = d2 = δ2 = 0. For this ring ΩA|k we can also define three kinds of
degree as follows,





tensor degree = p

weight = |a0|+ |a1|+ · · ·+ |ap|
total degree = |a0|+ |a1|+ · · ·+ |ap| − p,

for a0da1 ∧ · · · ∧ dap.

When k contains Q, we define the map ϕ : Ck(A) → ΩA|k as follows,

ϕ(a0, a1, . . . , ap) =
1
p!

a0da1 ∧ · · · ∧ dap.

ϕ turns out to be a morphism between complexes with two anticommuting differentials and preserves the
product structure, ϕ : (Ck(A), b, B, shuffle product) → (ΩA|k, δ, d,∧).

Lemma 3.8 Furthermore, we assume that C is a free algebra
∧

V , where V is a graded vector space over
R, and that C0 = R, C1 = 0. Then, there is a quasi-isomorphism

ϕ : (CR[t](C[t1, . . . , tr]), b) → (ΩC[t]|R[t], δ).

(proof) First we consider t−filtration and the associated spectral sequence. The morphism between E0

terms is

(CR(C), b) → (ΩC|R, δ0).

It suffices to show that this morphism is a quasi-isomorphism. Next we take weight filtrations, then the
morphism between E0 terms of the associated spectral sequence is

(CR(C), b1) → (ΩC|R, 0).

This morphism is known to be a quasi-isomorphism when C is a free algebra in the Hochschild homology
theory [Lod]. The conditions C0 = R, C1 = 0 ensure that the weight filtration is bounded above, so that
the spectral sequence converges. Therefore the lemma follows from the comparison theorem of spectral
sequences.

Using the above three lemmata, we can reduce the complex NΩ
T k

(ΩΩ
T k

(U)) to more computable one.
Take a connection form θ̂i on the circle bundle S(Li), then its curvature form dθ̂i represents the cohomology
class pi ∈ H∗(M̃,Z). Let (

∧
V, δ0) be the Sullivan’s minimal model for M̃ , where V is a graded vector

space over R and is of the form

V =
r⊕

i=1

Rpi ⊕ V ′, elements of V ′ have degree more than three.

Put C = R[θ1, . . . , θr]⊗
∧

V and C[t] = C ⊗ R[t1, . . . , tr], where deg θi = 1 and deg ti = 2. We define the
differential δ on C[t] as

δ(θi) = pi + ti, δ(pi) = 0, δ(v) = δ0(v) for v ∈ V ′.
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Take t−filtration F of C[t], then (C[t], F, δ) is a filtered DGA. The differential δ induces the differential
δ0 on C ∼= F 0/F 1. Take the following morphism over R[t],

f : (C[t1, . . . , tr], δ) → (ΩT r (U) = Ω(U)T r ⊗ R[t1, . . . , tr], dT r )

pi 7−→ dθ̂i(curvature forms),

θi 7−→ θ̂i(connection forms),
V ′ 3 v 7−→ π∗v,

where we think v ∈ V ′ represents a differential form on M̃ . This preserves the t−filtration and the induced
morphism

(C = R[θ1, . . . , θr]⊗
∧

V, δ0) → (Ω(U)T r

, d)

is a quasi-isomorphism. Because, E2 term of the Serre spectral sequence for the fibration π : U → M̃ is
H∗(M̃)⊗R[θ1, . . . , θr], and is isomorphic to the E2 term of the spectral sequence of C associated with the
filtration F pC = R[θ1, . . . , θr]⊗ (

∧
V )>=p. Therefore, by Lemma 3.6, we conclude that

(CR[t](C[t]), b) → (NΩT r (ΩT r (U)), bT r ) is a quasi isomorphism. (4)

Put C ′ =
∧

V ′ and C ′[t] = C ′ ⊗ R[t1, . . . , tr]. Define a morphism h as follows,

h : (C[t] = R[θ, t]⊗
∧

V, δ) → (C ′[t] = R[t]⊗
∧

V ′, δ′)

θi 7−→ 0,

pi 7−→ −ti,

V ′ 3 v 7−→ v,

where the R[t] linear differential δ′ is defined on C ′[t] in order for h to be a chain map, i.e. δ′(v) = h(δ0(v))
for v ∈ V ′. Then h becomes a chain map and preserves the t−filtration. We claim that the induced
morphism h̄ : (C, δ0) → (C ′, δ′0) is a quasi-isomorphism. Take filtrations (bounded above) as

F t(C) = span{θa1θa2 · · · θaj ⊗ b|a1 < · · · < aj , 2j + deg b >= t}, F t(C ′) = (
∧

V ′)>=t.

Then the morphism between E0 terms of the associated spectral sequence is

h̄0 : (C = R[θ]⊗
∧

V, δ̄0) → (C ′ =
∧

V ′, 0), θi, pi 7→ 0, v 7→ v for v ∈ V ′,

where δ̄0(θi) = pi, δ̄0(v) = 0 for v ∈ V ′. It is easy to see that h̄0 is a quasi-isomorphism and our claim is
proved. Therefore by the Lemma 3.7, we conclude that

(CR[t](C[t]), b) → (CR[t](C ′[t]), b′) is a quasi-isomorphism. (5)

Finally, by the Lemma 3.8,

(CR[t](C ′[t]), b′) → (ΩC′[t]|R[t], δ
′) is a quasi-isomorphism. (6)

From equations (4), (5), (6), one obtains the following.

Theorem 3.9 For a connected manifold M whose second homotopy group π2(M) has no torsion, there
exist isomorphisms

H∗(ΩVV ′|R[t1, . . . , tr], δ′) ∼= H∗
T r (LU) = H∗(L̃0M),

H∗(ΩVV ′|R[t1, . . . , tr, ~], δ′ + ~d) ∼= H∗
T r×S1(LU) = H∗

S1(L̃0M).
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The latter isomorphism follows from the fact that three complexes CR[t](C ′[t]), CR[t](C[t]), NΩT r (ΩT r (U))
have no negative degree part, and one has convergent spectral sequences about ~−filtrations. Because∧

V ′ is a free algebra, the differential d in the complex ΩVV ′|R[t1, . . . , tr, ~] is acyclic by the Poincaré
lemma. We can decompose this complex as

ΩVV ′|R[t1, . . . , tr, ~] ∼=
⊕

i>=0

Bi ⊕
⊕

i>0

B′
i

{
Bi =

⊕
p>=0 ΩpV

V ′|R[t]~
p+i for i >= 0

B′
i =

⊕
p>=i ΩpV

V ′|R[t]~
p−i for i > 0

Bi, B
′
i are subcomplexes with respect to the differential δ′+~d, and are acyclic with d, therefore we obtain

{
H∗(Bi) ∼= R[t1, . . . , tr]~i,

H∗(B′
i) ∼= H∗(Zi, δ′), where we define Zi = ker(d : ΩiV

V ′|R[t] → Ωi+1V
V ′|R[t])

On the other hand, to multiply by ~ in the complex ΩVV ′|R[t1, . . . , tr, ~] defines a chain map, and we get
the following sequence,

−−−−→ B′
n

×~−−−−→ B′
n−1 −−−−→ . . .

×~−−−−→ B′
1

×~−−−−→ B0
×~−−−−→ B1 −−−−→ . . .

Therefore if we repeat the multiplication of any element in the complex B′
i by ~’s, it is eventually contained

in the complex B0. To summarize, we obtain the following corollary.

Corollary 3.10 For a connected manifold M whose second homotopy group π2(M) has no torsion, the
equivariant cohomology of L̃M has the following splitting.

H∗
S1(L̃0M) ∼= R[t1, . . . , tr, ~]⊕

∞⊕

i=1

H∗(Zi, δ′).

These components satisfy ~H∗(Zi) ⊂ H∗(Zi−1) for i > 1 and ~H∗(Z1) ⊂ R[t1, . . . , tr, ~], therefore the
following holds.

H∗
S1(L̃0M)⊗R[~] R[~, ~−1] ∼= R[t1, . . . , tr, ~, ~−1].

Remark 3.11 The cohomology class of H∗
S1(L̃0M) corresponding to the variables ti can be represented

by the chain p̂i + ~θ̂i in NΩT r (ΩT r (U))[~], where p̂i = dθ̂i is a curvature form. It maps to the following
element of ΩT r (LU)[~] by the iterated integral map.

ev∗0(p̂i) + ~
∫

S1
γ̃∗(θi), where γ̃ ∈ LU.

Furthermore, this corresponds to the following element of Cartan model Ω(L̃0M)S1
[~].

∫

S1
ev∗t (p̂i)dt + ~

∫

D2
g∗(p̂i), where (γ, [g]) ∈ L̃0M.

4 Examples

In this section we present the case where the computation of the (equivariant) cohomology of L̃0M can
be carried out explicitly.

Theorem 4.1 Let M be a simply connected manifold. We assume H2(M,Z) = π2(M) is torsion free and
M has a cohomology ring of the form,

H∗(M,R) ∼= R[p1, . . . , pr]/〈f1, . . . , fl〉,
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where {p1, . . . , pr} is a basis of H2(M) and fi’s are homogeneous polynomials of pi’s and f1, . . . , fl is a
regular sequence. Then the (equivariant) cohomology of L̃M is

H∗(L̃M) ∼= R[p1, . . . , pr]/〈f1 . . . fl〉 ⊗ R[z̃1, . . . , z̃l],

H∗
S1(L̃M) ∼= R[p1, . . . , pr, f1/~, . . . , fl/~, ~],

where deg z̃i = deg fi(p)− 2.

(proof) We first claim that the minimal model for M has the form,

(
∧

Vl, δl), Vl =
r⊕

i=1

Rpi ⊕
l⊕

i=1

Rzi, deg pi = 2, deg zi = deg fi(p)− 1,

where δl(zi) = fi(p), δl(pi) = 0.

We proceed by the induction on l. When l = 1, the claim is clear. We assume the case l − 1 and prove
the case l. Consider the following exact sequence of complexes.

0 −→((fl(p)− w)
∧

Vl ⊗ R[w], δ̃l) −→ (
∧

Vl ⊗ R[w], δ̃l)
w 7→fl(p)−→ (

∧
Vl, δl) −→ 0,

where w is a variable of degree equal to deg fl(p),

δ̃l(pi) = 0 (1 <= i <= r), δ̃l(zj) = fj(p) (1 <= j <= l − 1), δ̃l(zl) = w.

The newly defined left and middle complexes are quasi-isomorphic to (
∧

Vl−1, δl−1). By the induction
hypothesis, H∗(

∧
Vl−1, δl−1) ∼= R[p]/Il−1, so that we get the following long exact sequence,

−−−−→ R[p]/Il−1
×fl(p)−−−−→ R[p]/Il−1 −−−−→ H∗(

∧
Vl, δl)

δ∗−−−−→ R[p]/Il−1 −−−−→ ,

where Ij = 〈f1, . . . , fj〉, R[p] = R[p1, . . . , pr]. Because f1, . . . , fl is a regular sequence, ×fl(p) is a monomor-
phism, so δ∗ is a 0 map and the above sequence is in fact a short exact sequence. Therefore we conclude
that H∗(

∧
Vl, δl) ∼= R[p]/Il and the claim is proved.

Next, we use Theorem 3.9 and reduces the problem to compute the cohomology of the following
complexes

(R[t1, . . . , tr, dz1, . . . , dzl]⊗
∧
R
[z1, . . . , zl], δ′l), (R[t1, . . . , tr, dz1, . . . , dzl, ~]⊗

∧
R
[z1, . . . , zl], δ′l + ~d),

where deg dzi = deg zi − 1 and δ′l(zi) = fi(t), δ′l(dzi) = 0. The first one is easy to compute and

H∗(R[t1, . . . , tr, dz1, . . . , dzl]⊗
∧
R
[z1, . . . , zl], δ′l) ∼= R[t1, . . . , tr]/〈f1(t), . . . , fl(t)〉 ⊗ R[dz1, . . . , dzl].

Then we take z̃i to be dzi and obtain the theorem. For the second complex, we take the ~−filtration,

F p =
⊕

j>=p

R[t1, . . . , tr, dz1, . . . , dzl]⊗
∧
R
[z1, . . . , zl]~j ,

then the associated spectral sequence degenerates at E1, where

Ep,q
1 =

(
R[t1, . . . , tr]/〈f1(t), . . . , fl(t)〉 ⊗ R[dz1, . . . , dzl]

)q−p~p.

By the relation (δ′l + ~d)(zi) = fi(t) + ~dzi, we obtain ~dzi ≡ −fi(t), so that the theorem follows.

Example 4.2 In the case M = Pn, we can apply Theorem 4.1 and obtain,

H∗(L̃Pn) ∼= R[p]/〈pn+1〉 ⊗ R[z̃], deg z̃ = 2n,

H∗
S1(L̃Pn) ∼= R[p, pn+1/~, ~].
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Example 4.3 More generally, a certain class of toric manifolds has cohomology algebras of the type as
stated in Theorem 4.1. For toric manifolds, or more generally toric varieties, see e.g. [Oda]. Let Σ be a
fan defining a toric manifold XΣ and denote its 1−skeleton by Σ(1). We define [Σ], the combinatorial type
of Σ, to be a subset of the power set P(Σ(1)) satisfying,

I ∈ [Σ] ⇐⇒ I is a set of edges of some cone σI ∈ Σ.

We impose the following condition on Σ, Σ(1) has a decomposition Σ(1) = I1q I2q· · ·q Ir, and Σ satisfies

I ∈ [Σ] ⇐⇒ I + Ii for ∀i.

Then corresponding toric manifold XΣ has a cohomology ring of the type, see e.g. [Aud],

H∗(XΣ) ∼= R[p1, . . . , pr]/〈f1, . . . , fr〉, f1, . . . , fr is a regular sequence,

pi =
∑

ρ∈Ii

[Dρ], Dρ denotes the toric divisor corresponding to ρ in Σ(1).

so that the conclusion of Theorem 4.1 holds.

5 A Relation to Orbifold Loop Spaces

The method we used in the proof of the main theorem can also be exploited to study orbifold loop spaces.
Orbifold is a generalization of the notion of a differentiable manifold. It admits a mild singularity and
is locally written as the quotient of a Euclidean space by a finite group [Sat]. Almost all notions about
differentiable manifolds can be generalized about orbifolds, for example, differentiable functions or forms
can be defined on orbifolds. Until recently, however, the adequate notion for a “morphism” between
orbifolds was not understood well. It arose from the study of string theories in physics. String theories
consider loops in the spacetime in place of point particles. Dixon, Harvey, Vafa and Witten studied string
theories on Calabi-Yau orbifolds [DHVW]. They took a contribution from singularities of orbifolds into
consideration, which is called a “twisted sector”. Later, Chen and Ruan defined the notion of good maps or
morphisms between orbifolds mathematically. Their objectives were to formulate orbifold Gromov-Witten
invariants which study the topology of symplectic orbifolds [CR2]. On the other hand, Chen studied a
general theory for a more general category of spaces, called orbispaces, which is an appropriate category
for spaces locally written by the quotient of G equivariant charts [ChW]. In this context, orbifold loop
space can be defined as the set of all “morphisms” from S1 to an orbifold.

5.1 Orbifolds and Morphisms

To fix the notation, in this subsection we explain the definition of orbifolds and morphisms between them,
following [CR2, ChW]. For a connected Hausdorff space U , we define a uniformizing system of U as a
triple (V, G, π), where V is a connected smooth manifold, and G is a finite group acting on V smoothly
and effectively, and π : V → U is a quotient map by the action of G, so that we have U ∼= V/G. Let
(V, G, π), (V ′, G′, π′) be uniformizing systems of U and U ′, where U ′ ⊂ U . An injection j : (V ′, G′, π′) →
(V, G, π) is a pair (φ, τ) of a C∞ embedding φ : V ′ → V and a homomorphism τ : G′ → G such that
π ◦ φ = π′ and φ(g · x) = τ(g) · φ(x), x ∈ V ′, g ∈ G′. We can define the composition of two injections.
Two uniformizing systems (V1, G1, π1), (V2, G2, π2) of the same U are called isomorphic if there exist
injections j1 : (V1, G1, π1) → (V2, G2, π2) and j2 : (V2, G2, π2) → (V1, G1, π1) such that j1 ◦j2 = id(V2,G2,π2),
j2 ◦ j1 = id(V1,G1,π1), where we call j1, j2 isomorphisms between uniformizing systems. Let (V, G, π) be a
uniformizing system of U and U ′ ⊂ U be a connected open subset. We define an induced uniformizing
system (V ′, G′, π′) on U ′ by (V, G, π) as

V ′ = a connected component of π−1(U ′), G′ =
{
g ∈ G| g · V ′ ⊂ V ′}, π′ = π|V ′ .

This turns out to be a uniformizing system of U ′. From this definition, there exists a natural injection
from (V ′, G′, π′) to (V, G, π). Important properties about uniformizing systems are as follows.
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(1) Any automorphism (φ, τ) of a uniformizing system (V, G, π) can be written as φ(x) = g · x and
τ(h) = ghg−1 for some g ∈ G. We denote this automorphism by ψg = (φ, τ).

(2) Any given two injections j1, j2 between uniformizing systems (V ′, G′, π′), (V, G, π) are connected
by an automorphism of (V, G, π), i.e. there exists an automorphism ψg satisfying the following
commutative diagram.

(V ′, G′, π′)
j1−−−−→ (V, G, π)∣∣∣

∣∣∣
yψg

(V ′, G′, π′)
j2−−−−→ (V,G, π).

(3) Any two induced uniformizing systems (V1, G1.π1), (V2, G2, π2) on U ′(⊂ U) by a uniformizing system
(V, G, π) of U are isomorphic to each other. More precisely, there is an element g ∈ G such that
ψg : (V1, G1, π1) ∼= (V2, G2, π2), where we think Vi to be subsets of V and Gi to be subgroups of G.

Let M be a Hausdorff paracompact topological space. A compatible cover of M is an open cover U
of M such that,

(1) any U ∈ U is a connected open set,

(2) for U ∈ U , there exists a uniformizing system (V, G, π) of U , where π : V → U ∼= V/G,

(3) for U,U ′ ∈ U such that U ′ ⊂ U , there exists an injection jU ′
U : (V ′, G′, π′) → (V,G, π) between

corresponding uniformizing systems,

(4) for U,U ′ ∈ U and p ∈ U ∩ U ′, there exists a U ′′ ∈ U such that p ∈ U ′′ ⊂ U ∩ U ′.

An orbifold is a pair (M,U) of M and a compatible cover U of M . Two compatible covers U , U ′ are
equivalent when U ∪ U ′ is a compatible cover. We remark that orbifolds in this paper are all reduced, i.e.
for any uniformizing system (V, G, π), G action on V is effective. We can define Riemannian metric and
geodesics on orbifolds [CR2]. For any compatible cover U , we can replace it with an equivalent compatible
cover Ũ which satisfies the following conditions: (C1) Any U ∈ Ũ is geodesically convex for some fixed
Riemannian metric on M , (C2) For any U1, U2 ∈ Ũ , an induced uniformizing system of U1 ∩ U2 from
that of U1 and an induced uniformizing system of U1 ∩ U2 from that of U2 are isomorphic to each other.
Remark that the condition (C1) guarantees the connectedness of U1 ∩ U2 in (C2). For example, we can
choose a suitable positive function f : M → R>0 such that the cover {Br(x) | 0 < r < f(x), x ∈ M}
becomes a compatible cover and satisfies (C1), (C2), where Br(x) denotes the geodesic neighborhood of
radius r centered at x. Hereafter we assume the above conditions (C1), (C2) for a compatible cover U
without loss of generality.

Next, we define a morphism between orbifolds. Let U = {Uα}α∈Λ be a compatible cover on M , and
(Vα, Gα, πα) be a uniformizing system of Uα for α ∈ Λ. We set for Uα, Uβ ∈ U ,

(Vαβ , Gαβ , παβ) = an induced uniformizing system on Uαβ = Uα ∩ Uβ

by the uniformizing system (Vα, Gα, πα) on Uα,

Tran(Uα, Uβ) =
{
all isomorphisms (φ, τ) : (Vαβ , Gαβ , παβ) → (Vβα, Gβα, πβα)

}
/ ∼,

where (φ, τ) ∼ ψ−1
τ(g) ◦ (φ, τ) ◦ ψg, g ∈ Gα.

When defining Tran(Uα, Uβ), we do not fix the choice of induced uniformizing systems (Vαβ , Gαβ , παβ),
(Vβα, Gβα, πβα), but instead take the equivalence class by the relation∼. By the condition (C2), Tran(Uα, Uβ)
is non-empty if Uα ∩ Uβ is non-empty. By abuse of notations, for ı ∈ Tran(Uα, Uβ), we write its represen-
tative as ı : Vα → Vβ which means that ı is a map from a connected component of π−1

α (Uα ∩ Uβ) ⊂ Vα to
a connected component of π−1

β (Uα ∩ Uβ) ⊂ Uβ . Note that this notation is implicit about the domain of
the map. When Uα ∩ Uβ ∩ Uγ 6= ∅, we can define the composition

◦ : Tran(Uα, Uβ)× Tran(Uβ , Uγ) → Tran(Uα, Uγ).

Let (M,U), (M ′,U ′) be orbifolds, and f : M → M ′ be a continuous map. A morphism between orbifolds
is given by the data (f, {Uα}, {U ′

α}, {fα}, {ρβα}),
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(1) a subcover {Uα}α∈Λ ⊂ U of M ,

(2) a cover {Uα}α∈Λ of M ′ (where each U ′
α ∈ U ′) which has the same index set as (1), and satisfies

f(Uα) ⊂ U ′
α, (here, Uα may coincide with Uβ with α 6= β,)

(3) C∞ lifts fα : Vα → V ′
α of f |Uα ,

(4) maps ρβα : Tran(Uα, Uβ) → Tran(U ′
α, U ′

β),

which satisfies the following conditions.

(1) For ı ∈ Tran(Uα, Uβ),

Vα
fα−−−−→ V ′

αyı

yρβα(ı)

Vβ
fβ−−−−→ V ′

β

commutes.

(2) If Uα ∩ Uβ ∩ Uγ 6= ∅, for ı ∈ Tran(Uα, Uβ),  ∈ Tran(Uβ , Uγ),

V ′
α

ργα(◦ı)−−−−−→ V ′
γyρβα(ı)

∣∣∣
∣∣∣

V ′
β

ργβ()−−−−→ V ′
γ

commutes.

The precise meaning of the above diagrams is that the diagram commutes when all maps restricted to
their suitably chosen domains. Note that Tran(Uα, Uα) ∼= Gα and ραα : Tran(Uα, Uα) → Tran(U ′

α, U ′
α)

is a group homomorphism Gα → G′α by the condition (2). Two data (f, {Uα}, {U ′
α}, {fα}, {ρβα}),

(f, {Uα}, {U ′
α}, {gα}, {λβα}) are defined to be isomorphic if there exist automorphisms δα : (V ′

α, G′α, π′α) →
(V ′

α, G′α, π′α) for α ∈ Λ satisfying

gα = δα ◦ fα, λβα(ı) = δβ ◦ ρβα(ı) ◦ δ−1
α for ı ∈ Tran(Uα, Uβ).

When we take a different cover from ({Uα}, {U ′
α}), the equivalence relation of two data is defined by

using the refinement of covers. We omit the detailed descriptions, see e.g. [ChW]. Roughly speaking,
when a cover {Ui}i∈I is a refinement of {Uα}α∈Λ, and {U ′

i}i∈I is a cover of M ′ such that Ui ∈ U ′ and
f(Ui) ⊂ U ′

i , we can induce another data (f, {Ui}, {U ′
i}, {fi}, {ρji}) from (f, {Uα}, {U ′

α}, {fα}, {ρβα}).
Two data (f, {Uα}, {U ′

α}, {fα}, {ρβα}), (f, {Ũα}, {Ũ ′
α}, {f̃α}, {ρ̃βα}) are defined to be equivalent when

there exists a refinement ({Ui}, {U ′
i}), over which the two induced data are isomorphic to each other. We

can define the composition of two morphisms, so that the set of all orbifolds forms a category.

5.2 Orbifold Loop Spaces

Orbifold loop space is defined as the set of all morphisms from S1 to an orbifold, where S1 has a trivial
orbifold structure. We consider an orbifold M given by the quotient of a 2−connected smooth manifold
U by the action of T r, where we assume that each point in U has a stabilizer of at most finite order. Our
objective is to show the following homeomorphisms,

LMorb
∼= LU/LT r, L̃Morb

∼= LU/L0T
r, (7)

where LMorb denotes the orbifold loop space. By the equation (7), we can use the method in section 3 to
compute the cohomology of the universal cover of orbifold loop spaces.

In this subsection, we let f denote the projection from U to M instead of π. We first show the next
proposition.

Proposition 5.1 The projection f : U → M is a morphism of orbifolds in the sense defined in the previous
subsection.
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(proof) We take a connected, geodesically convex, open covering {Uα}α∈Λ of U . We assume that each Uα

is contained in a tubular neighborhood Wα of some T r orbit T r · x (x ∈ U). Furthermore we assume that
Wα is of the form

Wα
∼= T r ×G′α V ′

α = T r × V ′
α/(t, v) ∼ (tg, g−1v), g ∈ G′α,

V ′
α = TxW/Tx(T k · x), G′α is a stabilizer of x,

and that there exists an open convex set Fα ⊂ T r satisfying g ·Fα∩Fα = ∅ for ∀g ∈ Gα and Uα ⊂ Fα×V ′
α,

where Fα × V ′
α is embedded in U as follows,

Fα × V ′
α ↪→ T r ×G′α V ′

α = Wα ↪→ U.

Here, the convexity of Fα is defined by some fixed flat, translation invariant metric on T r. We set
U ′

α = f(Wα), then {U ′
α}α∈Λ is a compatible cover of M with uniformizing systems (V ′

α, G′α, π′α), where we
define π′α as the composite of the inclusion at the fiber of x, V ′

α ↪→ Wα and the projection f : Wα → M .
Define a lift fα of f |Uα

as a second projection fα : Uα ⊂ Fα × V ′
α → V ′

α. Next, we define a map
ρβα : Tran(Uα, Uβ) → Tran(U ′

α, U ′
β). Now, we have Tran(Uα, Uβ) = {1} because U is a manifold, therefore

we need only to define one element ρβα = ρβα(1) ∈ Tran(U ′
α, U ′

β). Suppose Uα ∩ Uβ 6= ∅. We put V ′
αβ

to be a connected component of π′−1
α (U ′

α ∩ U ′
β) which contains fα(Uα ∩ Uβ), then a uniformizing system

(V ′
αβ , G′αβ , π′αβ) over U ′

α ∩ U ′
β is induced by (V ′

α, G′α, π′α). We would like to define an isomorphism,

ρβα : (V ′
αβ , G′αβ , π′αβ) → (V ′

βα, G′βα, π′βα)

We use the next lemma to construct ρβα.

Lemma 5.2 Let (V,G, π), (V ′, G′, π′) be two isomorphic uniformizing systems on a connected open set
U . Let D ⊂ V be a connected open set and suppose we have a smooth map φ : D → V ′ such that π = π′ ◦φ.
Then φ is uniquely extended to an isomorphism (φ̃, λ) : (V,G, π) → (V ′, G′, π′). (φ̃|D = φ.)

The proof of the above lemma is postponed until the end of the subsection. fα is an open map (essentially
a projection), so that fα(Uα ∩ Uβ) is a connected open subset of V ′

αβ . Moreover fα is a submersion, so
that we can take a local section s for fα defined on a connected set D ⊂ fα(Uα ∩ Uβ) ⊂ V ′

αβ ,

s : D → Uα ∩ Uβ , fα ◦ s = idD .

We apply the above lemma for fβ ◦ s : D → V ′
βα, then obtain an isomorphism ρβα.

Finally we check that ρβα are independent of the choices made, and that the conditions required for
ρβα are satisfied.

• The choice of s. Let s′ : D → Uα ∩ Uβ be another section. Take t(x) ∈ T r for x ∈ D such that
t(x)s(x) = s′(x). Let γx(t) : [0, 1] → T r be the shortest path connecting 1 ∈ T r and t(x) ∈ T r i.e.
γx(0) = 1, γx(1) = t(x). Noting that s(x), s′(x) ∈ (Fα × V ′

α) ∩ (Fβ × V ′
β), we have

γx(t)s(x) ∈ (Fα × V ′
α) ∩ (Fβ × V ′

β) for any t ∈ [0, 1]

because Fα, Fβ is convex. From this it easily follows that fβ ◦ s = fβ ◦ s′.

• The choice of D. Let D′ be another choice. If D ∩D′ 6= ∅, we set D′′ to be a connected component
of D ∩D′. Then two ρβα’s determined by D and D′′ coincide, and two ρβα’s determined by D′ and
D′′ also coincide, therefore the independency follows. Because V ′

αβ is connected, it is sufficient to
consider the above case.

• The commutativity of the following diagram is clear from the construction.

Uα ∩ Uβ
fα−−−−→ V ′

αβ∣∣∣
∣∣∣

yρβα

Uα ∩ Uβ
fβ−−−−→ V ′

βα
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• The commutativity of the following diagram when Uα ∩ Uβ ∩ Uγ 6= ∅.

V ′
α

ργα−−−−→ V ′
γ

ρβα

y
∣∣∣
∣∣∣

V ′
β −−−−→

ργβ

V ′
γ

By the above lemma, it suffices to show that there is a connected open subset D ⊂ V ′
αβ ∩ V ′

αγ over
which the composite ργβ ◦ ρβα is defined and is equal to ργα. Note that V ′

αβ ∩ V ′
αγ is non-empty

because it contains fα(Uα ∩ Uβ ∩ Uγ). We take a local section s for fα defined on a connected open
set D ⊂ fα(Uα ∩ Uβ ∩ Uγ),

s : D → Uα ∩ Uβ ∩ Uγ , fα ◦ s = idD .

Then fβ ◦ s extends to an isomorphism ρβα : V ′
αβ → V ′

βα by the lemma. We put D′ = fβ ◦ s(D) ⊂
fβ(Uα ∩ Uβ ∩ Uγ) and take a section s′ for fβ defined on D′ as

s′(fβ ◦ s(x)) = s(x) for x ∈ D, s′ : D′ → Uα ∩ Uβ ∩ Uγ , fβ ◦ s′ = idD′ .

It is possible because fβ ◦ s is an embedding. Similarly, fγ ◦ s′ extends to ργβ : V ′
βγ → V ′

γβ . So we
obtain

ργβ ◦ ρβα|D = (fγ ◦ s′) ◦ (fβ ◦ s) = fγ ◦ s = ργα|D.

By this proposition, given a loop γ in U , the composite f ◦ γ gives an orbifold loop in M , i.e. there is
a map LU → LMorb. Next proposition shows that this map induces a map LU/LT r → LMorb.

Proposition 5.3 Let X be a smooth manifold and h : X → U , c : X → T r be C∞ maps. Then two
morphisms f ◦ h and f ◦ (c · h) are identical, where f : U → M is the projection and c · h denotes the
pointwise multiplication.

(proof) We use the notations used in the proof of Proposition 5.1. We can decompose two morphisms as
f ◦ h = f ◦ idU ◦h, f ◦ (c · h) = f ◦ (c · idU ) ◦ h, therefore it suffices to prove the case X = U and h = idU .
By taking the refinement if necessary, we can take a covering {Uα}α∈Λ of U such that Uα ⊂ Fα × V ′

α

and (c · idU )(Uα) ⊂ (tα · Fα) × V ′
α for some tα ∈ T r. We can easily argue that by this choice and the

same procedure as in the proof of previous proposition, we obtain the same data for two morphisms f and
f ◦ (c · idU ).

Proposition 5.4 There exist homeomorphisms LU/LT r ∼= LMorb, LU/L0T
r ∼= L̃Morb

(proof) So far, we showed that there exists a map LU/LT r → LMorb. Now we construct the inverse map.
Let γ : S1 → M be an orbifold loop given by the data (γ, {Ui}, {U ′

i}, {γi}, {ρji})n
i=1. We assume that each

Ui is an interval in S1 ∼= R/Z i.e. Ui = (ai, bi), Ui ∩ Ui+1 6= ∅, Ui ∩ Uj = ∅ for |i − j| >= 2 except for
U1 ∩ Un 6= ∅, and that each U ′

i is an image of a tubular neighborhood Wi of a T r orbit in U of the form
Wi = T r ×G′i V ′

i . Therefore U ′
i is uniformized by (V ′

i , G′i, π
′
i). Because S1 has a trivial orbifold structure,

each ρji can be thought to be an element of Tran(U ′
i , U

′
j). We remark that ρii = id because ρii is a group

homomorphism.
The first step is to lift the map γ|U1 to U . We take an arbitrary curve c1 : U1 → T r, and then put

γ̃(·) = [c1(·), γ1(·)] : U1 → T r ×G′1 V ′
1 = W1 ⊂ U .

The second step is to extend the lift γ̃ to the domain U1 ∪ U2. On the interval U1 ∩ U2 = (a2, b1), γ̃ is
already determined as a map with values in W2. We lift the map γ̃ : U1 ∩ U2 → T r ×G′2 V ′

2 to T r × V ′
2 as

˜̃γ(x) = (ĉ2(x), γ̂2(x)) ∈ T r × V ′
2 , x ∈ (a2, b1).

Let V ′
12 ⊂ π′1

−1(U ′
1∩U ′

2) and V̂ ′
21 ⊂ π′2

−1(U ′
1∩U ′

2) be connected components which contain γ1(U1∩U2) and
γ̂2(U1 ∩ U2) respectively, and let (V ′

1 , G′1, π
′
1) and (V̂ ′

21, Ĝ
′
21, π̂

′
21) be corresponding induced uniformizing

systems over U ′
1 ∩ U ′

2.
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Lemma 5.5 There exists an isomorphism ρ̂21 : (V ′
12, G

′
12, π

′
12) → (V̂ ′

21, Ĝ
′
21, π̂

′
21) such that ρ̂21(γ1(x)) =

γ̂2(x) for x ∈ U1 ∩ U2.

(proof of Lemma) The construction of ρ̂21 is similar to that of ρβα in Proposition 5.1. For any x0 ∈ U1∩U2,
we take the following section s for the second projection T r × V ′

1 → V ′
1 as,

s : V ′
12 → T r × V ′

1 , v 7→ (c1(x0), v).

Let pr : T r × V ′
1 → T r ×G′1 V ′

1 be a projection. Note that pr ◦ s has values in (T r ×G′1 V ′
1) ∩ (T r ×G′2 V ′

2).
Then we lift pr ◦ s : V ′

12 → T r ×G′2 V ′
2 to the map s̃ : V ′

12 → T r × V̂ ′
2 such that s̃(γ1(x0)) = ˜̃γ(x0). The

composition of s̃ and the second projection T r × V ′
2 → V ′

2 gives a map φ : V ′
12 → V ′

21. By Lemma 5.2,
φ determines an isomorphism ρ̂21 : (V ′

12, G
′
12, π

′
12) → (V̂ ′

21, Ĝ
′
21, π̂

′
21) such that ρ̂21(γ1(x0)) = γ̂2(x0). This

isomorphism does not depend on the choice of x0 in U1 ∩ U2 because the above φ depends continuously
on x0 but the set of isomorphisms is discrete. So it follows that ρ̂21(γ1(x)) = γ̂2(x) for any x ∈ U1 ∩ U2,
and the lemma is proved.

On the other hand, ρ21 is an isomorphism from (V ′
12, G

′
12, π

′
12) to (V ′

21, G
′
21, π

′
21). Two isomorphisms

are related as ρ21 = ψg0 ◦ ρ̂21 for some g0 ∈ G′2, so that we have

γ2(x) = ρ21 ◦ γ1(x) = g0 · (ρ̂21 ◦ γ1(x)) = g0 · γ̂2(x) for x ∈ U1 ∩ U2.

We replace the lift ˜̃γ = (ĉ2, γ̂2) with ˜̃γ
′ def= (c2, γ2)

def= (ĉ2 · g−1
0 , g0 · γ̂2) which is also the lift of γ̃ and defined

on U1 ∩ U2. Then we extend c2 to the domain U2 arbitrarily and define

γ̃ = [c2, γ2] : U2 → T r ×G′2 V ′
2 = W2 ⊂ U.

We can continue this process and obtain the lift γ̃ : U1 ∪ · · · ∪ Un → U , where it is easy to make the
extension to Un coincide with the map γ̃|U1 over U1 ∩ Un.

From this construction, we can obtain a lift γ̃ whose indeterminacy comes only from the multiplication
by an element in LT r. Thus we get a map LMorb → LU/LT r which is the inverse to LU/LT r → LMorb.
To show the isomorphism LU/L0T

r ∼= L̃Morb, it suffices to show that LU/L0T
r is simply connected.

Stabilizers of the action of L0T
r on LU at each point in LU are of finite order, so that the projection

LU → LU/L0T
r has a covering homotopy property for a point. Therefore we obtain the following exact

sequence,

π1(LU) → π1(LU/L0T
r) → π0(L0T

r).

Therefore LU/L0T
r is simply connected and the proof is completed.

Note that each stabilizer of the action of L0T
r on LU is a finite group contained in the set of constant

loops T r ⊂ L0T
r. Thus the set of contracting based loops Ω0T

r acts on LU/T r freely and we obtain a
principal Ω0T

r bundle LU/T r → LU/L0T
r. This bundle is trivial because Ω0T

r is contractible, so that
we have a S1 equivariant homotopy equivalence,

LU/L0T
r ∼ LU/T r.

From this equivalence, we can deduce the following isomorphisms as stabilizers of T r action are of finite
order.

H∗(L̃Morb) ∼= H∗
T r (LU), H∗

S1(L̃Morb) ∼= H∗
T r×S1(LU).

These isomorphisms admit us to compute the (equivariant) cohomology of L̃Morb. In this orbifold case,
we can also think connection forms θ̂i on U and its curvature forms p̂i = dθ̂i. The conditions imposed on
connection forms θ̂i are

ıiθ̂j = δij , Liθ̂j = 0,

where ıi, Li denote the contraction and the Lie derivation by i−th fundamental vector field of T r. These
curvature forms are pulled back from forms on orbifold M which form a basis of the second cohomology
group of M over R.
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Let pi be a cohomology class represented by p̂i and (
∧

V, δ0) be the Sullivan’s minimal model for M .
V can be decomposed as V = H2(M,R) ⊕ V ′, where V ′ denotes the higher degree part. As before, δ0

induces a differential δ′ on
∧

V ′ ⊗ R[t1, . . . , tr] and we set

Zi = ker(d : ΩiV
V ′ [t1, . . . , tr] → Ωi+1V

V ′ [t1, . . . , tr]).

In the same way when we proved Theorem 3.9, we obtain the following.

Theorem 5.6 Let U be a 2−connected manifold with T r action. We assume that each point in U has a
finite stabilizer. Let M = U/T r be a quotient orbifold. Then the following hold.

(1) The universal covering of the orbifold loop space L̃Morb is homeomorphic to LU/L0T
r, where L0T

r

denotes the set of contracting loops in T r.
(2) The ordinary and equivariant cohomology rings of L̃Morb are of the forms

H∗(L̃Morb,R) ∼= H∗(ΩVV ′|R[t1, . . . , tr], δ′),

H∗
S1(L̃Morb,R) ∼= R[t1, . . . , tr, ~]⊕

⊕

i>0

H∗(Zi, δ′).

(3) The variables ti on the right hand side of the latter isomorphism correspond to the classes represented
by the following forms

ti =
∫

S1
ev∗t (p̂i)dt + ~

∫

D2
g∗(p̂i),

where g : D2 → U is a disk contracting the loop γ ∈ LU/L0T
r = L̃Morb.

(4) The localization of H∗
S1(L̃Morb) with respect to ~ becomes

H∗
S1(L̃Morb,R)⊗R[~] R[~, ~−1] ∼= R[t1, . . . , tr, ~, ~−1].

Remark 5.7 Chen and Ruan proposed an “orbifold cohomology theory” defined for orbifolds [CR1].
However, cohomology rings of M and L̃Morb (this is an infinite dimensional orbifold) in the above theorem
are not Chen-Ruan’s orbifold cohomology rings but ordinary ones.

Example 5.8 Any symplectic toric orbifold can be written as a quotient of 2−connected manifold by a
T r action, see e.g. [Aud]. Thus the above theorem can be applied to toric orbifolds.

We close this subsection with the proof of Lemma 5.2.
(proof of Lemma 5.2) Because (V,G, π) and (V ′, G′, π′) are isomorphic to each other, we can take an
isomorphism (ψ, τ) : (V, G, π) → (V ′, G′, π′). Put D′ = ψ(D) and consider a map α

def= φ ◦ ψ−1 : D′ → V ′.
There exists at least one gx ∈ G′ for x ∈ D′ such that α(x) = gx · x, because π′ ◦ φ = π. We would like to
take a common gx for all x ∈ D′. We define H(x) for x ∈ D′ to be

H(x) = {g ∈ G′ | α(x) = g · x}.
We claim that the set {x ∈ D′ | ](H(x)) = 1} is dense in D′. Let Stab(x) denotes the stabilizer at x in
D′, then

{x ∈ D′ | ](H(x)) = 1} = {x ∈ D′ | Stab(x) = {eG′}}
= D′ −

⋃

g∈G′−{eG′}
{x ∈ D′ | g · x = x}.

By the effectivity of the action of G′ and the connectedness of D′, we deduce that {x ∈ D′ | g ·x = x} is a
submanifold of D′ whose dimension is strictly less than dim D′. The claim is proved because G′ is finite.
Next put Bg = {x ∈ D′ | H(x) = {g}} for g in G′. Then,

α(x) = g · x for x ∈ Bg,
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where (· · · ) denotes the closure in D′. Let Sg : V ′ → V ′ denote the map x 7→ g · x. If Bg1 ∩ Bg2 is
non-empty for g1 6= g2, by the above equation, the next relation holds for p ∈ Bg1 ∩Bg2 ,

dpSg1 = dpα = dpSg2 .

This contradicts that g1 · g−1
2 acts on TpV

′ non-trivially, consequently we have Bg1 ∩Bg2 = ∅. Finally,

D′ = {x ∈ D′ | ](H(x)) = 1} =
⋃

g∈G′
Bg,

and D′ is connected, therefore there exists a unique g0 ∈ G′ such that D′ = Bg0 . Thus φ ◦ψ−1 = α = Sg0 ,
and we can extend φ to a morphism (Sg0 ◦ ψ, g0 · τ · g−1

0 ).
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