
QUANTUM RING AND QUANTUM LEFSCHETZ

HIROSHI IRITANI

0.1. Modification of quantum rings. We study the quantum Lefschetz with respect to
a nef line bundle L → X with c1(L) = v. Let Y ⊂ X denote a smooth hypersurface with
respect to L. We choose a nef integral basis {p1, . . . , pr} of H2(X) such that v =

∑r
a=1 v

apa
with va ≥ 0. Let Q = (Q1, . . . , Qr) denote the Novikov variables dual to {p1, . . . , pr}; we
write

Qd = Qp1·d
1 · · ·Qpr·d

r

with d ∈ H2(X). We also choose a basis {ϕi}si=0 of H∗(X) such that ϕ0 = 1, ϕa = pa for
1 ≤ a ≤ r. Let {ti}si=0 denote the dual co-ordinate system on H∗(X). We write t =

∑s
i=0 t

iϕi.
Let Eff(X) ⊂ H2(X,Z) denote the set of classes of effective curves.

Write the J-function in the form:

(1) J =
∑

d∈Eff(X)

Qd+p/zJd(t, z)

Here we use a redundant co-ordinate system (Q1, . . . , Qr, t
0, . . . , ts) and adopt the convention

that J contains the factor Qp/z, so that J satisfies the divisor equation

Qa∂QaJ = ∂taJ, 1 ≤ a ≤ r.

For simplicity, we write ∂i = ∂/∂ti and ∂a = Qa∂/∂Qa, so that ∂aJ = ∂aJ . The hypergeo-
metric modification with respect to the line bundle L is given by:

modif(J) =
∑

d∈Eff(X)

Qd+p/zJd(t, z)
v·d∏
i=1

(v + iz).

Note that J 7→ modif(J) is a well-defined operation for any cohomology-valued power series
J of the form (1). The proof of the following lemma is straightforward:

Lemma 1. We have

modif(∂iJ) = ∂imodif(J), modif(∂aJ) = ∂amodif(J),

modif(QaJ) = Qa

(
va∏
i=1

(z∂v + iz)

)
modif(J)

where ∂v :=
∑r

a=1 v
a∂a. In particular, if J satisfies the divisor equation, so is modif(J).

Remark 2. The differential operators Qa
∏va

i=1(z∂v + iz), a = 1, . . . , r commute each other
and the map

Qa 7→ Qa

va∏
i=1

(z∂v + iz), z∂a 7→ z∂a

defines an automorphism of the Weyl algebra C⟨Q1, . . . , Qr, z∂1, . . . , z∂r, z⟩.
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By the lemma, we see that if J satisfies a differential relation:

RJ = 0

for some differential operator R = R(Q, t, z∂, z∂, z), then then modif(J) satisfies

R̂modif(J) = 0, with R̂ = R|
Qa→Qa

∏va

i=1(z∂v+iz)
.

Recall the following basic fact:

Proposition 3. If the J-function of X satisfies a differential equation RJ = 0 for R =
R(Q, t, z∂, z∂, z), then we have a relation R(Q, t, z, p⋆, ϕ⋆, 0)1 = 0 in the quantum cohomology
algebra of X. Conversely, for any relation f(Q, t, z, p⋆, ϕ⋆)1 = 0 in the quantum cohomology,
there is a differential operator R(Q, t, z∂, z∂, z) such that R(Q, t, p⋆, ϕ⋆, 0) = f and that RJ =
0.

Let τ = τ(t) denote the mirror map. This is the canonical parameter for the position of
modif(J) in the ruling of the L-twisted Givental cone1, i.e. a cohomology class τ ∈ H∗(X)
such that

modif(J) ∈ zTτ

where Ltw =
∪

τ zTτ denotes the ruling of the twisted Givental cone such that zTτ ∩ (−z +
zH−) = {−z + τ + O(z−1)}. Since we have added the prefactor Qp/z to the J-function, the
mirror map is of the form τ(t) = p logQ+ t+O(Q). Then we have

Proposition 4. If modif(J) satisfies a differential equation R̂modif(J) = 0 for some R̂ =

R̂(Q, t, z∂, z∂, z), then we have the relation:

R̂(Q, t, (∂1τ)⋆τ , . . . , (∂rτ)⋆τ , (∂0τ)⋆τ , . . . , (∂sτ)⋆τ , 0)1 = 0

in the twisted quantum cohomology of X (thus in the quantum cohomology of the hypersurface
Y with respect to L) with τ = τ(t).

Corollary 5. If we have a relation f(Q, t, p, ϕ) = 0 in the big quantum cohomology algebra
of X (with parameter t), then we have a relation

(2) f(Q1(∂vτ)
v1 , . . . , Qr(∂vτ)

vr , t,∂1τ, . . . ,∂rτ, ∂0τ, . . . , ∂sτ) = 0

in the L-twisted quantum cohomology of X with the parameter τ = τ(t).

Remark 6. Under the current convention, the mirror map satisfies the divisor equation
∂aτ = ∂aτ .

The corollary says that the twisted quantum cohomology can be obtained from the un-
twisted quantum cohomology just by a co-ordinate change: more precisely, if we regard
the spectrum of the quantum ring as a Lagrangian subvariety in the cotangent bundle of
H2(X,C×) ×H∗(X), then the Lagrangian subvariety is transformed by a certain symplectic
transformation under the twisting.

Example 7. Consider X = Pn and line bundle L = O(k) with 0 < k < n. In this case the
mirror map is trivial for small quantum cohomology (t = 0). Let p be a positive generator of
H2(Pn). The relation in small quantum cohomology

pn+1 −Q = 0

1More precisely, we consider the non-equivariant limit of the twisted cone. We do not need to restrict
ourselves to the case where modif(J) has a good asymptotics: we may allow the hypersurface to be non-weak-
Fano (the mirror map τ still makes sense).
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is turned into the relation
pn+1 −Q(kp)k = 0.

Factoring p out, we get a relation pn = Qkkpk−1 in the small quantum cohomology ring of
the degree k hypersurface.

Example 8. In the above example, consider the case where k = n, i.e. the hypersurface
is of index 1. In this case the mirror map is nontrivial: since the mirror map is given by
τ(t = 0) = n!Q+ p logQ, we obtain the relation

(p+ n!Q)n+1 −Qnn(p+ n!Q)n = 0.

Again we remove one factor of p+ n!Q to get a relation for the hypersurface.

Question 9. The twisted quantum cohomology contains a “trivial” factor which is the kernel
of the restriction map H∗(X) → H∗(Y ). In terms of the Lagrangian subvariety, we have a
closed embedding Spec(QH∗

amb(Y )) ↪→ Spec(QH∗
tw(X)). Can we see this directly from the

relations (2)?

A possible answer to this question is as follows. Suppose v is ample. If we have a relation
f(Q, v) = 0 in the small quantum cohomology of X such that f(0, 0) = 0. Then the modified

relation f(Q1(∂vτ)
v1 , . . . , Qr(∂vτ)

vr ,∂vτ) always contain a factor of ∂vτ . Then it is likely
that we can factor out ∂vτ from the relation on the hypersurface.

Let us give a more precise answer: suppose again that v is ample and that we have a
differential operator R = R(Q, t, z∂, z∂, z) that annihilates J and belongs to the right ideal2

generated by Qd with d ̸= 0 and z∂v, i.e. R is of the form

R = z∂vS +
∑
d̸=0

QdRd.

Then it follows thatz∂vS
′ +
∑
d ̸=0

(
v·d−1∏
i=0

(z∂v − iz)

)
QdR′

d

modif(J) = 0

for some differential operators R′
d and S′. By factoring out z∂v from the left, we have

z∂vT modif(J) = 0, with T := S′ +
∑
d ̸=0

(
v·d−1∏
i=1

(z∂v − iz)

)
QdR′

d.

Thus T modif(J) is a power series annihilated by z∂v. Using the fact that v is ample, we find

that T modif(J) is of the form Qp/zϕ(t, z) for some Q-independent cohomology class ϕ(t, z)
such that v ∪ ϕ(t, z) = 0. Again using the fact that v is ample, we find i∗ϕ(t, z) = 0 for the
inclusion i : Y → X (ϕ(t, z) is “coprimitive”). This implies

Ti∗modif(J) = 0

and thus T gives rise to a relation in the hypersurface:

R(Q1(∂vτ)
v1 , . . . , Qr(∂vτ)

vr , t,∂τ, ∂τ, 0)

∂vτ
= 0

Question 10. We have observed that the quantum cohomology are related by a certain
co-ordinate change under hyperplane sections. Can we find any (symplectic) “invariants” of
quantum rings preserved by this operation?

2This is reminiscent of the method of Mann-Mignon.
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0.2. Subcanonical hyperplane sections. Suppose that X is a Fano manifold and Y ⊂ X
is a Fano hypersurface with respect to a line bundle L whose first Chern class is a multiple
of c1(X) = −KX . Let ℓ be the Fano index and we write −KX = ℓh and c1(L) = kh for some
ample class h and 0 < k < ℓ. Suppose we have a relation in the small quantum cohomology
of X:

f(Q,h) = 0.

We may assume that the relation is homogeneous

f(λℓw1Q1, . . . , λ
ℓwrQr, λh) = λ|f |f(Q,h),

where we set c1(X) =
∑r

a=1 ℓwapa with wa ∈ Z≥0. The mirror map is of the form:

τ(t = 0) =

{
p logQ if ℓ− k > 1

p logQ+ k!
∑

h·d=1

⟨
[pt]ψℓ−2

⟩X
0,1,d

Qd if ℓ− k = 1

Thus we get a relation in the twisted quantum cohomology:

f(Q1(kh
′)kw1 , . . . , Qr(kh

′)kwr , h′) = 0 in QHtw

where

(3) h′ = ∂hτ =

{
h if ℓ− k > 1

h+ k!
∑

h·d=1

⟨
[pt]ψℓ−2

⟩X
0,1,d

Qd if ℓ− k = 1.

Using the above homogeneity, we get

(kh′)k|f |/ℓf(Q1, . . . , Qr, h
′1−(k/ℓ)k−k/ℓ) = 0 in QHtw.

Note that this is a polynomial in h′ (non-integral powers do not appear). Thus the eigen-
values of h′ in the twisted quantum cohomology is either 0 or a solution x to the equation
f(Q, k−k/ℓx1−k/ℓ) = 0. This gives the following corollary:

Corollary 11. For a non-zero eigenvalue u′ of (h′⋆Y ), there is an eigenvalue u of (h⋆X) such
that

(4) (u′)l−k = kkuk.

Question 12. Can we show the converse statement: is every complex number u′ satisfying
(4) for some eigenvalue u of h⋆X an eigenvalue of h′⋆Y ?

0.3. (Super?) characteristic polynomials. Suppose again that X is a Fano manifold and
that Y is a Fano hypersurface in X. Now v = c1(L) is not necessarily proportional to c1(X)
but we assume that v is ample. We consider the characteristic polynomial P (Q,λ) of v⋆ in
the small quantum cohomology of X, that is:

P (Q,λ) = det(λ− v⋆) = λN − λN−1 tr(v⋆) + · · ·+ (−1)N det(v⋆)

where N = dimH∗(X). We can also write this as P (Q,λ) = det((λ − v)⋆X). We could also
consider the super-characteristic polynomial:

P (Q,λ) = sdet(λ− v⋆) =
detHev(λ− v⋆)

detHod(λ− v⋆)
= λχ(X) − λχ(X)−1 str(v⋆) + · · · .

I am not sure which is better. In the following, I only consider the usual characteristic
polynomial. It gives the relation P (Q, v) = 0 in the quantum ring QH∗(X). Thus we have a
relation:

P ′(Q,w) := P (Q1w
v1 , . . . , Qrw

vr , w) = 0
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in the twisted quantum cohomology, where w = ∂vτ is given by

w = v + (v · d)!
∑

(c1(X)−v)·d=1

⟨
[pt]ψc1(X)·d−2

⟩X
0,1,d

(v · d)Qd.

Note that w = v unless c1(X) − v is a primitive class. The polynomial P (Q, v) is weighted
homogeneous of degree N with respect to the standard degree of Qa’s and deg v = 1. The
new polynomial P ′(Q,w) is also weighted homogeneous but with different degree of Qa; by
the assumption that Y is Fano, the degrees of Qa are still positive. Therefore we deduce that
P ′(Q,w) is still a monic polynomial of degree N with respect to w.

Question 13. Is P ′(Q,w) divisible by wm with

m = ♯{v-Lefschetz blocks} = dimKer(i∗ : H∗(X) → H∗(Y ))?

This would follow if v⋆X preserves each of Lefschetz blocks since then P (Q, v) decomposes
into the product of characteristic polynomials on each block.

Question 14. If the answer to the previous question is yes, is P ′(Q,w)/wm the characteristic
polynomial of w⋆Y on the ambient part quantum cohomology QH∗

amb(Y )? (Compare with
Question 9.)

Question 15. What is the characteristic polynomial of w⋆Y on the full quantum cohomology
QH∗(Y ) including the primitive part? Is it just P ′(Q,w)wdimH∗(Y )−dimH∗(X)? [Or, if we are

working with super-characteristic polynomials, we would ask if P ′(Q,w)wχ(Y )−χ(X) is a super-
characteristic polynomial of w⋆Y .] For hypersurfaces in Pn, this seems to be true (including
for index-one hypersurfaces) by the supertrace computation.

0.4. Complete relations of quantum cohomology of hypersurfaces. We describe a
complete set of relations of QH∗(Y ) in terms of QH∗(X) assuming that v = c1(L) satisfies
the following:

(†) v ∪ ϕ = 0 =⇒ i∗(v) = 0

for all ϕ ∈ H∗(X), where i : Y → X is the inclusion. Note that the converse i∗ϕ = 0 ⇒
v ∪ϕ = 0 is always true because i∗i

∗ϕ = v ∪ϕ. The condition (†) holds if v is ample. A result
of Mavlyutov shows that semiample hypersurfaces of toric orbifolds satisfy this condition (†).

Question 16. When does the condition (†) hold in general?

We rearrange the basis ϕ0, ϕ1, . . . , ϕs of H∗(X) in such a way that ϕu+1, . . . , ϕs form a

basis of Ker(v∪) = Ker(i∗ : H∗(X) → H∗(Y )). Let Ak
i,j(Q, t), C

j
i (Q, t) denote the structure

constants of quantum cohomology of X:

ϕi ⋆ ϕj =

s∑
k=0

Ak
i,j(Q, t)ϕk, v ⋆ ϕi =

s∑
j=0

Cj
i (Q, t)ϕj .

In this section we work over the ring Λ := C[[Q, t]] of formal power series. We use:

• t =
∑s

j=0 t
jϕj for the parameter of the big quantum cohomology QH∗(X);

• τ =
∑s

j=0 τ
jϕj for the parameter of the twisted quantum cohomology QH∗

tw(X);

• i∗τ =
∑u

j=0 τ
j(i∗ϕj) for the parameter of the ambient part big quantum cohomology

QH∗
amb(Y ).
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These parameters are related by the mirror map τ = τ(t). By changing the base, we obtain
the following Λ := C[[Q, t]]-algebras:

QHtw(X)Λ := QHtw(X)⊗C[[Q,τ ]] Λ,

QHamb(Y )Λ := QHamb(Y )⊗C[[QY ,i∗τ ]] Λ,

where we regard Λ as a C[[Q, τ ]]-algebra or as a C[[QY , i
∗τ ]]-algebra via the mirror map and

the natural map of Novikov variables Qd
Y 7→ Qi∗d with d ∈ H2(Y,Z).

Proposition 17. The twisted quantum cohomology QH∗
tw(X)Λ is a Λ-algebra generated by

ϕ̂i = ∂iτ, v̂ = ∂vτ.

and all relations among them are topologically3 generated by

ϕ̂iϕ̂j =
s∑

k=0

Ak
i,j(Qv̂

v, t)ϕ̂k, v̂ϕ̂i =
s∑

j=0

Cj
i (Qv̂

v, t)ϕ̂j , v̂ =
r∑

a=1

viϕ̂i

where we write Qv̂v = (Q1v̂
v1 , . . . , Qrv̂

vr).

Proof. Corollary 5 and the divisor equation implies that these relations hold in the twisted
quantum cohomology. On the other hand, these relations (Q-adically) define a free Λ-module
of the expected rank dimH∗(X), because every appearance of v̂ in the right-hand side asso-
ciates non-zero powers of Q. Thus these relations are complete. □
Theorem 18. Suppose that the class v satisfies the condition (†). The ambient quantum
cohomology QH∗

amb(Y )Λ is a Λ-algebra generated by

ϕ̂j = i∗(∂jτ), v̂ = i∗(∂vτ)

and all relations among them are topologically generated by

ϕ̂iϕ̂j =
s∑

k=0

Ak
i,j(Qv̂

v, t)ϕ̂k,

v̂ϕ̂i =

s∑
j=0

Cj
i (Qv̂

v, t)ϕ̂j for 0 ≤ i ≤ u

ϕ̂i =

s∑
j=0

Cj
i (Qv̂

v, t)

v̂
ϕ̂j for u+ 1 ≤ i ≤ s

v̂ =

r∑
a=1

vaϕ̂a

where we use the fact that Cj
i (Qv̂

v, t) is divisible by v̂ for u+ 1 ≤ i ≤ s.

Proof. First we show that the third relation holds. (The other relations are obvious from

Corollary 5). Suppose u + 1 ≤ i ≤ s. We remark that Cj
i (Qv̂

v, t) is divisible by v̂. To see

this, it suffices to show that if Qd appears in the series expansion of Cj
i (Q, t), then v · d ̸= 0.

Indeed, we have

Cj
i (Q, t) =

∑
d∈Eff(X)

∞∑
n=0

1

n!

⟨
v, ϕi, ϕ

j , t, . . . , t
⟩
0,3+n,d

Qd

3in the Q-adic topology
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and the term with (d, n) = (0, 0) vanishes by the condition v ∪ ϕi = 0 and the terms with

(d, n) ̸= (0, 0), v · d = 0 vanish by the divisor equation. Thus Cj
i (Qv̂

v, t) is divisible by v̂. We
have the differential relation

z∂vz∂iJ =
∑
j

Cj
i (Q, t)z∂jJ.

By Lemma 1, this yields

z∂vz∂imodif(J) =
∑
j

Cj
i (Q, t)

∣∣∣
Qd 7→(

∏v·d−1
l=0 (z∂v−lz))Qd

z∂j modif(J).

From what we have shown, we can factor out z∂v from the left, and obtain

z∂vT = 0 with T =

z∂i −∑
j

Cj
i (Q, t)

∣∣∣
Qd 7→(

∏v·d−1
l=1 (z∂v−lz))Qd

z∂j

modif(J).

Setting T =
∑

d∈Eff(X) cdQ
d+p/z, we have (v + (v · d)z)cd = 0 for all d; this implies cd = 0 for

v · d ̸= 0 and v ∪ cd = 0 for v · d = 0. The condition (†) implies that i∗T = 0. From this we
obtain the relation in the hypersurface Y :

ϕ̂i =
s∑

j=0

Cj
i (Qv̂

v, t)

v̂
ϕ̂j for u+ 1 ≤ i ≤ s.

The rest of the proof is similar to the previous proposition. The third relation determines
ϕ̂i, u + 1 ≤ i ≤ s in terms of the other ϕ̂j ’s and we can see that all these relations define a
Λ-module of the expected rank dimH∗

amb(Y ) = u+ 1. □

The same argument also shows the following:

Theorem 19. Suppose that the class v satisfies the condition (†). Let ϕ̂j, v̂ be as in Theorem

18. As a Λ[v̂]-module, the ambient quantum cohomology QH∗
amb(Y )Λ is generated by ϕ̂j,

j = 0, . . . , s and all relations as a Λ[v̂]-module are topologically generated by:

v̂ϕ̂i =

s∑
j=0

Cj
i (Qv̂

v, t)ϕ̂j for 0 ≤ i ≤ u

ϕ̂i =

s∑
j=0

Cj
i (Qv̂

v, t)

v̂
ϕ̂j for u+ 1 ≤ i ≤ s.

Remark 20. When X and Y are Fano, and if we are only interested in the small quantum
cohomology (i.e. t = 0), everything is defined over the polynomial ring C[Q1, . . . , Qr] for the
degree reason, and the word “topologically” can be removed from the above statements.

Remark 21. Suppose we are only interested in the small quantum cohomology. Even in this
case, in order to get the above presentation, we still need the mirror map τ(t) up to the first

order in t0, . . . , ts (so that we get the generators ϕ̂i = ∂iτ |t=0).

Remark 22. The presentation here determines not only the abstract isomorphism class of
the quantum cohomology rings, but also their structure constants.
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0.5. Characteristic polynomials, revisited. We apply the above method to the case where
Y is a Fano hypersurface in a Fano manifold X. We again assume the condition (†). This
answers Questions 13, 14 affirmatively.

Theorem 23. Suppose that Y is a Fano hypersurface in X and v satisfies (†). Let P (λ,Q) =
det(λ − v⋆X) denote the characteristic polynomial of the small quantum product by v in

QH∗(X). Let v̂ = ∂vτ |t=0 be as in Theorem 18. Then the characteristic polynomial P̂ (λ,QY )
of the small quantum product by v̂ in QH∗

amb(Y ) satisfies:

P̂ (λ,QY )
∣∣∣
Qd

Y →Qi∗d
= λ−mP (λ,Qλv)

with m = s− u = dimH∗(X)− dimH∗
amb(Y ), where Qλv = (Q1λ

v1 , . . . , Qrλ
vr).

Remark 24. Actually the theorem holds separately for the even degree part and the odd
degree part. In the following proof, we only consider the even degree part for simplicity of
notation.

First we show the following:

Proposition 25. With notation as above, the characteristic polynomial of the small twisted
quantum product by v̂ in QH∗

tw(X) is given by P (λ,Qλv).

Proof. The small quantum product by v̂ in QH∗
tw(X) is determined by the formula:

v̂ · ϕ̂i =
s∑

j=0

Cj
i (Qv̂

v)ϕ̂j .

This gives a “self-referential” matrix representation of the multiplication by v̂. What we want

to show is that the characteristic polynomial of this self-referential matrix (Cj
i (Qv̂

v)) becomes
the characteristic polynomial of v̂ after setting v̂ = λ. Note that, for the degree reason, the

matrix Cj
i (Qv̂

v) is of the block-form:
∗ ♡ ♡ ♡ ♡
∗ ∗ ♡ ♡ ♡

∗ ∗ ♡ ♡
∗ ∗ ♡

∗ ∗


with respect to the decomposition H∗(X) = H0 ⊕H2 ⊕ · · · ⊕H2n. Here v̂ can only appear
in the positions of ♡ since both Q and v̂ have positive degrees (here we use the fact that

Y is Fano). We can obtain from Cj
i (Qv̂

v) the (usual) matrix presentation of v̂ in the basis

{ϕ̂0, . . . , ϕ̂s} by the following procedure.

(1) Take the leftmost column that contains v̂. Suppose it is the ith column
∑s

j=0C
j
i (Qv̂

v)ϕ̂j .

(2) Take an entry Cj
i (Qv̂)ϕj of the ith column that contains v̂. Then |j| < |i|. Replace

an appearance of v̂ϕj with
∑s

k=0C
k
j (Qv̂

v)ϕk, which by assumption does not contain
v̂.

(3) If the matrix still contains v̂, go back to (1) and repeat the same process.

This process terminates in finite steps because in each step the total number4 of powers of v̂
appearing in the matrix decreases. In the end we get a matrix presentation for v̂.

4We count the “number of powers” as follows: each entry c0 + c1v̂
e1 + · · · + ckv̂

ek with ci ̸= 0 contributes
e1 + · · ·+ ek to the number of powers.
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Now it suffices to show that the characteristic polynomials with v̂ set to be λ do not change
under the replacement process in (2). Let C, C ′ denote the matrices, respectively, before or
after the replacement. When we write

C =


. . . c0j . . . c0i . . .

...
...

cjj a+ bv̂
...

...
. . . csj . . . csi . . .

 with cji = a+ bv̂

we have

C ′ =


. . . c0j . . . c0i + bc0j . . .

...
...

cjj a+ bcjj
...

...
. . . csj . . . csi + bcsj . . .

 .
Therefore

det(λI − C ′) =

∣∣∣∣∣∣∣∣∣∣∣

. . . −c0j . . . −c0i − bc0j . . .
...

...
λ− cjj −a− bcjj

...
...

. . . −csj . . . −csi − bcsj . . .

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

. . . −c0j . . . −c0i . . .
...

...
λ− cjj −a− bλ

...
...

. . . −csj . . . −csi . . .

∣∣∣∣∣∣∣∣∣∣∣
which equals det(λI − C) after setting v̂ = λ. □
Proof of Theorem 23. Recall from (a Fano-adapted version of) Theorem 19 that QH∗

amb(Y )

is a C[Q1, . . . , Qr][v̂]-module generated by ϕ̂i, i = 0, . . . , s with relations

v̂ϕ̂i =

s∑
j=0

Cj
i (Qv̂

v, t)ϕ̂j for 0 ≤ i ≤ u(5)

ϕ̂i =

s∑
j=0

Cj
i (Qv̂

v, t)

v̂
ϕ̂j for u+ 1 ≤ i ≤ s.(6)

We solve for ϕ̂i, u + 1 ≤ i ≤ s in terms of ϕ̂i, 0 ≤ i ≤ u using the second equation (6), and
replace ϕi, u+ 1 ≤ i ≤ s in the first equation (5) with those solutions. Then we again obtain

a self-referential matrix of v̂ in the basis ϕ̂0, . . . , ϕ̂u:

v̂ · ϕ̂i =
u∑

j=0

Dj
i (Q, v̂)ϕ̂j , 0 ≤ i ≤ u.

To be more precise, we write the matrix Cj
i (Qv̂

v) in the block form with respect to the

partition {ϕ̂0, . . . , ϕ̂u} ∪ {ϕ̂u+1, . . . , ϕ̂s} of basis.

(Cj
i (Qv̂

v))0≤i,j≤s =

(
E F
G H

)
Writing ϕ̂(1) = (ϕ̂0, . . . , ϕ̂u) and ϕ̂(2) = (ϕ̂u+1, . . . , ϕ̂s), we have from (6)

ϕ̂(2) = ϕ̂(1)F/v̂ + ϕ̂(2)H/v̂.
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Hence
ϕ̂(2) = ϕ̂(1)v̂−1F (I − v̂−1H)−1.

By (5), we have

v̂ϕ̂(1) = ϕ̂(1)E + ϕ̂(2)G = ϕ̂(1)
(
E + v̂−1F (I − v̂−1H)−1G

)
.

Therefore the matrix D above is given by:

D = E + v̂−1F (I − v̂−1H)−1G.

By the same argument as in Proposition 17, we can show that the characteristic polynomial

P̂ (λ,Q) := P̂ (λ,QY )|Qd
Y →Qi∗d of the small quantum product v̂⋆Y for Y (with the change of

variables Qd
Y 7→ Qi∗d) is given by:

P̂ (λ,Q) = det(λ−D)
∣∣∣
v̂→λ

.

On the other hand, we have for C = (Cj
i (Qv̂

v))0≤i,j≤s,

det(λI − C) =

∣∣∣∣λ− E −F
−G λ−H

∣∣∣∣ = ∣∣∣∣λ− E − F (λ−H)−1G −F
0 λ−H

∣∣∣∣
= det(λ− E − F (λ−H)−1G) det(λ−H)

= det(λ− E − λ−1F (1− λ−1H)−1G) det(1− λ−1H)λs−u.

Thus setting v̂ = λ, we obtain

det(λI − C)
∣∣∣
v̂→λ

= det(λ−D)
∣∣∣
v̂→λ

det(1− v̂−1H)
∣∣∣
v̂→λ

λm.

Noting that H is divisible by v̂, det(1− v̂−1H) is of degree zero and that v̂−1H = O(Q), we

have that det(1− v̂−1H) = 1. Hence we obtain P (λ,Qλv) = λmP̂ (λ,Q) as required. □
Remark 26. It seems that we can generalize Theorem 23 to the case where c1(Y ) is nef, with
a little more effort. When c1(Y ) is not even nef, P (λ,Qλv) may not be a polynomial of degree
dimH∗(X). A naive guess is that we can approximate (in the Q-adic topology) the actual
characteristic polynomial by iteratively replacing higher powers of v̂ appearing in P (λ,Qλv),
up to any given order.

0.6. Subcanonical hypersurfaces, revisited. Suppose that X is a Fano manifold of index
ℓ, i.e. −KX = ℓh for a primitive ample class h, and that Y is a Fano hypersurface with respect
to v = kh with 0 < k < ℓ. Suppose that P (λ,Q) is the characteristic polynomial of h⋆ in the
small quantum cohomology of X. Then the characteristic polynomial of v⋆ is:

ks+1P (λ/k,Q)

with s + 1 = dimH∗(X). By Theorem 23, the characteristic polynomial of v̂ = kh′ in the
ambient quantum cohomology of Y is:

ks+1λ−mP (λ/k,Qλkh)

with m = s− u = dimH∗(X)− dimH∗
amb(Y ). Finally the characteristic polynomial of h′⋆ in

QH∗
amb(Y ) is:

P ′(λ,Q) = λ−mP (λ,Q(kλ)kh).

We write

P (λ,Q) = λe0
c∏

i=1

ℓ−1∏
j=0

(λ− ζjℓui)
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with non-zero eigenvalues u1, . . . , uc of h⋆
X , where ui = ui(Q) satisfies the homogeneity

ui(Qϵ
ℓh) = ϵui(Q).

Then

P ′(λ,Q) = λ−mλe0
c∏

i=1

ℓ−1∏
j=0

(λ− ζjℓ (kλ)
k/ℓui)

= λe0−m
c∏

i=1

(λℓ − kkλkuℓi)

= λe0−m+ck
c∏

i=1

(λℓ−k − kkuℓi).

Corollary 27. Let X, Y be as above. Let h′ ∈ H∗
amb(Y ) denote the class (3). Suppose that

the small quantum product h⋆X has {uiζjℓ : 1 ≤ i ≤ c, 0 ≤ j ≤ ℓ − 1} as the multi-set of

non-zero eigenvalues. Then the quantum product h′⋆Y on the ambient part has

{u′iζ
j
k : 1 ≤ i ≤ c, 0 ≤ j ≤ ℓ− k − 1}

as the multi-set of non-zero eigenvalues, where u′i is a solution to the equation:

(u′i)
ℓ−k = kkuℓi .


